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Overview

• Treebanks and evaluation

• Lexicalized parsing (with heads)

• Examples: Collins

• Dependency Parsing

• Speeding up lexicalized parsing

2



Treebanks

! Pure Grammar Induction Approaches tend not to 

produce the parse trees that people want

! Solution

Ø Give a some example of parse trees that we want

Ø Make a learning tool learn a grammar

! Treebank

Ø A collection of such example parses

Ø PennTreebank is most widely used
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Treebanks

! Penn Treebank

! Trees are represented via bracketing

! Fairly flat structures for Noun Phrases

(NP Arizona real estate loans)

! Tagged with grammatical and semantic functions

(-SBJ , –LOC, …)

! Use empty nodes(*) to indicate understood subjects and 

extraction gaps
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(  ( S ( NP-SBJ  The move)
         ( VP  followed
                  ( NP  ( NP a round )
                           ( PP  of
                                   (NP  ( NP similar increases )
                                           ( PP by
                                                  ( NP other lenders ) )
                                           ( PP against
                                                  ( NP Arizona real estate loans )))))
                  ,
                   ( S-ADV ( NP-SBJ * )
                                 ( VP  reflecting
                                           ( NP a continuing decline )
                                           ( PP-LOC  in
                                                             (NP  that market ))))))
    . )
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Treebanks

! Many people have argued that it is better to have 

linguists constructing treebanks than grammars

! Because it is easier

- to work out the correct parse of sentences

! than

- to try to determine what all possible manifestations of a 

certain rule or grammatical construct are
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Andrew McCallum, UMass

Parser Evaluation
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Evaluation

Ultimate goal is to build system for IE, QA, MT

People are rarely interested in syntactic analysis for its own 

sake

Evaluate the system for evaluate the parser

For Simplicity and modularization, and Convenience

Compare parses from a parser with the result of hand 

parsing of a sentence(gold standard)

What is objective criterion that we are trying to 

maximize?

8



Evaluation

Tree Accuracy (Exact match)

It is a very tough standard!!!

But in many ways it is a sensible one to use

PARSEVAL Measures

For some purposes, partially correct parses can be useful

Originally for non-statistical parsers

Evaluate the component pieces of a parse

Measures : Precision, Recall, Crossing brackets
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Evaluation

(Labeled) Precision

How many brackets in the parse match those in the correct 

tree (Gold standard)?

(Labeled) Recall

How many of the brackets in the correct tree are in the 

parse?

Crossing brackets

Average of how many constituents in one tree cross over 

constituent boundaries in the other tree
B1           (            )
B2       (          )
B3       (               )
B4              (          )
 w1 w2 w3 w4 w5 w6 w7 w8
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Problems with PARSEVAL

Even vanilla PCFG performs quite well

It measures success at the level of individual decisions

You must make many consecutive decisions correctly to be 

correct on the entire tree. 
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Problems with PARSEVAL (2)

Behind story

The structure of Penn Treebank

Flat ! Few brackets ! Low Crossing brackets

Troublesome brackets are avoided 

     ! High Precision/Recall

The errors in precision and recall are minimal

In some cases wrong PP attachment penalizes Precision, 

Recall and Crossing Bracket Accuracy minimally.

On the other hand, attaching low instead of high, then every 

node in the right-branching tree will be wrong: serious harm 
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3

62%
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Evaluation

Do PARSEVAL measures succeed in real tasks?

Many small parsing mistakes might not affect tasks of 

semantic interpretation

(Bonnema 1996,1997) 

Tree Accuracy of the Parser : 62%

Correct Semantic Interpretations : 88%

(Hermajakob and Mooney 1997) 

English to German translation

At the moment, people feel PARSEVAL measures are 

adequate for the comparing parsers
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Lexicalized Parsing
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Andrew McCallum, UMass

Limitations of PCFGs

• PCFGs assume:
- Place invariance

- Context free: P(rule) independent of 

• words outside span

• also, words with overlapping derivation

- Ancestor free: P(rule) independent of

• Non-terminals above.

• Lack of sensitivity to lexical information

• Lack of sensitivity to structural frequencies
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Andrew McCallum, UMass

Lack of Lexical Dependency

Means that

P(VP ! V NP NP)

is independent of the particular verb 
involved!

... but much more likely with ditransitive 
verbs (like gave).

He gave the boy a ball.

He ran to the store.
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The Need for Lexical Dependency

Probabilities dependent on Lexical words

Problem 1 : Verb subcategorization

VP expansion is independent of the choice of verb

However …

Including actual words information when making decisions 

about tree structure is necessary

 verb

 come take think want

VP -> V 9.5% 2.6% 4.6% 5.7%

VP -> V NP 1.1% 32.1% 0.2% 13.9%

VP -> V PP 34.5% 3.1% 7.1% 0.3%

VP -> V SBAR 6.6% 0.3% 73.0% 0.2%

VP -> V S 2.2% 1.3% 4.8% 70.8%
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Weakening the independence 
assumption of PCFG

Probabilities dependent on Lexical words

Problem 2 : Phrasal Attachment

Lexical content of phrases provide information for decision

Syntactic category of the phrases provide very little 

information

Standard PCFG is worse than n-gram models

19



Another case of PP attachment 
ambiguity

Another Case of PP Attachment Ambiguity

(a) S

NP

NNS

workers

VP

VP

VBD

dumped

NP

NNS

sacks

PP

IN

into

NP

DT

a

NN

bin
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Another case of PP attachment 
ambiguity

(b) S

NP

NNS

workers

VP

VBD

dumped

NP

NP

NNS

sacks

PP

IN

into

NP

DT

a

NN

bin
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Another case of PP attachment 
ambiguity

(a)

Rules

S NP VP

NP NNS

VP VP PP

VP VBD NP

NP NNS

PP IN NP

NP DT NN

NNS workers

VBD dumped

NNS sacks

IN into

DT a

NN bin

(b)

Rules

S NP VP

NP NNS

NP NP PP

VP VBD NP

NP NNS

PP IN NP

NP DT NN

NNS workers

VBD dumped

NNS sacks

IN into

DT a

NN bin

If NP NP PP NP VP VP PP VP then (b) is

more probable, else (a) is more probable.

Attachment decision is completely independent of the words

22



A case of coordination ambiguityA Case of Coordination Ambiguity

(a) NP

NP

NP

NNS

dogs

PP

IN

in

NP

NNS

houses

CC

and

NP

NNS

cats

(b) NP

NP

NNS

dogs

PP

IN

in

NP

NP

NNS

houses

CC

and

NP

NNS

cats

(a)

Rules

NP NP CC NP

NP NP PP

NP NNS

PP IN NP

NP NNS

NP NNS

NNS dogs

IN in

NNS houses

CC and

NNS cats

(b)

Rules

NP NP CC NP

NP NP PP

NP NNS

PP IN NP

NP NNS

NP NNS

NNS dogs

IN in

NNS houses

CC and

NNS cats

Here the two parses have identical rules, and therefore have

identical probability under any assignment of PCFG rule

probabilities
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Weakening the independence 
assumption of PCFG

Probabilities dependent on Lexical words

Solution

Lexicalize CFG : Each phrasal node with its head word

Background idea

Strong lexical dependencies between heads and their 

dependents
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Heads in Context-Free Rules
Heads in Context-Free Rules

Add annotations specifying the “head” of each rule:

S NP VP

VP Vi

VP Vt NP

VP VP PP

NP DT NN

NP NP PP

PP IN NP

Vi sleeps

Vt saw

NN man

NN woman

NN telescope

DT the

IN with

IN in

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional

phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,

IN=preposition
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More about headsMore about Heads

Each context-free rule has one “special” child that is the head

of the rule. e.g.,

S NP VP (VP is the head)

VP Vt NP (Vt is the head)

NP DT NN NN (NN is the head)

A core idea in linguistics

(X-bar Theory, Head-Driven Phrase Structure Grammar)

Some intuitions:

– The central sub-constituent of each rule.

– The semantic predicate in each rule.
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Rules which recover heads:
Example rules for NPs

Rules which Recover Heads:
An Example of rules for NPs

If the rule contains NN, NNS, or NNP:

Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

e.g.,

NP DT NNP NN

NP DT NN NNP

NP NP PP

NP DT JJ

NP DT
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Adding Headwords to TreesAdding Headwords to Trees

S(questioned)

NP(lawyer)

DT

the

NN

lawyer

VP(questioned)

Vt

questioned

NP(witness)

DT

the

NN

witness

A constituent receives its headword from its head child.

S NP VP (S receives headword from VP)

VP Vt NP (VP receives headword from Vt)

NP DT NN (NP receives headword from NN)
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Adding Headtags to Trees
Adding Headtags to Trees

S(questioned, Vt)

NP(lawyer, NN)

DT

the

NN

lawyer

VP(questioned, Vt)

Vt

questioned

NP(witness, NN)

DT

the

NN

witness

Also propogate part-of-speech tags up the trees

(We’ll see soon why this is useful!)
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Explosion of number of rules

New rules might look like:

VP[gave] ! V[gave] NP[man] NP[book]

But this would be a massive explosion in number of 

rules (and parameters)
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Sparseness and the Penn Treebank
Sparseness & the Penn Treebank

! The Penn Treebank – 1 million words of parsed English

WSJ – has been a key resource (because of the widespread

reliance on supervised learning)

! But 1 million words is like nothing:

" 965,000 constituents, but only 66 WHADJP, of which

only 6 aren’t how much or how many, but there is an

infinite space of these (how clever/original/incompetent

(at risk assessment and evaluation))

! Most of the probabilities that you would like to compute,

you can’t compute

383

Sparseness & the Penn Treebank (2)

! Most intelligent processing depends on bilexical statis-

tics: likelihoods of relationships between pairs of words.

! Extremely sparse, even on topics central to the WSJ :

" stocks plummeted 2 occurrences

" stocks stabilized 1 occurrence

" stocks skyrocketed 0 occurrences

"
#stocks discussed 0 occurrences

! So far there has been very modest success augmenting

the Penn Treebank with extra unannotated materials or

using semantic classes or clusters (cf. Charniak 1997,

Charniak 2000) – as soon as there are more than tiny

amounts of annotated training data.
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Probabilistic parsing

! Charniak (1997) expands each phrase structure tree in

a single step.

! This is good for capturing dependencies between child

nodes

! But it is bad because of data sparseness

! A pure dependency, one child at a time, model is worse

! But one can do better by in between models, such as

generating the children as a Markov process on both

sides of the head (Collins 1997; Charniak 2000)

385

Correcting wrong context-freedom assumptions

Horizonal Markov Order

Vertical Order h = 0 h = 1 h ≤ 2 h = 2 h =∞

v = 0 No annotation 71.27 72.5 73.46 72.96 72.62

(854) (3119) (3863) (6207) (9657)

v ≤ 1 Sel. Parents 74.75 77.42 77.77 77.50 76.91

(2285) (6564) (7619) (11398) (14247)

v = 1 All Parents 74.68 77.42 77.81 77.50 76.81

(2984) (7312) (8367) (12132) (14666)

v ≤ 2 Sel. GParents 76.50 78.59 79.07 78.97 78.54

(4943) (12374) (13627) (19545) (20123)

v = 2 All GParents 76.74 79.18 79.74 79.07 78.72

(7797) (15740) (16994) (22886) (22002)
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Correcting wrong context-freedom assumptions

VPˆS

TO

to

VPˆVP

VB

see

PPˆVP

IN

if

NPˆPP

NN

advertising

NNS

works

VPˆS

TOˆVP

to

VPˆVP

VBˆVP

see

SBARˆVP

INˆSBAR

if

SˆSBAR

NPˆS

NNˆNP

advertising

VPˆS

VBZˆVP

works

(a) (b)
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Correcting wrong context-freedom assumptions

Cumulative Indiv.
Annotation Size F1 ∆ F1 ∆ F1

Baseline 7619 77.72 0.00 0.00
UNARY-INTERNAL 8065 78.15 0.43 0.43
UNARY-DT 8078 80.09 2.37 0.22
UNARY-RB 8081 80.25 2.53 0.48
TAG-PA 8520 80.62 2.90 2.57
SPLIT-IN 8541 81.19 3.47 2.17
SPLIT-AUX 9034 81.66 3.94 0.62
SPLIT-CC 9190 81.69 3.97 0.17
SPLIT-% 9255 81.81 4.09 0.20
TMP-NP 9594 82.25 4.53 1.12
GAPPED-S 9741 82.28 4.56 0.22
POSS-NP 9820 83.06 5.34 0.33
SPLIT-VP 10499 85.72 8.00 1.41
BASE-NP 11660 86.04 8.32 0.78
DOMINATES-V 14097 86.91 9.19 1.47
RIGHT-REC-NP 15276 87.04 9.32 1.99

388

31



Sparseness and the Penn Treebank
Sparseness & the Penn Treebank

! The Penn Treebank – 1 million words of parsed English

WSJ – has been a key resource (because of the widespread

reliance on supervised learning)

! But 1 million words is like nothing:

" 965,000 constituents, but only 66 WHADJP, of which

only 6 aren’t how much or how many, but there is an

infinite space of these (how clever/original/incompetent

(at risk assessment and evaluation))

! Most of the probabilities that you would like to compute,

you can’t compute
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Sparseness & the Penn Treebank (2)

! Most intelligent processing depends on bilexical statis-

tics: likelihoods of relationships between pairs of words.

! Extremely sparse, even on topics central to the WSJ :

" stocks plummeted 2 occurrences

" stocks stabilized 1 occurrence

" stocks skyrocketed 0 occurrences

"
#stocks discussed 0 occurrences

! So far there has been very modest success augmenting

the Penn Treebank with extra unannotated materials or

using semantic classes or clusters (cf. Charniak 1997,

Charniak 2000) – as soon as there are more than tiny

amounts of annotated training data.
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Probabilistic parsing

! Charniak (1997) expands each phrase structure tree in

a single step.

! This is good for capturing dependencies between child

nodes

! But it is bad because of data sparseness

! A pure dependency, one child at a time, model is worse

! But one can do better by in between models, such as

generating the children as a Markov process on both

sides of the head (Collins 1997; Charniak 2000)
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Correcting wrong context-freedom assumptions

Horizonal Markov Order

Vertical Order h = 0 h = 1 h ≤ 2 h = 2 h =∞

v = 0 No annotation 71.27 72.5 73.46 72.96 72.62

(854) (3119) (3863) (6207) (9657)
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Correcting wrong context-freedom assumptions

VPˆS

TO

to

VPˆVP

VB

see

PPˆVP

IN

if

NPˆPP

NN

advertising

NNS

works

VPˆS

TOˆVP

to

VPˆVP

VBˆVP

see

SBARˆVP

INˆSBAR

if

SˆSBAR

NPˆS

NNˆNP

advertising

VPˆS

VBZˆVP

works

(a) (b)
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Correcting wrong context-freedom assumptions

Cumulative Indiv.
Annotation Size F1 ∆ F1 ∆ F1

Baseline 7619 77.72 0.00 0.00
UNARY-INTERNAL 8065 78.15 0.43 0.43
UNARY-DT 8078 80.09 2.37 0.22
UNARY-RB 8081 80.25 2.53 0.48
TAG-PA 8520 80.62 2.90 2.57
SPLIT-IN 8541 81.19 3.47 2.17
SPLIT-AUX 9034 81.66 3.94 0.62
SPLIT-CC 9190 81.69 3.97 0.17
SPLIT-% 9255 81.81 4.09 0.20
TMP-NP 9594 82.25 4.53 1.12
GAPPED-S 9741 82.28 4.56 0.22
POSS-NP 9820 83.06 5.34 0.33
SPLIT-VP 10499 85.72 8.00 1.41
BASE-NP 11660 86.04 8.32 0.78
DOMINATES-V 14097 86.91 9.19 1.47
RIGHT-REC-NP 15276 87.04 9.32 1.99

388
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Lexicalized, Markov out from head
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Collins 1997: 

Markov model out from head

Sparseness & the Penn Treebank

! The Penn Treebank – 1 million words of parsed English

WSJ – has been a key resource (because of the widespread

reliance on supervised learning)

! But 1 million words is like nothing:

" 965,000 constituents, but only 66 WHADJP, of which

only 6 aren’t how much or how many, but there is an

infinite space of these (how clever/original/incompetent

(at risk assessment and evaluation))

! Most of the probabilities that you would like to compute,

you can’t compute
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Sparseness & the Penn Treebank (2)

! Most intelligent processing depends on bilexical statis-

tics: likelihoods of relationships between pairs of words.

! Extremely sparse, even on topics central to the WSJ :

" stocks plummeted 2 occurrences

" stocks stabilized 1 occurrence

" stocks skyrocketed 0 occurrences

"
#stocks discussed 0 occurrences

! So far there has been very modest success augmenting

the Penn Treebank with extra unannotated materials or

using semantic classes or clusters (cf. Charniak 1997,

Charniak 2000) – as soon as there are more than tiny

amounts of annotated training data.

384

Probabilistic parsing

! Charniak (1997) expands each phrase structure tree in

a single step.

! This is good for capturing dependencies between child

nodes

! But it is bad because of data sparseness

! A pure dependency, one child at a time, model is worse

! But one can do better by in between models, such as

generating the children as a Markov process on both

sides of the head (Collins 1997; Charniak 2000)
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Correcting wrong context-freedom assumptions
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388

34



Modeling Rule Productions as Markov Processes

Step 1: generate category of head child

S(told,V[6])

S(told,V[6])

VP(told,V[6])

VP S, told, V[6]
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Modeling Rule Productions as Markov Processes

Step 2: generate left modifiers in a Markov chain

S(told,V[6])

?? VP(told,V[6])

S(told,V[6])

NP(Hillary,NNP) VP(told,V[6])

VP S, told, V[6] NP(Hillary,NNP) S,VP,told,V[6],LEFT
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Modeling Rule Productions as Markov Processes

Step 2: generate left modifiers in a Markov chain

S(told,V[6])

?? NP(Hillary,NNP) VP(told,V[6])

S(told,V[6])

NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6])

VP S, told, V[6] NP(Hillary,NNP) S,VP,told,V[6],LEFT

NP(yesterday,NN) S,VP,told,V[6],LEFT
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Modeling Rule Productions as Markov Processes

Step 2: generate left modifiers in a Markov chain

S(told,V[6])

?? NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6])

S(told,V[6])

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6])

VP S, told, V[6] NP(Hillary,NNP) S,VP,told,V[6],LEFT

NP(yesterday,NN) S,VP,told,V[6],LEFT STOP S,VP,told,V[6],LEFT
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Modeling Rule Productions as Markov Processes

Step 3: generate right modifiers in a Markov chain

S(told,V[6])

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6]) ??

S(told,V[6])

STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6]) STOP

VP S, told, V[6] NP(Hillary,NNP) S,VP,told,V[6],LEFT

NP(yesterday,NN) S,VP,told,V[6],LEFT STOP S,VP,told,V[6],LEFT

STOP S,VP,told,V[6],RIGHT
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A Refinement: Adding a Distance Variable

if position is adjacent to the head.

S(told,V[6])

?? VP(told,V[6])

S(told,V[6])

NP(Hillary,NNP) VP(told,V[6])

VP S, told, V[6]

NP(Hillary,NNP) S,VP,told,V[6],LEFT,

40



Adding dependency on structure

41



Weakening the independence 
assumption of PCFG

Probabilities dependent on structural context

PCFGs are also deficient on purely structural grounds too

Really context independent?

Expansion % as Subj % as Obj

NP ! PRP 13.7% 2.1%

NP ! NNP 3.5% 0.9%

NP ! DT NN 5.6% 4.6%

NP ! NN 1.4% 2.8%

NP ! NP SBAR 0.5% 2.6%

NP ! NP PP 5.6% 14.1%
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Weakening the independence 
assumption of PCFG

Sparseness & the Penn Treebank

! The Penn Treebank – 1 million words of parsed English

WSJ – has been a key resource (because of the widespread

reliance on supervised learning)

! But 1 million words is like nothing:

" 965,000 constituents, but only 66 WHADJP, of which

only 6 aren’t how much or how many, but there is an

infinite space of these (how clever/original/incompetent

(at risk assessment and evaluation))

! Most of the probabilities that you would like to compute,

you can’t compute
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Sparseness & the Penn Treebank (2)

! Most intelligent processing depends on bilexical statis-

tics: likelihoods of relationships between pairs of words.

! Extremely sparse, even on topics central to the WSJ :

" stocks plummeted 2 occurrences

" stocks stabilized 1 occurrence

" stocks skyrocketed 0 occurrences

"
#stocks discussed 0 occurrences

! So far there has been very modest success augmenting

the Penn Treebank with extra unannotated materials or

using semantic classes or clusters (cf. Charniak 1997,

Charniak 2000) – as soon as there are more than tiny

amounts of annotated training data.

384

Probabilistic parsing

! Charniak (1997) expands each phrase structure tree in

a single step.
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! But it is bad because of data sparseness

! A pure dependency, one child at a time, model is worse

! But one can do better by in between models, such as

generating the children as a Markov process on both

sides of the head (Collins 1997; Charniak 2000)
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(4943) (12374) (13627) (19545) (20123)

v = 2 All GParents 76.74 79.18 79.74 79.07 78.72

(7797) (15740) (16994) (22886) (22002)
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Correcting wrong context-freedom assumptions

VPˆS

TO

to

VPˆVP

VB

see

PPˆVP

IN

if

NPˆPP

NN

advertising

NNS

works

VPˆS

TOˆVP

to

VPˆVP

VBˆVP

see

SBARˆVP

INˆSBAR

if

SˆSBAR

NPˆS

NNˆNP

advertising

VPˆS

VBZˆVP

works

(a) (b)
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Correcting wrong context-freedom assumptions

Cumulative Indiv.
Annotation Size F1 ∆ F1 ∆ F1

Baseline 7619 77.72 0.00 0.00
UNARY-INTERNAL 8065 78.15 0.43 0.43
UNARY-DT 8078 80.09 2.37 0.22
UNARY-RB 8081 80.25 2.53 0.48
TAG-PA 8520 80.62 2.90 2.57
SPLIT-IN 8541 81.19 3.47 2.17
SPLIT-AUX 9034 81.66 3.94 0.62
SPLIT-CC 9190 81.69 3.97 0.17
SPLIT-% 9255 81.81 4.09 0.20
TMP-NP 9594 82.25 4.53 1.12
GAPPED-S 9741 82.28 4.56 0.22
POSS-NP 9820 83.06 5.34 0.33
SPLIT-VP 10499 85.72 8.00 1.41
BASE-NP 11660 86.04 8.32 0.78
DOMINATES-V 14097 86.91 9.19 1.47
RIGHT-REC-NP 15276 87.04 9.32 1.99
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Dependency Parsing
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Phrase Structure Grammars and 
Dependency Grammars

Phrase Structure Grammar describes the structure of 

sentences with phrase structure tree

Alternatively, a Dependency grammar describes the 

structure with dependencies between words

One word is the head of a sentence and All other words are 

dependent on that word

Dependent on some other word which connects to the 

headword through a sequence of dependencies
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Phrase Structure Grammars and 
Dependency Grammars

Two key advantages of Dependency grammar are

Easy to use lexical information

Disambiguation decisions are being made directly with words

No need to build a large superstructure

Not necessary to worry about how to lexicalize a PS tree

Dependencies are one way of decomposing PS rules

Lots of rare flat trees in Penn Treebank ! Sparse Data

Can get reasonable probabilistic estimate if we decompose it
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Evaluation

Method Recall Precision

PCFGs (Charniak 97) 70.6% 74.8%

Decision trees (Magerman 95) 84.0% 84.3%

Lexicalized with backoff (Charniak 97) 86.7% 86.6%

Lexicalized with Markov (Collins 97 M1) 87.5% 87.7%

“ with subcategorization (Collins 97 M2) 88.1% 88.3%

MaxEnt-inspired (Charniak 2000) 90.1% 90.1%
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Speeding Up 
Lexicalized Parsing
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Bilexical CF grammars
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Bilexical CF grammars

 Every rule has one of these forms:
  A[x] → B[x] C[y] so head of LHS
  A[x] → B[y] C[x]  is inherited from 
  A[x] → x   a child on RHS.
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Bilexical CF grammars

 Every rule has one of these forms:
  A[x] → B[x] C[y] so head of LHS
  A[x] → B[y] C[x]  is inherited from 
  A[x] → x   a child on RHS.

 (rules could also have probabilities)

B[x], B[y], C[x], C[y], ... many nonterminals

A, B, C ... are “traditional nonterminals”

x, y ... are words

49
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How bad is bilex CF parsing?

A[x] → B[x] C[y] 
Grammar size = O(t3 V2)

     where t = |{A, B, ...}|    V = |{x, y ...}|

 So CKY takes O(t3 V2 n3) 
 Reduce to O(t3 n5) since relevant V = n

 This is terrible ... can we do better?
 Recall: regular CKY is O(t3 n3)

50



The CKY-style algorithm

lovesMary the girl outdoors
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B

i j

C

j+1 kh h’

h

A

i k

O(n3 combinations)

O(n5 combinations)

visiting relatives
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Why CKY is O(n5) not O(n3)

B
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h

A

i k

O(n3 combinations)

O(n5 combinations)

...   hug visiting relatives
...   advocate visiting relatives
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Idea #1

B

i j

C

j+1 kh h’

h’

A

i k

 Combine B with what C?

 must try different-width C’s 
(vary k)

 must try differently-headed 
C’s  (vary h’)

 Separate these!
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Idea #1
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Transform the grammar

 (Lossy?) Transformation to a “split 
grammar”:
 Each head eats all its right dependents first
 I.e., left dependents are more oblique.

 This allows 
A

i

A
k

ki

h h

A
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Idea #2

B

i j

C

j+1 kh h’

h’

A

i k

 Combine what B and C?

 must try different-width C’s 
(vary k)

 must try different midpoints 
j

 Separate these!
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The O(n3) half-tree algorithm
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Theoretical Speedup

 n = input length  g = polysemy
 t = traditional nonterms or automaton states

Naive: O(n5 g2 t) 

New: O(n4 g2 t)
 Even better for split grammars:
 Eisner (1997): O(n3 g3 t2)
 New: O(n3 g2 t)

   all independent of vocabulary size!
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Midterm on Thursday

• 75 min. exam with one 8.5x11 cheat sheet

• Major topics:

• Regular expressions

• N-gram language models

• Simple estimations and smoothing

• HMMs: Viterbi and Forward-Backward

• CFGs: CKY and Earley’s algorithm

61



Lexicalized Parsing, with smoothing
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Lexicalized parsing [Charniak 1997]

Enriching a PCFG

! A naive PCFG with traditional nonterminals (NP, PP, etc.)

works quite poorly due to the independence assump-

tions it embodies (Charniak 1996)

! Fix: encode more information into the nonterminal space

" Structure sensitivity (Manning and Carpenter 1997;

Johnson 1998b)

! Expansion of nodes depends a lot on their position

in the tree (independent of lexical content)

! E.g., enrich nodes by also recording their parents:

SNP is different to VPNP

377

Enriching a PCFG (2)

" (Head) Lexicalization (Collins 1997; Charniak 1997)

! The head word of a phrase gives a good represen-

tation of the phrase’s structure and meaning

! Puts the properties of words back into a PCFG

Swalked

NPSue

NNPSue

Sue

VPwalked

VBDwalked

walked

PPinto

Pinto

into

NPstore

DTthe

the

NNstore

store

378

Parsing via classification decisions:

Charniak (1997)

! A very simple, conservative model of lexicalized PCFG

! Probabilistic conditioning is “top-down” (but actual com-

putation is bottom-up)

Srose

NPprofits

JJcorporate

corporate

NNSprofits

profits

VProse

Vrose

rose

379

Charniak (1997) example

Srose

NP VProse

a. h = profits; c = NP

b. ph = rose; pc = S

c. P(h|ph, c, pc)

d. P(r |h, c, pc)

Srose

NPprofits VProse

Srose

NPprofits

JJ NNSprofits

VProse

380

Charniak (1997) linear interpolation/shrinkage

P̂ (h|ph, c, pc) = λ1(e)PMLE(h|ph, c, pc)

+λ2(e)PMLE(h|C(ph), c, pc)

+λ3(e)PMLE(h|c, pc)+ λ4(e)PMLE(h|c)

! λi(e) is here a function of how much one would expect

to see a certain occurrence, given the amount of training

data, word counts, etc.

! C(ph) is semantic class of parent headword

! Techniques like these for dealing with data sparseness

are vital to successful model construction

381

Charniak (1997) shrinkage example

P(prft|rose,NP, S) P(corp|prft, JJ,NP)

P(h|ph, c, pc) 0 0.245

P(h|C(ph), c, pc) 0.00352 0.0150

P(h|c, pc) 0.000627 0.00533

P(h|c) 0.000557 0.00418

! Allows utilization of rich highly conditioned estimates,

but smoothes when sufficient data is unavailable

! One can’t just use MLEs: one commonly sees previously

unseen events, which would have probability 0.

382
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[Charniak 1997]
Generate head, then head constituent & rule

Enriching a PCFG

! A naive PCFG with traditional nonterminals (NP, PP, etc.)

works quite poorly due to the independence assump-

tions it embodies (Charniak 1996)
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Charniak (1997) shrinkage example
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382

h=head word, c=head consituent 

ph=parent head word, parent head constituent
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Smoothing in [Charniak 1997]

Enriching a PCFG

! A naive PCFG with traditional nonterminals (NP, PP, etc.)

works quite poorly due to the independence assump-

tions it embodies (Charniak 1996)

! Fix: encode more information into the nonterminal space

" Structure sensitivity (Manning and Carpenter 1997;

Johnson 1998b)

! Expansion of nodes depends a lot on their position

in the tree (independent of lexical content)

! E.g., enrich nodes by also recording their parents:

SNP is different to VPNP

377

Enriching a PCFG (2)

" (Head) Lexicalization (Collins 1997; Charniak 1997)
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[Charniak 1997] smoothing example

Enriching a PCFG

! A naive PCFG with traditional nonterminals (NP, PP, etc.)

works quite poorly due to the independence assump-

tions it embodies (Charniak 1996)

! Fix: encode more information into the nonterminal space

" Structure sensitivity (Manning and Carpenter 1997;

Johnson 1998b)

! Expansion of nodes depends a lot on their position

in the tree (independent of lexical content)

! E.g., enrich nodes by also recording their parents:

SNP is different to VPNP
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! Techniques like these for dealing with data sparseness

are vital to successful model construction
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Charniak (1997) shrinkage example

P(prft|rose,NP, S) P(corp|prft, JJ,NP)

P(h|ph, c, pc) 0 0.245

P(h|C(ph), c, pc) 0.00352 0.0150

P(h|c, pc) 0.000627 0.00533

P(h|c) 0.000557 0.00418

! Allows utilization of rich highly conditioned estimates,

but smoothes when sufficient data is unavailable

! One can’t just use MLEs: one commonly sees previously

unseen events, which would have probability 0.
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[Charniak 1997]
Rule probability with similar smoothing

P(r|h,hc, pc)=!1(e)P(r|h,hc, pc)
!2(e)P(r|h,hc)
!3(e)P(r|C(h),hc)
!4(e)P(r|hc, pc)
!5(e)P(r|hc)
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