Lexical Semantics II

Introduction to Natural Language Processing Computer Science 585—Fall 2009 University of Massachusetts Amherst

David Smith

1

Topic Models

Unsupervised Models of Word Co-occurrences

A Probabilistic Approach

 Learn the parameters of this model by fitting them to the data and a prior.

$$\phi^* = \arg \max_{\phi} p(\phi | D_1 D_2 ...) = p(D_1 D_2 ... | \phi) p(\phi)$$

Clustering words into topics with Latent Dirichlet Allocation

[Blei, Ng, Jordan 2003]

Example topics induced from a large collection of text

DISFASE	WATED	MIND	STORY	FIELD	SCIENCE	BALL	JOB
BACTERIA	FISH	WORLD	STORIES	MAGNETIC	STUDY	GAME	WORK
DISEASES	SEA	DREAM	TELL	MAGNET	SCIENTISTS	TEAM	JOBS
GERMS	SWIM	DREAMS	CHARACTER	WIRE	SCIENTIFIC	FOOTBALL	CAREER
FEVER	SWIMING	THOUGHT	CHARACTERS	NEEDLE	KNOWLEDGE	BASEBALL	EXPERIENCE
CAUSE	POOI	IMAGINATION	AUTHOR	CURRENT	WORK	PLAYERS	EMPLOYMENT
CAUSED	LIKE	MOMENT	READ	COIL	RESEARCH	PLAY	OPPORTUNITIES
SPREAD	SHELI	THOUGHTS	TOLD	POLES	CHEMISTRY	FIELD	WORKING
VIRUSES	SHARK	OWN	SETTING	IRON	TECHNOLOGY	PLAYER	TRAINING
INFECTION	TANK	REAL	TALES	COMPASS	MANY I	BASKETBALL	SKILLS
VIRUS	SHELLS	LIFE	PLOT	LINES	MATHEMATICS	COACH	CAREERS
MICROORGANISM	S SHARKS	IMAGINE	TELLING	CORE	BIOLOGY	PLAYED	POSITIONS
PERSON	DIVING	SENSE	SHORT	ELECTRIC	FIELD	PLAYING	FIND
INFECTIOUS	DOLPHINS	CONSCIOUSNES	S FICTION	DIRECTION	PHYSICS	HIT	POSITION
COMMON	SWAM	STRANGE	ACTION	FORCE	LABORATORY	TENNIS	FIELD
CAUSING	LONG	FEELING	TRUE	MAGNETS	STUDIES	TEAMS	OCCUPATIONS
SMALLPOX	SEAL	WHOLE	EVENTS	BE	WORLD	GAMES	REQUIRE
BODY	DIVE	BEING	TELLS	MAGNETISM	SCIENTIST	SPORTS	OPPORTUNITY
INFECTIONS	DOLPHIN	MIGHT	TALE	POLE	STUDYING	BAT	EARN
CERTAIN	UNDERWATER	HOPE	NOVEL	INDUCED	SCIENCES	TERRY	ABLE

[Tennenbaum et al]

Example topics induced from a large collection of text

DISFASE	WATED	MIND	STORY	FIELD	SCIENCE	BALL	JOB
BACTERIA	FICH	WORLD	STORIES	MAGNETIC	STUDY	GAME	WORK
DISEASES	SEA	DREAM	TELL	MAGNET	SCIENTISTS	TEAM	JOBS
GERMS	SEA	DREAMS	CHARACTER	WIRE	SCIENTIFIC	FOOTBALL	CAREER
FEVER	SWIMMING	THOUGHT	CHARACTERS	NEEDLE	KNOWLEDGE	BASEBALL	EXPERIENCE
CAUSE		IMAGINATION	AUTHOR	CURRENT	WORK	PLAYERS	EMPLOYMENT
CAUSED	LIVE	MOMENT	READ	COIL	RESEARCH	PLAY	OPPORTUNITIES
SPREAD	CHELI	THOUGHTS	TOLD	POLES	CHEMISTRY	FIELD	WORKING
VIRUSES	SHADV	OWN	SETTING	IRON	TECHNOLOGY	PLAYER	TRAINING
INFECTION	TANK	REAL	TALES	COMPASS	MANY I	BASKETBALL	SKILLS
VIRUS	CUELLC	LIFE	PLOT	LINES	MATHEMATICS	COACH	CAREERS
MICROORGANISM	S SHADKS	IMAGINE	TELLING	CORE	BIOLOGY	PLAYED	POSITIONS
PERSON	DIVING	SENSE	SHORT	ELECTRIC	FIELD	PLAYING	FIND
INFECTIOUS	DOLDHING	CONSCIOUSNES	S FICTION	DIRECTION	PHYSICS	HIT	POSITION
COMMON	SWAM	STRANGE	ACTION	FORCE	LABORATORY	TENNIS	FIELD
CAUSING	LONG	FEELING	TRUE	MAGNETS	STUDIES	TEAMS	OCCUPATIONS
SMALLPOX	SEAL	WHOLE	EVENTS	BE	WORLD	GAMES	REQUIRE
BODY	DIVE	BEING	TELLS	MAGNETISM	[SCIENTIST	SPORTS	OPPORTUNITY
INFECTIONS		MIGHT	TALE	POLE	STUDYING	BAT	EARN
CERTAIN		HOPF	NOVEL	INDUCED	SCIENCES	TERRY	ABLE
	UNDERWATER	IIOL					

[Tennenbaum et al]

Collocations

- An expression consisting of two or more words that correspond to some conventional way of saying things.
- Characterized by limited *compositionality*.
 - *compositional*: meaning of expression can be predicted by meaning of its parts.
 - "dynamic programming", "hidden Markov model"
 - "weapons of mass destruction"
 - "kick the bucket", "hear it through the grapevine"

Topics Modeling Phrases

- Topics based only on unigrams often difficult to interpret
- Topic discovery itself is confused because important meaning / distinctions carried by phrases.
- Significant opportunity to provide improved language models to ASR, MT, IR, etc.

LDA Topic

algorithms algorithm genetic problems efficient

LDA

Topical N-grams

genetic algorithms genetic algorithm evolutionary computation evolutionary algorithms fitness function

Topic Comparison

LDA

Topical N-grams (2) Topical N-grams (1)

learning optimal reinforcement state problems policy dynamic action programming actions function markov methods decision rl continuous spaces step policies planning

reinforcement learning optimal policy dynamic programming optimal control function approximator prioritized sweeping finite-state controller learning system reinforcement learning rl function approximators markov decision problems markov decision processes local search state-action pair markov decision process belief states stochastic policy action selection upright position reinforcement learning methods

policy action states actions function reward control agent q-learning optimal goal learning space step environment system problem steps sutton policies

Topic Comparison

Topical N-grams (2)

LDA

motion visual field position figure direction fields eye location retina receptive velocity vision moving system flow edge center light local

receptive field spatial frequency temporal frequency visual motion motion energy tuning curves horizontal cells motion detection preferred direction visual processing area mt visual cortex light intensity directional selectivity high contrast motion detectors spatial phase moving stimuli decision strategy visual stimuli

motion response direction cells stimulus figure contrast velocity model responses stimuli moving cell intensity population image center tuning complex directions

Topical N-grams (1)

Topic Comparison

LDA

Topical N-grams (2) Topical N-grams (1)

word system recognition hmm speech training performance phoneme words context systems frame trained speaker sequence speakers mlp frames segmentation models

speech recognition training data neural network error rates neural net hidden markov model feature vectors continuous speech training procedure continuous speech recognition gamma filter hidden control speech production neural nets input representation output layers training algorithm test set speech frames speaker dependent

speech word training system recognition hmm speaker performance phoneme acoustic words context systems frame trained sequence phonetic speakers mlp hybrid

Unsupervised learning of topic hierarchies

(Blei, Griffiths, Jordan & Tenenbaum, NIPS 2003)

Joint models of syntax and semantics (Griffiths,

Steyvers, Blei & Tenenbaum, NIPS 2004)

 Embed topics model inside an *n*th order Hidden Markov Model:

Semantic classes

FOOD	MAP	DOCTOR	BOOK	GOLD	BEHAVIOR	CELLS	PLANTS
FOODS	NORTH	PATIENT	BOOKS	IRON	SELF	CELL	PLANT
BODY	EARTH	HEALTH	READING	SILVER	INDIVIDUAL	ORGANISMS	LEAVES
NUTRIENTS	SOUTH	HOSPITAL	INFORMATION	COPPER	PERSONALITY	ALGAE	SEEDS
DIET	POLE	MEDICAL	LIBRARY	METAL	RESPONSE	BACTERIA	SOIL
FAT	MAPS	CARE	REPORT	METALS	SOCIAL	MICROSCOPE	ROOTS
SUGAR	EOUATOR	PATIENTS	PAGE	STEEL	EMOTIONAL	MEMBRANE	FLOWERS
ENERGY	WEST	NURSE	TITLE	CLAY	LEARNING	ORGANISM	WATER
MILK	LINES	DOCTORS	SUBJECT	LEAD	FEELINGS	FOOD	FOOD
EATING	EAST	MEDICINE	PAGES	ADAM	PSYCHOLOGISTS	LIVING	GREEN
FRUITS	AUSTRALIA	NURSING	GUIDE	ORE	INDIVIDUALS	FUNGI	SEED
VEGETABLES	GLOBE	TREATMENT	WORDS	ALUMINUM	PSYCHOLOGICAL	MOLD	STEMS
WEIGHT	POLES	NURSES	MATERIAL	MINERAL	EXPERIENCES	MATERIALS	FLOWER
FATS	HEMISPHERE	PHYSICIAN	ARTICLE	MINE	ENVIRONMENT	NUCLEUS	STEM
NEEDS	LATITUDE	HOSPITALS	ARTICLES	STONE	HUMAN	CELLED	LEAF
CARBOHYDRATE	S PLACES	DR	WORD	MINERALS	RESPONSES	STRUCTURES	ANIMALS
VITAMINS	LAND	SICK	FACTS	POT	BEHAVIORS	MATERIAL	ROOT
CALORIES	WORLD	ASSISTANT	AUTHOR	MINING	ATTITUDES	STRUCTURE	POLLEN
PROTEIN	COMPASS	EMERGENCY	REFERENCE	MINERS	PSYCHOLOGY	GREEN	GROWING
MINERALS	CONTINENTS	PRACTICE	NOTE	TIN	PERSON	MOLDS	GROW

Syntactic classes

SAID	THE	MORE	ON	GOOD	ONE	HE	BE
ASKED	HIS	SUCH	AT	SMALL	SOME	YOU	MAKE
THOUGHT	THEIR	LESS	INTO	NEW	MANY	THEY	GET
TOLD	YOUR	MUCH	FROM	IMPORTANT	TWO	Ι	HAVE
SAYS	HER	KNOWN	WITH	GREAT	EACH	SHE	GO
MEANS	ITS	JUST	THROUGH	LITTLE	ALL	WE	TAKE
CALLED	MY	BETTER	OVER	LARGE	MOST	IT	DO
CRIED	OUR	RATHER	AROUND	*	ANY	PEOPLE	FIND
SHOWS	THIS	GREATER	AGAINST	BIG	THREE	EVERYONE	USE
ANSWERED	THESE	HIGHER	ACROSS	LONG	THIS	OTHERS	SEE
TELLS	А	LARGER	UPON	HIGH	EVERY	SCIENTISTS	HELP
REPLIED	AN	LONGER	TOWARD	DIFFERENT	SEVERAL	SOMEONE	KEEP
SHOUTED	THAT	FASTER	UNDER	SPECIAL	FOUR	WHO	GIVE
EXPLAINED	NEW	EXACTLY	ALONG	OLD	FIVE	NOBODY	LOOK
LAUGHED	THOSE	SMALLER	NEAR	STRONG	BOTH	ONE	COME
MEANT	EACH	SOMETHING	BEHIND	YOUNG	TEN	SOMETHING	WORK
WROTE	MR	BIGGER	OFF	COMMON	SIX	ANYONE	MOVE
SHOWED	ANY	FEWER	ABOVE	WHITE	MUCH	EVERYBODY	LIVE
BELIEVED	MRS	LOWER	DOWN	SINGLE	TWENTY	SOME	EAT
WHISPERED	ALL	ALMOST	BEFORE	CERTAIN	EIGHT	THEN	BECOME

Corpus-specific factorization (NIPS)

	image	data	state	membrane	chip	experts	kernel	network
õ	images	gaussian	policy	synaptic	analog	expert	support	neural
• -	object	mixture	value	cell	neuron	gating	vector	networks
J	objects	likelihood	function	*	digital	hme	svm	output
Ħ	feature	posterior	action	current	synapse	architecture	kernels	input
12	recognition	prior	reinforcement	dendritic	neural	mixture	#	training
	views	distribution	learning	potential	hardware	learning	space	inputs
\mathbf{O}	#	em	classes	neuron	weight	mixtures	function	weights
$\overline{\mathbf{V}}$	pixel	bayesian	optimal	conductance	#	function	machines	#
• •	visual	parameters	*	channels	vlsi	gate	set	outputs
	in	is	see	used	model	networks	however	#
	with	was	show	trained	algorithm	values	also	*
	for	has	note	obtained	system	results	then	i
$\overline{\Omega}$	on	becomes	consider	described	case	models	thus	Х
	from	denotes	assume	given	problem	parameters	therefore	t
5	at	being	present	found	network	units	first	n
	using	remains	need	presented	method	data	here	-
	into	represents	propose	defined	approach	functions	now	с
	over	exists	describe	generated	paper	problems	hence	r
	within	seems	suggest	shown	process	algorithms	finally	p

Syntactic classes in PNAS

5	8	14	25	26	30	33
IN	ARE	THE	SUGGEST	LEVELS	RESULTS	BEEN
FOR	WERE	THIS	INDICATE	NUMBER	ANALYSIS	MAY
ON	WAS	ITS	SUGGESTING	LEVEL	DATA	CAN
BETWEEN	IS	THEIR	SUGGESTS	RATE	STUDIES	COULD
DURING	WHEN	AN	SHOWED	TIME	STUDY	WELL
AMONG	REMAIN	EACH	REVEALED	CONCENTRATIONS	FINDINGS	DID
FROM	REMAINS	ONE	SHOW	VARIETY	EXPERIMENTS	DOES
UNDER	REMAINED	ANY	DEMONSTRATE	RANGE	OBSERVATIONS	DO
WITHIN	PREVIOUSLY	INCREASED	INDICATING	CONCENTRATION	HYPOTHESIS	MIGHT
THROUGHOUT	BECOME	EXOGENOUS	PROVIDE	DOSE	ANALYSES	SHOULD
THROUGH	BECAME	OUR	SUPPORT	FAMILY	ASSAYS	WILL
TOWARD	BEING	RECOMBINANT	INDICATES	SET	POSSIBILITY	WOULD
INTO	BUT	ENDOGENOUS	PROVIDES	FREQUENCY	MICROSCOPY	MUST
AT	GIVE	TOTAL	INDICATED	SERIES	PAPER	CANNOT
INVOLVING	MERE	PURIFIED	DEMONSTRATED	AMOUNTS	WORK	REMAINED
AFTER	APPEARED	TILE	SHOWS	RATES	EVIDENCE	ALSO
ACROSS	APPEAR	FULL	SO	CLASS	FINDING	THEY
AGAINST	ALLOWED	CHRONIC	REVEAL	VALUES	MUTAGENESIS	BECOME
WHEN	NORMALLY	ANOTHER	DEMONSTRATES	AMOUNT	OBSERVATION	MAG
ALONG	EACH	EXCESS	SUGGESTED	SITES	MEASUREMENTS	LIKELY

Semantic highlighting

Darker words are more likely to have been generated from the topic-based "semantics" module:

In contrast to this approach, we study here how the overall network activity can control single cell parameters such as input resistance, as well as time and space constants, parameters that are crucial for excitability and spariotemporal (sic) integration.

The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks.

In other words, for our proof of convergence, we require the softassign algorithm to return a doubly stochastic matrix as *sinkhorn theorem guarantees that it will instead of a matrix which is merely close to being doubly stochastic based on some reasonable metric.

The aim is to construct a **portfolio** with a maximal **expected return** for a given **risk level** and **time horizon** while simultaneously obeying ***institutional** or *****legally required constraints.

The left graph is the standard experiment the right from a training with # samples.

The graph G is called the *guest graph, and H is called the host graph.

PP Attachment: A Simple Application of Word Association

Attachment Ambiguity

- Where to attach a phrase in the parse tree?
- "I saw the man with the telescope."
 - What does "with a telescope" modify?
 - Is the problem AI complete? Yes, but...
 - Proposed simple structural factors
 - Right association [Kimball 1973]
 'low' or 'near' attachment = 'early closure' of NP
 - Minimal attachment [Frazier 1978] (depends on grammar) = 'high' or 'distant' attachment = 'late closure' (of NP)

Attachment Ambiguity

- "The children ate the cake with a spoon."
- "The children ate the cake with frosting."
- "Joe included the package for Susan."
- "Joe carried the package for Susan."
- Ford, Bresnan and Kaplan (1982): "It is quite evident, then, that the closure effects in these sentences are induced in some way by the choice of the lexical items."

Lexical acquisition, semantic similarity

- Previous models give same estimate to all unseen events.
- Unrealistic could hope to refine that based on semantic classes of words
- Examples
 - "Susan ate the cake with a durian."
 - "Susan had never eaten a fresh durian before."
 - Although never seen "eating pineapple" should be more likely than "eating holograms" because pineapple is similar to apples, and we have seen "eating apples".

An application: selectional preferences

- Most verbs prefer arguments of a particular type. Such regularities are called *selectional preferences* or *selectional restrictions*.
- "Bill drove a..." Mustang, car, truck, jeep
- Selectional preference strength: how strongly does a verb constrain direct objects
- "see" versus "unknotted"

Measuring selectional preference strength

- Assume we are given a clustering of (direct object) nouns. Resnick (1993) uses WordNet.
- Selectional association between a verb and a class

$$S(v) = D(P(C|v)||P(C)) = \sum_{c} P(c|v) \log \frac{P(c|v)}{P(c)}$$

Proportion that its summand contributes to preference strength.

$$A(v,c) = \frac{P(c|v)\log\frac{P(c|v)}{P(c)}}{S(v)}$$

- For nouns in multiple classes, disambiguate as most likely sense: $A(v,n) = \max_{\substack{c \in \text{classes}(n)}} A(v,c)$

Selection preference strength (made up data)

<u>Noun class c</u>	<u>P(c)</u>	<u>P(c eat)</u>	<u>P(c see)</u>	<u> P(c find)</u>
people	0.25	0.01	0.25	0.33
furniture	0.25	0.01	0.25	0.33
food	0.25	0.97	0.25	0.33
action	0.25	0.01	0.25	0.01
SPS S(v)		1.76	0.00	0.35

A(eat, food) = 1.08A(find, action) = -0.13

Selectional Preference Strength example (Resnick, Brown corpus)

Verb v	Noun n	A(v, n)	Class	Noun n	A(v, n)	Class
answer	request	4.49	speech act	tragedy	3.88	communication
find	label	1.10	abstraction	fever	0.22	psych. feature
hear	story	1.89	communication	issue	1.89	communication
remember	reply	1.31	statement	smoke	0.20	article of commerce
repeat	comment	1.23	communication	journal	1.23	communication
read	article	6.80	writing	fashion	-0.20	activity
see	friend	5.79	entity	method	-0.01	method
write	letter	7.26	writing	market	0.00	commerce

But how might we measure word similarity for word classes?

Vector spaces

	cosmonaut	astronaut	moon	car	truck
d_1	1	0	1	1	0
d_2	0	1	1	0	0
d_3	1	0	0	0	0
d_4	0	0	0	1	1
d_5	0	0	0	1	0
d_6	0	0	0	0	1

A document-by-word matrix A.

But how might we measure word similarity for word classes?

 Vector spaces word-by-word matrix B

	cosmonaut	astronaut	moon	car	truck
cosmonaut	2	0	1	1	0
astronaut	0	1	1	0	0
moon	1	1	2	1	0
car	1	0	1	3	1
truck	0	0	0	1	2

A modifier-by-head matrix C

	cosmonaut	astronaut	moon	car	truck
Soviet	1	0	0	1	1
American	0	1	0	1	1
spacewalking	1	1	0	0	0
red	0	0	0	1	1
full	0	0	1	0	0
old	0	0	0	1	1

Similarity measures for binary vectors

Similarity measure	Definition
matching coefficient	$ X \cap Y $
Dice coefficient	$\frac{2 X \cap Y }{ X + Y }$
Jaccard coefficient	$\frac{ X \cap Y }{ X \cup Y }$
Overlap coefficient	$\frac{ X \cap Y }{\min(X , Y)}$
cosine	$\frac{ X \cap Y }{\sqrt{ X \times Y }}$

Cosine measure

$$\cos(\vec{x}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}| |\vec{y}|} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$$

maps vectors onto unit circle by dividing through by lengths:

$$|\vec{x}| = \sqrt{\sum_{i=1}^{n} x_i^2}$$

Example of cosine measure on word-by-word matrix on NYT

Focus word	Nearest neighbors							
garlic	sauce	.732	pepper	.728	salt	.726	cup	.726
fallen	fell	.932	decline	.931	rise	.930	drop	.929
engineered	genetically	.758	drugs	.688	research	.687	drug	.685
Alfred	named	.814	Robert	.809	William	.808	W	.808
simple	something	.964	things	.963	You	.963	always	.962

Probabilistic measures

(Dis-)similarity measure	Definition
KL divergence	$D(p \ q) = \sum_{i} p_i \log \frac{p_i}{q_i}$
Skew	$D(q\ \alpha r+(1-\alpha)q)$
Jensen-Shannon (was IRad)	$\tfrac{1}{2}D(p\ \tfrac{p+q}{2}) + D(q\ \tfrac{p+q}{2})$
L_1 norm (Manhattan)	$\sum_i p_i - q_i $

Neighbors of word "company" [Lee]

Skew ($\alpha = 0.99$)	JS.	Euclidean
airline	business	city
business	airline	airline
bank	firm	industry
agency	bank	program
firm	state	organization
department	agency	bank
manufacturer	group	system
network	govt.	today
industry	city	series
govt.	industry	portion

Learning syntactic patterns for automatic hypernym discovery

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng.

• It has long been a goal of AI to automatically acquire structured knowledge directly from text, e.g, in the form of a semantic network.

We aim to classify whether a noun pair (X, Y) participates in one of the following semantic relationships:

Hypernymy (ancestor)

 $Y > X_{H}$ if "X is a kind of Y". entity > organism > person

Coordinate Terms (taxonomic sisters) $Y \square X$ $_{C}^{i} Z$ $_{C}^{i} Z$ $_{C}^{i$

- Precision/recall for 69,592 classifiers (one per feature)
- Classifier f classifies noun pair x as hypernym iff $x_f > 0$
- In red: patterns originally proposed in (Hearst, 1992)

Proposed in (Hearst, 1992) and used in (Caraballo, 2001), (Widdows, 2003), and others – but what about the rest of the lexico-syntactic pattern space?

Example: Using the "Y called X" Pattern for Hypernym Acquisition MINIPAR path: -N:desc:V.call.call.-V:vrel:N \rightarrow "<hypernym> 'called' <hyponym>"

Hyponym	Hypernym	Sentence Fragment		
efflorescence	condition	and a condition called efflorescence		
'neal_inc	company	The company, now called O'Neal Inc		
hat_creek_outfit	ranch	run a small ranch called the Hat Creek Outfit.		
tardive_dyskinesia	problem	irreversible problem called tardive dyskinesia		
hiv-1	aids_virus	infected by the AIDS virus, called HIV-1.		
bateau_mouche	attraction	sightseeing attraction called the Bateau Mouche		
kibbutz_malkiyya	collective_farm	Israeli collective farm called Kibbutz Malkiyya		
Type of Noun Pair	Count Example	Pair		
NE: Person	7 "John F.	"John F. Kennedy / president", "Marlin Fitzwater / spokesmar		
NE: Place	7 "Diamon	"Diamond Bar / city", "France / place"		
NE: Company	2 "America	"American Can / company", "Simmons / company"		
NE: Other	1 "Is Elvis	s Elvis Alive / book"		
Not Named Entity:	9 "earthqua	thquake / disaster", "soybean / crop"		

None of the following links are contained in WordNet (or the training set, by extension).

- 10-fold cross validation on the WordNet-labeled data
- **Conclusion:** 70,000 features are more powerful than 6

VERBOCEAN: Mining the Web for Fine-Grained Semantic Verb Relations

Timothy Chklovski and Patrick Pantel

Why Detect Semantic Rels between Verbs?

- So that we can
 - Understand the relationship when it's not stated
 - Napoleon *fought* and *won* the battle
 - During the holidays, people wrap and unwrap presents
 - Soldiers prefer to avoid getting wounded and killed
 - Use the relationship when summarizing across documents (e.g. same event, preceding event)
 - The board considered the offer of \$3B
 - The board accepted the offer \$3.8B
 - The board okayed the offer of approximately \$4B
 - Determine if two people have similar views on and event
 - "I nudged him."
 - "He shoved me."
- Hard to do manually

Why use Web? Motivating Intuition

- Small collections are tough: Semantics is often implied (Lenat, Chklovski)
- The Web's 10¹² is a lot of words
- So, Use small bits of more detailed text to help with mass of general text
 - Patterns issued to a search engine and their correlation

- Levin's classes (similarity)
 - 3200 verbs in 191 classes
- PropBank
 - 4,659 framesets (1.4 framesets per verb)
- VerbNet
 - 191 coarse-grained groupings (with overlap)
- FrameNet
- WordNet
 - troponomy
 - antonymy
 - entailment
 - cause

VerbOcean: Web-based Extraction of Verb Relations

- VerbOcean is a network of verb relations
 - Currently, over 3400 nodes with on average 13 relations per verb
- Detected relation types are:
 - similarity
 - strength
 - antonymy
 - enablement
 - temporal precedence (happens-before)
- Download from http://semantics.isi.edu/ocean/

- Three stages:
 - Identify pairs of highly associated verbs co-occurring on the Web with sufficient frequency using DIRT (Lin and Pantel 2001)
 - For each verb pair
 - test patterns associated with each semantic relation
 - E.g. Temporal Precedence:
 - "to X and then Y", "Xed and then Yed"
 - calculate a score for each possible semantic relation
 - Compare the strengths of the individual semantic relations and output a consistent set as the final output
 - prefer the most specific and then strongest relations

Lexical Patterns

SEMANTIC RELATION	Surface Patterns	Example
similarity (4)	X ie Y Xed and Yed	"She heckled and taunted the comedian."
strength (8)	X even Y Xed even Yed Xed and even Yed not just Xed but Yed	"He not just harassed, but terrorized her."
enablement (4)	Xed * by Ying the Xed * by Ying or to X * by Ying the	"She saved the document by clicking the button."
antonymy (7)	either X or Y either Xs or Ys Xed * but Yed	"There's something about Mary: you will eithe love or hate her."
happens-before (12)	to X and then Y Xed * and then Yed to X and later Y to X and subsequently Y Xed and subsequently Yed	"He designed the prototype and then patented it."

- Similar verbs that denote a more intense, thorough, comprehensive or absolute action
 - e.g. change-of-state verbs that denote a more complete change (shock → startle)

VerbOcean – Antonymy

Semantic Relation	Examples	SEMANTIC RELATION	Examples	Semantic Relation	Examples
similarity	maximize :: enhance produce :: create reduce :: restrict	enablement	assess :: review accomplish :: complete double-click :: click	happens before	detain :: prosecute enroll :: graduate schedule :: reschedule
strength	permit :: authorize surprise :: startle startle :: shock	antonymy	assemble :: dismantle regard :: condemn roast :: fry		

Appendix. Sample relations extracted by our system.

