Machine Translation: Learning without Word Alignments

Introduction to Natural Language Processing Computer Science 585-Fall 2009
University of Massachusetts Amherst

David Smith
With slides from Charles Schafer

Specialized Translation Models: Named Entities

Translating Words in a Sentence

- Models will automatically learn entries in probabilistic translation dictionaries, for instance p (elle|she), from co-occurrences in aligned sentences of a parallel text.
- For some kinds of words/phrases, this is less effective. For example:
numbers
dates
named entities (NE)
The reason: these constitute a large open class of words that will not all occur even in the largest bitext. Plus, there are regularities in translation of numbers/dates/ NE .

Handling Named Entities

- For many language pairs, and particularly those which do not share an alphabet, transliteration of person and place names is the desired method of translation.
- General Method:

1. Identify NE's via classifier
2. Transliterate name
3. Translate/reorder honorifics

- Also useful for alignment. Consider the case of Inuktitut-English alignment, where Inuktitut renderings of European names are highly nondeterministic.

Transliteration

Inuktitut rendering of

 English names changes the string significantly but not deterministically| Williams | McLean
 ailiams
 uialims
 uilialums
 uiliam |
| :--- | :--- |
| makalain
 uiliammas
 uiliams
 maklaain | maklain
 uilians
 uliams
 viliams |
| maklainn
 makli
 Campbell | maklii
 makliik
 makliin
 maklin
 Caampu
 kaampul |
| malain
 matliin
 kaamvul
 kamvul | miklain
 mikliin
 miklin |

Transliteration

Inuktitut rendering of English names changes the string significantly but not deterministically

Train a probabilistic finite-state transducer to model this ambiguous

Williams	McLean ailiams uialims uilialums
uiliam uakalain uiliammas uiliams uilians	maklaain maklain maklainn uliams viliams
maklait makli Campbell	maklii makliik makliin maklin Caampu kaampul
malain matliin kaamvul kamvul	miklain mikliin miklin

Transliteration

Inuktitut rendering of

 English names changes the string significantly but not deterministically| Williams | McLean
 ailiams
 uialims
 uilialums
 uiliam |
| :--- | :--- |
| makalain
 uiliammas
 uiliams
 maklaain
 uilians
 uliams
 viliams | maklain
 maklainn
 maklait
 makli
 Campbell |
| maklii
 makliik
 makliin
 maklin
 kaampu
 kaampul | malain
 matliin
 kaamvul
 kamvul |

Useful Types of Word Analysis

- Number/Date Handling
- Named Entity Tagging/Transliteration
- Morphological Analysis
- Analyze a word to its root form (at least for word alignment) was -> is believing -> believe ruminerai $->$ ruminer ruminiez $->$ ruminer
- As a dimensionality reduction technique
- To allow lookup in existing dictionary

Learning Word Translation Dictionaries Using Minimal Resources

Learning Translation Lexicons for Low-Resource Languages

```
{Serbian Uzbek Romanian Bengali} _English
```

Problem: Scarce resources . . .
-Large parallel texts are very helpful, but often unavailable
-Often, no "seed" translation lexicon is available
-Neither are resources such as parsers, taggers, thesauri

Solution: Use only monolingual corpora in source, target languages
-But use many information sources to propose and rank translation candidates

Bridge Languages

Cognate Selection

some cognates

Spanish-Italian homogenizar omogeneizzare
Polish-Serbian befsztyk biftek
German-Dutch gefestigt gevestigd

Spanish Word	Italian Word	Cognate?
electron	elettrone	
aventurero	avventuriero	
perífrasis	perifrasi	
divulgar	divulgare	
triada	triade	
agresivo	aggressivo	
insertar	inserto	
esprint	sprint	
trópico	tropico	
altimetro	altimetro	No
alegato	lista	No
variado	variato	
cepillar	piallare	
confusin	confusione	
fortificacion	fortificazione	
conjuncion	congiunzione	
encantador	incantatore	
heredero	erede	
vidrio	vetro	
vaciar	variare	No
talisman	talismano	
sólido	solido	
criptografia	crittografia	
carencia	carenza	
cortesania	cortesia	No
sadico	sadico	
concentracion	concentrazione	
venida	venuta	
agonizante	agonizzante	
extinguir	estinguere	

The Transliteration Problem

| Arabic | Piedade BEH YEH YEH DAL ALEF DAL YEH
 Bolivia BEH WAW LAM YEH FEH YEH ALEF
 Luxembourg LAM KAF SEEN MEEM BEH WAW REH GHAIN
 Zanzibar ZAIN NOON JEEM YEH BEH ALEF REH |
| :--- | :--- | :--- |

Inuktitut
Williams: uialims uilialums uiliammas viliams
Campbell: kaampu kaampul kamvul kaamvul
McLean: makalain maklainn makliin makkalain

Memoryless Transducer

(Ristad \& Yianilos 1997)

Two-State Transducer ("Weak Memory")

Example Models for Cognate and Transliteration Matching

Unigram Interlingua Transducer

Examples: Possible Cognates Ranked by Various String Models

String Transduction Models Ranking Spanish Bridge Words for Romanian Source Word inghiti									
C1	C2	C3	R\&Y	2STEF	UIT	SN	AI	CDUI	JDCO
S:ingrato									
S:ingerir	S:ingerir	S:engaste	S:grito	S:negrito	S:ingerir	S:ingente	S:negrito	S:infarto	S:engaste
S:engaste	S:engaste	S:ingerir	S:gaita	S:grito	S:grito	S:ingerir	S:negrita	S:engaste	S:anguila
S:ingreso	S:ingreso	S:inglete	S:grita	S:ingerir	S:grita	S:ingle	S:ingerir	S:ingreso	S:infarto
S:ingerido	S:ingerido	S:ingreso	S:negrito	S:negrita	S:inglete	S:angra	S:grito	S:introito	S:aguita
S:inglete	S:grito	S:ingerido	S:infarto	S:grita	S:gaita	S:ingerido	S:grita	S:negrito	S:ingreso
S:grito	S:inglete	S:infarto	S:negrita	S:gaita	S:negrito	S:ingenio	S:gaita	S:ingerido	S:intriga
S:infarto	S:infarto	S:grito	S:ingerir	S:ingerido	S:infarto	S:engan	S:ingenito	S:negrita	S:intuir
S:grita	S:negrito	S:introito	S:engaste	S:ingreso	S:introito	S:engatado	S:inglete	S:ingerir	S:indulto
S:introito	S:grita	S:engreir	S:haiti	S:haiti	S:engreir	S:invita	S:tahiti	S:inglete	S:inglete

String Transduction Models Ranking Turkish Bridge Words for Uzbek Source Word аввалги									
C1	C2	C3	R\&Y	2STEF	UIT	SN	AI	CDUI	JDCO
T:evvelki	T:evvelki	T:evvelki	T:evvelki	T:vali	T:evvelki	T:edilgi	T:evvelki	T:evvelki	T:evvelki
T:evvelce	T:evvelce	T:evvelce	T:evveli	T:veli	T:evvelce	T:dalga	T:evveli	T:evvelce	T:evvelce
T:kalga	T:evvelkí	T:kalga	T:evvela	T:vals	T:edilgi	T:delgi	T:aval	T:evveli	T:evvelkí
T:evvelkí	T:kalga	T:salgi	T:evvel	T:delgi	T:algi	T:kalga	T:algi	T:evvela	T:ilkelci
T:vals	T:salgi	T:vals	T:algi	T:evvelki	T:salgi	T:evel	T:evvel	T:ilkelci	T:sivilce
T:salgi	T:vals	T:evvelkí	T:evvelce	T:kalga	T:vals	T:dalgl	T:evvela	T:eksilti	T:ilkelce
T:villa	T:villa	T:delgi	T:edilgi	T:dalga	T:delgi	T:evvelki	T:salgi	T:zavalli	T:akilci
T:silgi	T:silgi	T:villa	T:aval	T:villa	T:silgi	T:evlat	T:vali	T:evvelkí	T:eksilti
T:edilgi	T:ilkelci	T:evveli	T:evel	T:vale	T:kalga	T:dolgu	T:evvelce	T:evvel	T:asilce
T:volta	T:akilci	T:silgi	T:delgi	T:yilgi	T:dalga	T:veli	T:evvelkí	T:ilkelce	T:otelci

Romanian inghiti (ingest)

Uzbek avvalgi (previous/former)

* Effectiveness of cognate models

* Multi-family bridge languages

Similarity Measures

for re-ranking cognate/transliteration hypotheses

1. Probabilistic string transducers
2. Context similarity
3. Date distribution similarity
4. Similarities based on monolingual word properties

Similarity Measures

1. Probabilistic string transducers
2. Context similarity
3. Date distribution similarity
4. Similarities based on monolingual word properties

Compare Vectors

 context term vector

Compute cosine similarity between nezavisnost a'nd "independence"
... and between nezavisnost and "freedom"

Similarity Measures

1. Probabilistic string transducers
2. Context similarity
3. Date distribution similarity
4. Similarities based on monolingual word properties

Date Distribution Similarity

- Topical words associated with real-world events appear within news articles in bursts following the date of the event
- Synonymous topical words in different languages, then, display similar distributions across dates in news text: this can be measured
- We use cosine similarity on date term vectors, with term values p (word|date), to quantify this notion of similarity

Date Distribution Similarity - Example

Similarity Measures

1. Probabilistic string transducers
2. Context similarity
3. Date distribution similarity
4. Similarities based on monolingual word properties

Relative Frequency

$r f\left(W_{F}\right)=\frac{f_{C_{F}}\left(W_{F}\right)}{\left|C_{F}\right|}$
Cross-Language Comparison:

Combining Similarities: Uzbek

Individual Bridge Language Results For Uzbek Using Combined Similarity Measures				
Rank	Turkish	Russian	Farsi	Kyrgyz
1	0.04	$\mathbf{0 . 1 2}$	0.03	0.06
5	0.10	$\mathbf{0 . 2 3}$	0.05	0.08
10	0.13	$\mathbf{0 . 2 6}$	0.07	0.10
20	0.16	$\mathbf{0 . 2 8}$	0.08	0.11
50	0.21	$\mathbf{0 . 3 0}$	0.12	0.13
100	0.24	$\mathbf{0 . 3 1}$	0.15	0.16
200	0.26	$\mathbf{0 . 3 2}$	0.19	0.19

Multiple Bridge Language Results For Uzbek Using Combined Similarity Measures						
Rank	Tur+Rus	Tur+Rus + Farsi	Tur+Rus + Eng	Tur+Rus + Farsi + Kaz+Kyr	Tur+Rus + +Farsi + Kaz+Kyr+Eng	
1	0.12	0.13	0.13	$\mathbf{0 . 1 4}$	$\mathbf{0 . 1 4}$	
5	0.26	0.27	0.26	0.28	$\mathbf{0 . 2 9}$	
10	0.30	0.31	0.31	$\mathbf{0 . 3 4}$	$\mathbf{0 . 3 4}$	
20	0.35	0.37	0.35	$\mathbf{0 . 3 9}$	$\mathbf{0 . 3 9}$	
50	0.39	0.41	0.39	0.42	$\mathbf{0 . 4 3}$	
100	0.41	0.43	0.41	$\mathbf{0 . 4 6}$	0.45	
200	0.43	0.45	0.42	$\mathbf{0 . 4 8}$	0.46	

Combining Similarities: Romanian, Serbian, \& Bengali

Multiple Bridge Language Results For Romanian Using Combined Similarity Measures					
Rank	Spanish	Spanish +Russian	Spanish +English	Spanish +Russian +English	
1	0.17	0.18	$\mathbf{0 . 1 9}$	$\mathbf{0 . 1 9}$	
5	0.31	0.35	0.34	$\mathbf{0 . 3 7}$	
10	0.37	0.41	0.41	$\mathbf{0 . 4 3}$	
20	0.43	0.46	0.46	$\mathbf{0 . 4 8}$	
50	0.51	0.53	0.53	$\mathbf{0 . 5 5}$	
100	0.57	0.60	0.58	$\mathbf{0 . 6 1}$	
200	0.60	$\mathbf{0 . 6 2}$	0.59	$\mathbf{0 . 6 2}$	

Multiple Bridge Language Results For Serbian Using Combined Similarity Measures							
Rank	Cz	Rus	Bulg	Cz + English	Cz+Slovak +Rus+Bulg	Cz+Slovak + Rus+Bulg +English	
1	0.13	0.15	$\mathbf{0 . 1 9}$	0.13	$\mathbf{0 . 1 9}$	$\mathbf{0 . 1 9}$	
5	0.24	0.24	0.31	0.25	$\mathbf{0 . 3 8}$	$\mathbf{0 . 3 8}$	
10	0.29	0.28	0.35	0.30	0.42	$\mathbf{0 . 4 3}$	
20	0.32	0.31	0.40	0.34	$\mathbf{0 . 4 8}$	$\mathbf{0 . 4 8}$	
50	0.38	0.36	0.44	0.39	0.54	$\mathbf{0 . 5 5}$	
100	0.40	0.40	0.48	0.42	$\mathbf{0 . 5 9}$	$\mathbf{0 . 5 9}$	
200	0.41	0.42	0.50	0.43	$\mathbf{0 . 6 0}$	$\mathbf{0 . 6 0}$	

Bridge Language Results for Bengali Using Combined Similarity Measures		
Rank	Hindi	$\begin{gathered} \text { Hindi } \\ + \text { English } \end{gathered}$
1	0.03	0.05
5	0.11	0.14
10	0.13	0.17
20	0.16	0.21
50	0.19	0.25
100	0.22	0.28
200	0.23	0.29

Observations

* With no Uzbek-specific supervision, we can produce an Uzbek-English dictionary which is 14% exact-match correct
* Or, we can put a correct translation in the top-10 list 34\% of the time (useful for end-to-end machine translation or cross-language information retrieval)
* Adding more bridge languages helps

Multiple Bridge Language Results For Uzbek Using Combined Similarity Measures						
Rank	Tur+Rus	Tur+Rus +Farsi	Tur+Rus +Eng	Tur+Rus +Farsi +Kaz+Kyr	Tur+Rus +Farsi +Kaz+Kyr+Eng	
1	0.12	0.13	0.13	$\mathbf{0 . 1 4}$	$\mathbf{0 . 1 4}$	
5	0.26	0.27	0.26	0.28	$\mathbf{0 . 2 9}$	
10	0.30	0.31	0.31	$\mathbf{0 . 3 4}$	$\mathbf{0 . 3 4}$	
20	0.35	0.37	0.35	$\mathbf{0 . 3 9}$	$\mathbf{0 . 3 9}$	
50	0.39	0.41	0.39	0.42	$\mathbf{0 . 4 3}$	
100	0.41	0.43	0.41	$\mathbf{0 . 4 6}$	0.45	
200	0.43	0.45	0.42	$\mathbf{0 . 4 8}$	0.46	

Polylingual Topic Models

Automated Analysis of Text

- Previously: analyzing trends in text collections (Hall et al., '08)
- Monolingual models often work well: collections in English only
- Multilingual text collections are increasingly common
- Automated tools are most important for multilingual collections:
- Don't know the language \rightarrow cannot eyeball the data
- Humans typically only know a few languages
- New data will appear in other languages
- Simultaneously analyze document content in many languages

Multiple Languages

- Most statistical topic models are implicitly monolingual
- Why model multiple languages explicitly?

graph	problem	rendering	algebra	und	la
graphs	problems	graphics	algebras	von	des
edge	optimization	image	ring	die	le
vertices	algorithm	texture	rings	der	du
edges	programming	scene	modules	im	les

- Hodgepodge of English, German, French topics
- Imbalanced corpus: maybe only one or two French topics

Parallel vs. Comparable Corpora

- A set of aligned documents is a "document tuple"

- Fully parallel corpora: documents are direct translations
- Corpora with a few parallel "glue" document tuples
- Comparable corpora: documents have similar semantic content

Polylingual Topic Model

- Generates a document tuple $\mathbf{w}=\mathbf{w}^{1}, \ldots, \mathbf{w}^{L}$ by drawing...

- For real-world data, only the word tokens are observed

Key Characteristics

- A topic is a set of distributions over words, e.g., $\phi_{t}=\phi_{t}^{1}, \ldots, \phi_{t}^{L}$
- Works on aligned document tuples, rather than documents
- Each tuple can consist of only a subset of languages
- Tuple-specific distributions over topics
- Ensure cross-language consistency: e.g., topic 13 in French is semantically similar to topic 13 in English
- Simple, Gibbs sampling inference algorithm
- No more complicated than latent Dirichlet allocation

EuroParl: Example Topics ($T=400$)

DA centralbank europæiske ecb s lån centralbanks
DE zentralbank ezb bank europäischen investitionsbank darlehen

EN bank central ecb banks european monetary
ES banco central europeo bce bancos centrales
FI keskuspankin ekp n euroopan keskuspankki eip
FR banque centrale bce européenne banques monétaire
IT banca centrale bce europea banche prestiti
NL bank centrale ecb europese banken leningen
PT banco central europeu bce bancos empréstimos
SV centralbanken europeiska ecb centralbankens s lån

EuroParl: Example Topics ($T=400$)

DA mål nå målsætninger målet målsætning opnå
DE ziel ziele erreichen zielen erreicht zielsetzungen

EN objective objectives achieve aim ambitious set
ES objetivo objetivos alcanzar conseguir lograr estos
FI tavoite tavoitteet tavoitteena tavoitteiden tavoitteita tavoitteen
FR objectif objectifs atteindre but cet ambitieux
IT obiettivo obiettivi raggiungere degli scopo quello
NL doelstellingen doel doelstelling bereiken bereikt doelen
PT objectivo objectivos alcançar atingir ambicioso conseguir
SV mål målet uppnå målen målsättningar målsättning

EuroParl: Example Topics ($T=400$)

DA andre anden side ene andet øvrige
DE anderen andere einen wie andererseits anderer

EN other one hand others another there
ES otros otras otro otra parte demás
FI muiden toisaalta muita muut muihin muun
FR autres autre part côté ailleurs même
IT altri altre altro altra dall parte
NL andere anderzijds anderen ander als kant
PT outros outras outro lado outra noutros
SV andra sidan å annat ena annan

EuroParl: Analysis of Trained Model

- Is the model genuinely learning mixtures of topics?

Mr President, yesterday, at the end of the vote on the budget, there was a moment when the three institutions concerned were represented by women and the President concluded by saying that the Millennium was ending on a high note.

Monsieur le Président, hier, la fin du vote sur le budget fut un moment particulier dans la mesure où les trois institutions impliquées étaient représenté es par des personnes de sexe féminin. La Présidente a conclu en disant que le millénaire s'achevait sur une note positive.

EuroParl: Analysis of Trained Model

- Is the model genuinely learning mixtures of topics?

Mr President, yesterday, at the end of the vote on the budget, there was a moment when the three institutions concerned were represented by women and the President concluded by saying that the Millennium was ending on a high note.

Monsieur le Président, hier, la fin du vote sur le budget fut un moment particulier dans la mesure où les trois institutions impliquées étaient représenté es par des personnes de sexe féminin. La Présidente a conclu en disant que le millénaire s'achevait sur une note positive.

EuroParl: Analysis of Trained Model

- Is the model genuinely learning mixtures of topics?

Mr President, yesterday, at the end of the vote on the budget, there was a moment when the three institutions concerned were represented by women and the President concluded by saying that the Millennium was ending on a high note.

Monsieur le Président, hier, la fin du vote sur le budget fut un moment particulier dans la mesure où les trois institutions impliquées étaient représenté es par des personnes de sexe féminin. La Présidente a conclu en disant que le millénaire s'achevait sur une note positive.

EuroParl: Analysis of Trained Model

Parallel Corpora: "Glue" Tuples

- How many aligned documents are needed to get aligned topics?
topics with 1\% "glue" tuples
DE rußland russland russischen tschetschenien sicherheit
EN china rights human country s burma
IT ho presidente mi perché relazione votato
topics with 25\% "glue" tuples
DE rußland russland russischen tschetschenien ukraine
EN russia russian chechnya cooperation region belarus
IT russia unione cooperazione cecenia regione russa

Generating Bilingual Lexica

- Bilingual lexicon: word pairs (e.g., English word, translation)
- High probability words in different languages for a topic are likely to include translations - can use these to generate lexica
- Form candidate translations: Cartesian product of most probable K words in English and in each translation language
- No morphological variants: e.g., rules/vorschriften, rule/vorschrift
- Count \# of lexicon pairs that are in the candidate set
- Advantages: unsupervised; all words, not just nouns

Generating Bilingual Lexica ($K=1$)

Finding Translations

- Train model on aligned document tuples
- Output: set of polylingual topics, e.g., $\phi_{t}=\phi_{t}^{1}, \ldots, \phi_{t}^{L}$
- Map each test document to the low-dimensional space defined by the polylingual topics \rightarrow document-topic distributions
- For each query/target language pair:
- Compute similarities for all query/target document pairs
- For each query document, rank target documents by similarity
- Jensen-Shannon divergence, cosine distance

Finding Translations (Jensen-Shannon)

Comparable Corpora

- Directly parallel translations are rare, expensive to produce
- Comparable corpora more common: e.g., Wikipedia, web pages
- Our data set: all Wikipedia articles in English, Farsi, Finnish, French, German, Greek, Hebrew, Italian, Polish, Russian, Turkish, Welsh
- Documents are topically similar but not direct translations
- More interesting questions, more real-world applications:
- Do comparable document tuples support alignment of topics?
- Do different languages have different perspectives?
- Which topics do particular languages focus on?

Wikipedia: Example Topics $(T=400)$

CY sadwrn blaned gallair at lloeren mytholeg
DE space nasa sojus flug mission
EL ठıaбтпиıкó sts nasa aүү small
EN space mission launch satellite nasa spacecraft
FA فضنايى ماموريت ناسا مدار فضانورد ماهواره
FI sojuz nasa apollo ensimmäinen space lento
FR spatiale mission orbite mars satellite spatial
HE החלל הארץ חלל כדור א תוכנית
IT spaziale missione programma space sojuz stazione
PL misja kosmicznej stacji misji space nasa
RU космический союз космического спутник станции
TR uzay soyuz ay uzaya salyut sovyetler

Wikipedia: Example Topics ($T=400$)

CY sbaen madrid el la josé sbaeneg
DE de spanischer spanischen spanien madrid la
EL ıonavíaç ıomavía de ıonavós vt $\varepsilon \mu \alpha \delta$ рítп
EN de spanish spain la madrid y
FA اسپّانيا اسچِانيايی كوبا مادريد de
FI espanja de espanjan madrid la real
FR espagnol espagne madrid espagnole juan y
HE ספרד ספרדית דה מדריד הספרדית קובה
IT de spagna spagnolo spagnola madrid el
PL de hiszpański hiszpanii la juan y
RU де мадрид испании испания испанский de
TR ispanya ispanyol madrid la küba real

Wikipedia: Example Topics ($T=400$)

CY bardd gerddi iaith beirdd fardd gymraeg
DE dichter schriftsteller literatur gedichte gedicht werk

EN poet poetry literature literary poems poem
FA شاعر شعر ادبيات فارسىى ادبى آثار
FI runoilija kirjailija kirjallisuuden kirjoitti runo julkaisi
FR poète écrivain littérature poésie littéraire ses
HE משורר ספרות שירה סופר שירים המשורר
IT poeta letteratura poesia opere versi poema
PL poeta literatury poezji pisarz in jego
RU поэт его писатель литературы поэзии драматург
TR şair edebiyat şiir yazar edebiyatı adlı

Topic Divergence Between Languages

- Estimate document-specific distributions over topics
- Compute Jensen-Shannon divergence between documents in a tuple
- Average document-document divergences for each language pair:
- "Disagreement" score for each language pair
- Almost all language pairs have divergences consistent with EuroParl data, even languages that have historically been in conflict
- Although individual articles may have high between-language divergence, Wikipedia is on average consistent between languages

昭
world ski km won

相
world ski km won

actor role television actress

相
world ski km won

actor role television actress

ottoman empire khan byzantine

