Log-Linear Models with Structured Outputs

Introduction to Natural Language Processing Computer Science 585—Fall 2009 University of Massachusetts Amherst

> David Smith including slides from Andrew McCallum

Overview

- Sequence labeling task (cf. POS tagging)
- Independent classifiers
- HMMs
- (Conditional) Maximum Entropy Markov Models
- Conditional Random Fields
- Beyond Sequence Labeling

Sequence Labeling

- Inputs: $x = (x_1, ..., x_n)$
- Labels: $y = (y_1, ..., y_n)$
- Typical goal: Given x, predict y
- Example sequence labeling tasks
 - Part-of-speech tagging
 - Named-entity-recognition (NER)
 - Label people, places, organizations

NER Example:

Red Sox and Their Fans Let Loose

Fans of the slugger David Ortiz in Boston's Copley Square.

By PETE THAMEL Published: October 31, 2007

BOSTON, Oct. 30 — Jonathan Papelbon turned Boston's World Series victory parade into a full-scale dance party Tuesday as the <u>Red Sox</u> pu an exclamation point on the 2007 season.

	E-MAIL
it	
	REPRINTS
	SAVE

First Solution: Maximum Entropy Classifier

- Conditional model p(y|x).
 - Do not waste effort modeling p(x), since x is given at test time anyway.
 - Allows more complicated input features, since we do not need to model dependencies between them.
- Feature functions f(x,y):
 - $-f_1(x,y) = \{ word is Boston & y=Location \}$ $-f_2(x,y) = \{ first letter capitalized & y=Name \}$ $-f_3(x,y) = \{ x is an HTML link & y=Location \}$

First Solution: MaxEnt Classifier

- How should we choose a classifier?
- Principle of maximum entropy
 - We want a classifier that:
 - Matches feature constraints from training data.
 - Predictions maximize entropy.
- There is a unique, exponential family distribution that meets these criteria.

First Solution: MaxEnt Classifier

- p(y|x;θ), inference, learning, and gradient.
- (ON BOARD)

First Solution: MaxEnt Classifier

- Problem with using a maximum entropy classifier for sequence labeling:
- It makes decisions at each position independently!

$$P(\mathbf{y}, \mathbf{x}) = \prod_{t} P(y_t | y_{t-1}) P(x | y_t)$$

- Defines a generative process.
- Can be viewed as a weighted finite state machine.

- HMM problems: (ON BOARD)
 - Probability of an input sequence.
 - Most likely label sequence given an input sequence.
 - Learning with known label sequences.
 - Learning with unknown label sequences?

- How can represent we multiple features in an HMM?
 - Treat them as conditionally independent given the class label?
 - The example features we talked about are not independent.
 - Try to model a more complex generative process of the input features?
 - We may lose tractability (i.e. lose a dynamic programming for exact inference).

• Let's use a conditional model instead.

Third Solution: MEMM

- Use a series of maximum entropy classifiers that know the previous label.
- Define a Viterbi algorithm for inference.

$$P(\mathbf{y} \mid \mathbf{x}) = \prod_{t} P_{y_{t-1}}(y_t \mid \mathbf{x})$$

Third Solution: MEMM

- Finding the most likely label sequence given an input sequence and learning.
- (ON BOARD)

Third Solution: MEMM

- Combines the advantages of maximum entropy and HMM!
- But there is a problem...

Problem with MEMMs: Label Bias

- In some state space configurations, MEMMs essentially completely ignore the inputs.
- Example (ON BOARD).
- This is not a problem for HMMs, because the input sequence is generated by the model.

Fourth Solution: Conditional Random Field

- Conditionally-trained, undirected graphical model.
- For a standard linear-chain structure:

$$P(\mathbf{y} \mid \mathbf{x}) = \prod_{t} \Psi_{k}(y_{t}, y_{t-1}, \mathbf{x})$$
$$\Psi_{k}(y_{t}, y_{t-1}, \mathbf{x}) = \exp\left(\sum_{k} \lambda_{k} f(y_{t}, y_{t-1}, \mathbf{x})\right)$$

Fourth Solution: CRF

 Finding the most likely label sequence given an input sequence and learning. (ON BOARD)

Fourth Solution: CRF

- Have the advantages of MEMMs, but avoid the label bias problem.
- CRFs are globally normalized, whereas MEMMs are locally normalized.
- Widely used and applied. CRFs give state-the-art results in many domains.

Example Applications

- CRFs have been applied to:
 - Part-of-speech tagging
 - Named-entity-recognition
 - Table extraction
 - Gene prediction
 - Chinese word segmentation
 - Extracting information from research papers.
 - Many more...