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Topic Models

Unsupervised Models of

Word Co-occurrences
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A Probabilistic Approach

• Define a probabilistic generative

model for documents.

• Learn the parameters of this

model by fitting them to the data

and a prior.
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Clustering words into topics with

Latent Dirichlet Allocation
[Blei, Ng, Jordan 2003]

Sample a distribution
over topics, !

For each document:

Sample a topic, z

For each word in doc

Sample a word

from the topic, w

Example:

70% Iraq war

30% US election

Iraq war

“bombing”

Generative

Process:
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Collocations

• An expression consisting of two or more

words that correspond to some conventional

way of saying things.

• Characterized by limited compositionality.

– compositional: meaning of expression can be

predicted by meaning of its parts.

– “dynamic programming”, “hidden Markov model”

– “weapons of mass destruction”

– “kick the bucket”, “hear it through the grapevine”
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Topics Modeling Phrases

• Topics based only on unigrams often

difficult to interpret

• Topic discovery itself is confused because

important meaning / distinctions carried by

phrases.

• Significant opportunity to provide improved

language models to ASR, MT, IR, etc.
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Topical N-gram Model
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[Wang, McCallum 2005]
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Topic Comparison
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Topic Comparison
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Topic Comparison
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Unsupervised learning of

topic hierarchies
(Blei, Griffiths, Jordan & Tenenbaum, NIPS 2003)
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Joint models of syntax and semantics (Griffiths,

Steyvers, Blei & Tenenbaum, NIPS 2004)

• Embed topics model inside an nth order

Hidden Markov Model:

Document-specific distribution over topics
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Corpus-specific factorization

(NIPS)
S
em
an
ti
cs

S
y
n
ta
x
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Semantic highlighting

 Darker words are more likely to have been generated from the

   topic-based “semantics” module:
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PP Attachment:
A Simple Application of 

Word Association
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Attachment Ambiguity

• Where to attach a phrase in the parse tree?

• “I saw the man with the telescope.”

– What does “with a telescope” modify?

– Is the problem AI complete?  Yes, but…

– Proposed simple structural factors

• Right association [Kimball 1973]

‘low’ or ‘near’ attachment = ‘early closure’ of NP

• Minimal attachment [Frazier 1978]

(depends on grammar) = ‘high’ or ‘distant’ attachment

= ‘late closure’ (of NP)

22



Attachment Ambiguity

• “The children ate the cake with a spoon.”

• “The children ate the cake with frosting.”

• “Joe included the package for Susan.”

• “Joe carried the package for Susan.”

• Ford, Bresnan and Kaplan (1982):
“It is quite evident, then, that the closure effects in
these sentences are induced in some way by the
choice of the lexical items.”
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Lexical acquisition, semantic similarity

• Previous models give same estimate to all
unseen events.

• Unrealistic - could hope to refine that based
on semantic classes of words

• Examples
– “Susan ate the cake with a durian.”

– “Susan had never eaten a fresh durian before.”

– Although never seen “eating pineapple” should be
more likely than “eating holograms” because
pineapple is similar to apples, and we have seen
“eating apples”.
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An application: selectional preferences

• Most verbs prefer arguments of a particular

type.  Such regularities are called selectional

preferences or selectional restrictions.

• “Bill drove a…”   Mustang, car, truck, jeep

• Selectional preference strength: how strongly

does a verb constrain direct objects

• “see” versus “unknotted”
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Measuring selectional preference strength

• Assume we are given a clustering of (direct object) nouns.
Resnick (1993) uses WordNet.

• Selectional association between a verb and a class

Proportion that its summand contributes to preference strength.

• For nouns in multiple classes, disambiguate as most likely
sense:
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Selection preference strength

(made up data)

Noun class c P(c) P(c|eat) P(c|see) P(c|find)

people 0.25 0.01 0.25 0.33

furniture 0.25 0.01 0.25 0.33

food 0.25 0.97 0.25 0.33

action 0.25 0.01 0.25 0.01

SPS S(v) 1.76 0.00 0.35

A(eat, food) = 1.08

A(find, action) = -0.13
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Selectional Preference Strength example
(Resnick, Brown corpus)
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But how might we measure

word similarity for word classes?

• Vector spaces
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But how might we measure

word similarity for word classes?

• Vector spaces
word-by-word matrix B
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Similarity measures for binary vectors
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Cosine measure
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Example of cosine measure on

word-by-word matrix on NYT
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Probabilistic measures
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Neighbors of word “company”
[Lee]
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Learning syntactic patterns for

automatic hypernym discovery

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng.

36



37



38



39



40



41



42



43



VERBOCEAN: Mining the Web for

Fine-Grained Semantic Verb Relations

Timothy Chklovski and Patrick Pantel

44



45



46



47



48



49



50



51



52



53



54



55



http://semantics.isi.edu/ocean/ 

Demo
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