
Log-Linear Models
a.k.a. Logistic Regression,

Maximum Entropy Models

Introduction to Natural Language Processing
Computer Science 585—Fall 2009

University of Massachusetts Amherst

David Smith
(some slides from Jason Eisner and Dan Klein)

1

2

Probability is Useful
summary of half of the course (statistics)

2

2

Probability is Useful
 We love probability distributions!

summary of half of the course (statistics)

2

2

Probability is Useful
 We love probability distributions!

 We’ve learned how to define & use p(…) functions.

summary of half of the course (statistics)

2

2

Probability is Useful
 We love probability distributions!

 We’ve learned how to define & use p(…) functions.

 Pick best output text T from a set of candidates

summary of half of the course (statistics)

2

2

Probability is Useful
 We love probability distributions!

 We’ve learned how to define & use p(…) functions.

 Pick best output text T from a set of candidates
 speech recognition; machine translation; OCR; spell correction...

summary of half of the course (statistics)

2

2

Probability is Useful
 We love probability distributions!

 We’ve learned how to define & use p(…) functions.

 Pick best output text T from a set of candidates
 speech recognition; machine translation; OCR; spell correction...

 maximize p1(T) for some appropriate distribution p1

summary of half of the course (statistics)

2

2

Probability is Useful
 We love probability distributions!

 We’ve learned how to define & use p(…) functions.

 Pick best output text T from a set of candidates
 speech recognition; machine translation; OCR; spell correction...

 maximize p1(T) for some appropriate distribution p1

 Pick best annotation T for a fixed input I

summary of half of the course (statistics)

2

2

Probability is Useful
 We love probability distributions!

 We’ve learned how to define & use p(…) functions.

 Pick best output text T from a set of candidates
 speech recognition; machine translation; OCR; spell correction...

 maximize p1(T) for some appropriate distribution p1

 Pick best annotation T for a fixed input I
 text categorization; parsing; POS tagging; language ID …

summary of half of the course (statistics)

2

2

Probability is Useful
 We love probability distributions!

 We’ve learned how to define & use p(…) functions.

 Pick best output text T from a set of candidates
 speech recognition; machine translation; OCR; spell correction...

 maximize p1(T) for some appropriate distribution p1

 Pick best annotation T for a fixed input I
 text categorization; parsing; POS tagging; language ID …
 maximize p(T | I); equivalently maximize joint probability p(I,T)

summary of half of the course (statistics)

2

2

Probability is Useful
 We love probability distributions!

 We’ve learned how to define & use p(…) functions.

 Pick best output text T from a set of candidates
 speech recognition; machine translation; OCR; spell correction...

 maximize p1(T) for some appropriate distribution p1

 Pick best annotation T for a fixed input I
 text categorization; parsing; POS tagging; language ID …
 maximize p(T | I); equivalently maximize joint probability p(I,T)

 often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)

summary of half of the course (statistics)

2

2

Probability is Useful
 We love probability distributions!

 We’ve learned how to define & use p(…) functions.

 Pick best output text T from a set of candidates
 speech recognition; machine translation; OCR; spell correction...

 maximize p1(T) for some appropriate distribution p1

 Pick best annotation T for a fixed input I
 text categorization; parsing; POS tagging; language ID …
 maximize p(T | I); equivalently maximize joint probability p(I,T)

 often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)

 speech recognition & other tasks above are cases of this too:

summary of half of the course (statistics)

2

2

Probability is Useful
 We love probability distributions!

 We’ve learned how to define & use p(…) functions.

 Pick best output text T from a set of candidates
 speech recognition; machine translation; OCR; spell correction...

 maximize p1(T) for some appropriate distribution p1

 Pick best annotation T for a fixed input I
 text categorization; parsing; POS tagging; language ID …
 maximize p(T | I); equivalently maximize joint probability p(I,T)

 often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)

 speech recognition & other tasks above are cases of this too:

 we’re maximizing an appropriate p1(T) defined by p(T | I)

summary of half of the course (statistics)

2

2

Probability is Useful
 We love probability distributions!

 We’ve learned how to define & use p(…) functions.

 Pick best output text T from a set of candidates
 speech recognition; machine translation; OCR; spell correction...

 maximize p1(T) for some appropriate distribution p1

 Pick best annotation T for a fixed input I
 text categorization; parsing; POS tagging; language ID …
 maximize p(T | I); equivalently maximize joint probability p(I,T)

 often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)

 speech recognition & other tasks above are cases of this too:

 we’re maximizing an appropriate p1(T) defined by p(T | I)

 Pick best probability distribution (a meta-problem!)

summary of half of the course (statistics)

2

2

Probability is Useful
 We love probability distributions!

 We’ve learned how to define & use p(…) functions.

 Pick best output text T from a set of candidates
 speech recognition; machine translation; OCR; spell correction...

 maximize p1(T) for some appropriate distribution p1

 Pick best annotation T for a fixed input I
 text categorization; parsing; POS tagging; language ID …
 maximize p(T | I); equivalently maximize joint probability p(I,T)

 often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)

 speech recognition & other tasks above are cases of this too:

 we’re maximizing an appropriate p1(T) defined by p(T | I)

 Pick best probability distribution (a meta-problem!)
 really, pick best parameters θ: train HMM, PCFG, n-grams, clusters …

summary of half of the course (statistics)

2

2

Probability is Useful
 We love probability distributions!

 We’ve learned how to define & use p(…) functions.

 Pick best output text T from a set of candidates
 speech recognition; machine translation; OCR; spell correction...

 maximize p1(T) for some appropriate distribution p1

 Pick best annotation T for a fixed input I
 text categorization; parsing; POS tagging; language ID …
 maximize p(T | I); equivalently maximize joint probability p(I,T)

 often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)

 speech recognition & other tasks above are cases of this too:

 we’re maximizing an appropriate p1(T) defined by p(T | I)

 Pick best probability distribution (a meta-problem!)
 really, pick best parameters θ: train HMM, PCFG, n-grams, clusters …
 maximum likelihood; smoothing; EM if unsupervised (incomplete data)

summary of half of the course (statistics)

2

2

Probability is Useful
 We love probability distributions!

 We’ve learned how to define & use p(…) functions.

 Pick best output text T from a set of candidates
 speech recognition; machine translation; OCR; spell correction...

 maximize p1(T) for some appropriate distribution p1

 Pick best annotation T for a fixed input I
 text categorization; parsing; POS tagging; language ID …
 maximize p(T | I); equivalently maximize joint probability p(I,T)

 often define p(I,T) by noisy channel: p(I,T) = p(T) * p(I | T)

 speech recognition & other tasks above are cases of this too:

 we’re maximizing an appropriate p1(T) defined by p(T | I)

 Pick best probability distribution (a meta-problem!)
 really, pick best parameters θ: train HMM, PCFG, n-grams, clusters …
 maximum likelihood; smoothing; EM if unsupervised (incomplete data)

 Bayesian smoothing: max p(θ|data) = max p(θ, data) =p(θ)p(data|θ)

summary of half of the course (statistics)

2

3

Probability is Flexible
summary of other half of the course (linguistics)

3

3

Probability is Flexible

 We love probability distributions!

summary of other half of the course (linguistics)

3

3

Probability is Flexible

 We love probability distributions!
 We’ve learned how to define & use p(…) functions.

summary of other half of the course (linguistics)

3

3

Probability is Flexible

 We love probability distributions!
 We’ve learned how to define & use p(…) functions.

 We want p(…) to define probability of linguistic objects

summary of other half of the course (linguistics)

3

3

Probability is Flexible

 We love probability distributions!
 We’ve learned how to define & use p(…) functions.

 We want p(…) to define probability of linguistic objects
 Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)

summary of other half of the course (linguistics)

3

3

Probability is Flexible

 We love probability distributions!
 We’ve learned how to define & use p(…) functions.

 We want p(…) to define probability of linguistic objects
 Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
 Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,

FSTs; regex compilation, best-paths, forward-backward, collocations)

summary of other half of the course (linguistics)

3

3

Probability is Flexible

 We love probability distributions!
 We’ve learned how to define & use p(…) functions.

 We want p(…) to define probability of linguistic objects
 Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
 Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,

FSTs; regex compilation, best-paths, forward-backward, collocations)
 Vectors (clusters)

summary of other half of the course (linguistics)

3

3

Probability is Flexible

 We love probability distributions!
 We’ve learned how to define & use p(…) functions.

 We want p(…) to define probability of linguistic objects
 Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
 Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,

FSTs; regex compilation, best-paths, forward-backward, collocations)
 Vectors (clusters)

 We’ve also seen some not-so-probabilistic stuff

summary of other half of the course (linguistics)

3

3

Probability is Flexible

 We love probability distributions!
 We’ve learned how to define & use p(…) functions.

 We want p(…) to define probability of linguistic objects
 Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
 Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,

FSTs; regex compilation, best-paths, forward-backward, collocations)
 Vectors (clusters)

 We’ve also seen some not-so-probabilistic stuff
 Syntactic features, morph. Could be stochasticized?

summary of other half of the course (linguistics)

3

3

Probability is Flexible

 We love probability distributions!
 We’ve learned how to define & use p(…) functions.

 We want p(…) to define probability of linguistic objects
 Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
 Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,

FSTs; regex compilation, best-paths, forward-backward, collocations)
 Vectors (clusters)

 We’ve also seen some not-so-probabilistic stuff
 Syntactic features, morph. Could be stochasticized?
 Methods can be quantitative & data-driven but not fully probabilistic:

transf.-based learning, bottom-up clustering, LSA, competitive linking

summary of other half of the course (linguistics)

3

3

Probability is Flexible

 We love probability distributions!
 We’ve learned how to define & use p(…) functions.

 We want p(…) to define probability of linguistic objects
 Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
 Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,

FSTs; regex compilation, best-paths, forward-backward, collocations)
 Vectors (clusters)

 We’ve also seen some not-so-probabilistic stuff
 Syntactic features, morph. Could be stochasticized?
 Methods can be quantitative & data-driven but not fully probabilistic:

transf.-based learning, bottom-up clustering, LSA, competitive linking

 But probabilities have wormed their way into most things

summary of other half of the course (linguistics)

3

3

Probability is Flexible

 We love probability distributions!
 We’ve learned how to define & use p(…) functions.

 We want p(…) to define probability of linguistic objects
 Trees of (non)terminals (PCFGs; CKY, Earley, pruning, inside-outside)
 Sequences of words, tags, morphemes, phonemes (n-grams, FSAs,

FSTs; regex compilation, best-paths, forward-backward, collocations)
 Vectors (clusters)

 We’ve also seen some not-so-probabilistic stuff
 Syntactic features, morph. Could be stochasticized?
 Methods can be quantitative & data-driven but not fully probabilistic:

transf.-based learning, bottom-up clustering, LSA, competitive linking

 But probabilities have wormed their way into most things
 p(…) has to capture our intuitions about the ling. data

summary of other half of the course (linguistics)

3

4

An Alternative Tradition

4

4

An Alternative Tradition

 Old AI hacking technique:
 Possible parses (or whatever) have scores.
 Pick the one with the best score.
 How do you define the score?

 Completely ad hoc!
 Throw anything you want into the stew
 Add a bonus for this, a penalty for that, etc.

4

4

An Alternative Tradition

 Old AI hacking technique:
 Possible parses (or whatever) have scores.
 Pick the one with the best score.
 How do you define the score?

 Completely ad hoc!
 Throw anything you want into the stew
 Add a bonus for this, a penalty for that, etc.

 “Learns” over time – as you adjust bonuses and
penalties by hand to improve performance.

4

4

An Alternative Tradition

 Old AI hacking technique:
 Possible parses (or whatever) have scores.
 Pick the one with the best score.
 How do you define the score?

 Completely ad hoc!
 Throw anything you want into the stew
 Add a bonus for this, a penalty for that, etc.

 “Learns” over time – as you adjust bonuses and
penalties by hand to improve performance.

 Total kludge, but totally flexible too …
 Can throw in any intuitions you might have

4

4

An Alternative Tradition

 Old AI hacking technique:
 Possible parses (or whatever) have scores.
 Pick the one with the best score.
 How do you define the score?

 Completely ad hoc!
 Throw anything you want into the stew
 Add a bonus for this, a penalty for that, etc.

 “Learns” over time – as you adjust bonuses and
penalties by hand to improve performance.

 Total kludge, but totally flexible too …
 Can throw in any intuitions you might have

really so alternative?

4

5

An Alternative Tradition

 Old AI hacking technique:
 Possible parses (or whatever) have scores.
 Pick the one with the best score.
 How do you define the score?

 Completely ad hoc!
 Throw anything you want into the stew
 Add a bonus for this, a penalty for that, etc.

 “Learns” over time – as you adjust bonuses and
penalties by hand to improve performance.

 Total kludge, but totally flexible too …
 Can throw in any intuitions you might have

really so alternative?

5

5

An Alternative Tradition

 Old AI hacking technique:
 Possible parses (or whatever) have scores.
 Pick the one with the best score.
 How do you define the score?

 Completely ad hoc!
 Throw anything you want into the stew
 Add a bonus for this, a penalty for that, etc.

 “Learns” over time – as you adjust bonuses and
penalties by hand to improve performance.

 Total kludge, but totally flexible too …
 Can throw in any intuitions you might have

really so alternative?

Exposé at 9

Probabilistic Revolution
Not Really a Revolution,

Critics Say

Log-probabilities no more
than scores in disguise

“We’re just adding stuff up
like the old corrupt regime
did,” admits spokesperson

5

6

Nuthin’ but adding weights

6

6

Nuthin’ but adding weights

 n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

6

6

Nuthin’ but adding weights

 n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

 PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

6

6

Nuthin’ but adding weights

 n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

 PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

 HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

6

6

Nuthin’ but adding weights

 n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

 PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

 HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

 Noisy channel: [log p(source)] + [log p(data | source)]

6

6

Nuthin’ but adding weights

 n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

 PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

 HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

 Noisy channel: [log p(source)] + [log p(data | source)]
 Cascade of FSTs:

 [log p(A)] + [log p(B | A)] + [log p(C | B)] + …

6

6

Nuthin’ but adding weights

 n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

 PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

 HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

 Noisy channel: [log p(source)] + [log p(data | source)]
 Cascade of FSTs:

 [log p(A)] + [log p(B | A)] + [log p(C | B)] + …

 Naïve Bayes:
 log p(Class) + log p(feature1 | Class) + log p(feature2 | Class) …

6

6

Nuthin’ but adding weights

 n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

 PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

 HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

 Noisy channel: [log p(source)] + [log p(data | source)]
 Cascade of FSTs:

 [log p(A)] + [log p(B | A)] + [log p(C | B)] + …

 Naïve Bayes:
 log p(Class) + log p(feature1 | Class) + log p(feature2 | Class) …

 Note: Today we’ll use +logprob not –logprob:
i.e., bigger weights are better.

6

7

Nuthin’ but adding weights
 n-grams: … + log p(w7 | w5,w6) + log(w8 | w6, w7) + …

 PCFG: log p(NP VP | S) + log p(Papa | NP) + log p(VP PP | VP) …

 Can regard any linguistic object as a collection of features (here,
tree = a collection of context-free rules)

 Weight of the object = total weight of features
 Our weights have always been conditional log-probs (≤ 0)

 but that is going to change in a few minutes!

 HMM tagging: … + log p(t7 | t5, t6) + log p(w7 | t7) + …

 Noisy channel: [log p(source)] + [log p(data | source)]
 Cascade of FSTs:

 [log p(A)] + [log p(B | A)] + [log p(C | B)] + …

 Naïve Bayes:
 log(Class) + log(feature1 | Class) + log(feature2 | Class) + …

7

8
8

8

Probabilists Rally Behind Paradigm

8

8

Probabilists Rally Behind Paradigm

“.2, .4, .6, .8! We’re not gonna take your bait!”

8

8

Probabilists Rally Behind Paradigm

“.2, .4, .6, .8! We’re not gonna take your bait!”
1. Can estimate our parameters automatically

 e.g., log p(t7 | t5, t6) (trigram tag probability)
 from supervised or unsupervised data

8

8

Probabilists Rally Behind Paradigm

“.2, .4, .6, .8! We’re not gonna take your bait!”
1. Can estimate our parameters automatically

 e.g., log p(t7 | t5, t6) (trigram tag probability)
 from supervised or unsupervised data

2. Our results are more meaningful
 Can use probabilities to place bets, quantify risk
 e.g., how sure are we that this is the correct parse?

8

8

Probabilists Rally Behind Paradigm

“.2, .4, .6, .8! We’re not gonna take your bait!”
1. Can estimate our parameters automatically

 e.g., log p(t7 | t5, t6) (trigram tag probability)
 from supervised or unsupervised data

2. Our results are more meaningful
 Can use probabilities to place bets, quantify risk
 e.g., how sure are we that this is the correct parse?

3. Our results can be meaningfully combined ⇒ modularity!
 Multiply indep. conditional probs – normalized, unlike scores
 p(English text) * p(English phonemes | English text) * p(Jap.

phonemes | English phonemes) * p(Jap. text | Jap. phonemes)
 p(semantics) * p(syntax | semantics) * p(morphology | syntax) *

p(phonology | morphology) * p(sounds | phonology)
8

8

Probabilists Rally Behind Paradigm

“.2, .4, .6, .8! We’re not gonna take your bait!”
1. Can estimate our parameters automatically

 e.g., log p(t7 | t5, t6) (trigram tag probability)
 from supervised or unsupervised data

2. Our results are more meaningful
 Can use probabilities to place bets, quantify risk
 e.g., how sure are we that this is the correct parse?

3. Our results can be meaningfully combined ⇒ modularity!
 Multiply indep. conditional probs – normalized, unlike scores
 p(English text) * p(English phonemes | English text) * p(Jap.

phonemes | English phonemes) * p(Jap. text | Jap. phonemes)
 p(semantics) * p(syntax | semantics) * p(morphology | syntax) *

p(phonology | morphology) * p(sounds | phonology)

83% of

^

8

9
9

9

Probabilists Regret Being Bound by Principle

9

9

Probabilists Regret Being Bound by Principle

 Ad-hoc approach does have one advantage

9

9

Probabilists Regret Being Bound by Principle

 Ad-hoc approach does have one advantage
 Consider e.g. Naïve Bayes for text categorization:

 Buy this supercalifragilistic Ginsu knife set
for only $39 today …

9

9

Probabilists Regret Being Bound by Principle

 Ad-hoc approach does have one advantage
 Consider e.g. Naïve Bayes for text categorization:

 Buy this supercalifragilistic Ginsu knife set
for only $39 today …

 Some useful features:
 Contains Buy
 Contains supercalifragilistic
 Contains a dollar amount under $100
 Contains an imperative sentence
 Reading level = 8th grade
 Mentions money (use word classes and/or regexp to detect this)

9

9

Probabilists Regret Being Bound by Principle

 Ad-hoc approach does have one advantage
 Consider e.g. Naïve Bayes for text categorization:

 Buy this supercalifragilistic Ginsu knife set
for only $39 today …

 Some useful features:
 Contains Buy
 Contains supercalifragilistic
 Contains a dollar amount under $100
 Contains an imperative sentence
 Reading level = 8th grade
 Mentions money (use word classes and/or regexp to detect this)

 Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …

9

9

Probabilists Regret Being Bound by Principle

 Ad-hoc approach does have one advantage
 Consider e.g. Naïve Bayes for text categorization:

 Buy this supercalifragilistic Ginsu knife set
for only $39 today …

 Some useful features:
 Contains Buy
 Contains supercalifragilistic
 Contains a dollar amount under $100
 Contains an imperative sentence
 Reading level = 8th grade
 Mentions money (use word classes and/or regexp to detect this)

 Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
 What assumption does Naïve Bayes make? True here?

9

9

Probabilists Regret Being Bound by Principle

 Ad-hoc approach does have one advantage
 Consider e.g. Naïve Bayes for text categorization:

 Buy this supercalifragilistic Ginsu knife set
for only $39 today …

 Some useful features:
 Contains Buy
 Contains supercalifragilistic
 Contains a dollar amount under $100
 Contains an imperative sentence
 Reading level = 8th grade
 Mentions money (use word classes and/or regexp to detect this)

 Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
 What assumption does Naïve Bayes make? True here?

.5 .02

.9 .1

spam ling

9

10

Probabilists Regret Being Bound by Principle

 Ad-hoc approach does have one advantage
 Consider e.g. Naïve Bayes for text categorization:

 Buy this supercalifragilistic Ginsu knife set
for only $39 today …

 Some useful features:

 Contains a dollar amount under $100

 Mentions money

 Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
 What assumption does Naïve Bayes make? True here?

.5 .02

.9 .1

spam ling

10

10

Probabilists Regret Being Bound by Principle

 Ad-hoc approach does have one advantage
 Consider e.g. Naïve Bayes for text categorization:

 Buy this supercalifragilistic Ginsu knife set
for only $39 today …

 Some useful features:

 Contains a dollar amount under $100

 Mentions money

 Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
 What assumption does Naïve Bayes make? True here?

.5 .02

.9 .1

spam ling 50% of spam has this – 25x more likely than in ling

10

10

Probabilists Regret Being Bound by Principle

 Ad-hoc approach does have one advantage
 Consider e.g. Naïve Bayes for text categorization:

 Buy this supercalifragilistic Ginsu knife set
for only $39 today …

 Some useful features:

 Contains a dollar amount under $100

 Mentions money

 Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
 What assumption does Naïve Bayes make? True here?

.5 .02

.9 .1

spam ling 50% of spam has this – 25x more likely than in ling

90% of spam has this – 9x more likely than in ling

10

10

Probabilists Regret Being Bound by Principle

 Ad-hoc approach does have one advantage
 Consider e.g. Naïve Bayes for text categorization:

 Buy this supercalifragilistic Ginsu knife set
for only $39 today …

 Some useful features:

 Contains a dollar amount under $100

 Mentions money

 Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
 What assumption does Naïve Bayes make? True here?

.5 .02

.9 .1

spam ling
Naïve Bayes
claims .5*.9=45%
of spam has both
features –
25*9=225x more
likely than in
ling.

50% of spam has this – 25x more likely than in ling

90% of spam has this – 9x more likely than in ling

10

10

Probabilists Regret Being Bound by Principle

 Ad-hoc approach does have one advantage
 Consider e.g. Naïve Bayes for text categorization:

 Buy this supercalifragilistic Ginsu knife set
for only $39 today …

 Some useful features:

 Contains a dollar amount under $100

 Mentions money

 Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
 What assumption does Naïve Bayes make? True here?

.5 .02

.9 .1

spam ling
Naïve Bayes
claims .5*.9=45%
of spam has both
features –
25*9=225x more
likely than in
ling.

50% of spam has this – 25x more likely than in ling

90% of spam has this – 9x more likely than in ling
but here are the emails with both features – only 25x!

10

11

 But ad-hoc approach does have one advantage

 Can adjust scores to compensate for feature overlap …
 Some useful features of this message:

 Contains a dollar amount under $100

 Mentions money

 Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
 What assumption does Naïve Bayes make? True here?

Probabilists Regret Being Bound by Principle

.5 .02

.9 .1

spam ling

11

11

 But ad-hoc approach does have one advantage

 Can adjust scores to compensate for feature overlap …
 Some useful features of this message:

 Contains a dollar amount under $100

 Mentions money

 Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
 What assumption does Naïve Bayes make? True here?

Probabilists Regret Being Bound by Principle

.5 .02

.9 .1

spam ling

-1 -5.6

-.15 -3.3

spam ling
log prob

11

11

 But ad-hoc approach does have one advantage

 Can adjust scores to compensate for feature overlap …
 Some useful features of this message:

 Contains a dollar amount under $100

 Mentions money

 Naïve Bayes: pick C maximizing p(C) * p(feat 1 | C) * …
 What assumption does Naïve Bayes make? True here?

Probabilists Regret Being Bound by Principle

.5 .02

.9 .1

spam ling

-1 -5.6

-.15 -3.3

spam ling
log prob

-.85 -2.3

-.15 -3.3

spam ling
adjusted

11

12
12

12

Revolution Corrupted by Bourgeois Values

12

12

Revolution Corrupted by Bourgeois Values

 Naïve Bayes needs overlapping but independent features

12

12

Revolution Corrupted by Bourgeois Values

 Naïve Bayes needs overlapping but independent features
 But not clear how to restructure these features like that:

 Contains Buy
 Contains supercalifragilistic
 Contains a dollar amount under $100
 Contains an imperative sentence
 Reading level = 7th grade
 Mentions money (use word classes and/or regexp to detect this)
 …

12

12

Revolution Corrupted by Bourgeois Values

 Naïve Bayes needs overlapping but independent features
 But not clear how to restructure these features like that:

 Contains Buy
 Contains supercalifragilistic
 Contains a dollar amount under $100
 Contains an imperative sentence
 Reading level = 7th grade
 Mentions money (use word classes and/or regexp to detect this)
 …

 Boy, we’d like to be able to throw all that useful stuff in
without worrying about feature overlap/independence.

12

12

Revolution Corrupted by Bourgeois Values

 Naïve Bayes needs overlapping but independent features
 But not clear how to restructure these features like that:

 Contains Buy
 Contains supercalifragilistic
 Contains a dollar amount under $100
 Contains an imperative sentence
 Reading level = 7th grade
 Mentions money (use word classes and/or regexp to detect this)
 …

 Boy, we’d like to be able to throw all that useful stuff in
without worrying about feature overlap/independence.

 Well, maybe we can add up scores and pretend like we
got a log probability:

12

13

Revolution Corrupted by Bourgeois Values

 Naïve Bayes needs overlapping but independent features
 But not clear how to restructure these features like that:

 Contains Buy
 Contains supercalifragilistic
 Contains a dollar amount under $100
 Contains an imperative sentence
 Reading level = 7th grade
 Mentions money (use word classes and/or regexp to detect this)
 …

 Boy, we’d like to be able to throw all that useful stuff in
without worrying about feature overlap/independence.

 Well, maybe we can add up scores and pretend like we
got a log probability: log p(feats | spam) = 5.77

+4
+0.2
+1
+2
 -3
+5
 …

total: 5.77

13

13

Revolution Corrupted by Bourgeois Values

 Naïve Bayes needs overlapping but independent features
 But not clear how to restructure these features like that:

 Contains Buy
 Contains supercalifragilistic
 Contains a dollar amount under $100
 Contains an imperative sentence
 Reading level = 7th grade
 Mentions money (use word classes and/or regexp to detect this)
 …

 Boy, we’d like to be able to throw all that useful stuff in
without worrying about feature overlap/independence.

 Well, maybe we can add up scores and pretend like we
got a log probability: log p(feats | spam) = 5.77

+4
+0.2
+1
+2
 -3
+5
 …

total: 5.77

 Oops, then p(feats | spam) = exp 5.77 = 320.5
13

14

Renormalize by 1/Z to get a

 p(feats | spam) = exp 5.77 = 320.5

14

14

Renormalize by 1/Z to get a

 p(feats | spam) = exp 5.77 = 320.5

scale down so

everything < 1

and sums to 1!

14

14

Renormalize by 1/Z to get a

 p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m) where
m is the email message

λi is weight of feature i

fi(m)∈{0,1} according to whether m has feature i

More generally, allow fi(m) = count or strength of feature.

1/Z(λ) is a normalizing factor making ∑m p(m | spam)=1

(summed over all possible messages m! hard to find!)

 p(feats | spam) = exp 5.77 = 320.5

scale down so

everything < 1

and sums to 1!

14

14

Renormalize by 1/Z to get a

 p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m) where
m is the email message

λi is weight of feature i

fi(m)∈{0,1} according to whether m has feature i

More generally, allow fi(m) = count or strength of feature.

1/Z(λ) is a normalizing factor making ∑m p(m | spam)=1

(summed over all possible messages m! hard to find!)
 The weights we add up are basically arbitrary.

 p(feats | spam) = exp 5.77 = 320.5

scale down so

everything < 1

and sums to 1!

14

14

Renormalize by 1/Z to get a

 p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m) where
m is the email message

λi is weight of feature i

fi(m)∈{0,1} according to whether m has feature i

More generally, allow fi(m) = count or strength of feature.

1/Z(λ) is a normalizing factor making ∑m p(m | spam)=1

(summed over all possible messages m! hard to find!)
 The weights we add up are basically arbitrary.

 They don’t have to mean anything, so long as they give us a good
probability.

 p(feats | spam) = exp 5.77 = 320.5

scale down so

everything < 1

and sums to 1!

14

14

Renormalize by 1/Z to get a

 p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m) where
m is the email message

λi is weight of feature i

fi(m)∈{0,1} according to whether m has feature i

More generally, allow fi(m) = count or strength of feature.

1/Z(λ) is a normalizing factor making ∑m p(m | spam)=1

(summed over all possible messages m! hard to find!)
 The weights we add up are basically arbitrary.

 They don’t have to mean anything, so long as they give us a good
probability.

 Why is it called “log-linear”?

 p(feats | spam) = exp 5.77 = 320.5

scale down so

everything < 1

and sums to 1!

14

15

Why Bother?

15

15

Why Bother?

 Gives us probs, not just scores.
 Can use ’em to bet, or combine w/ other probs.

15

15

Why Bother?

 Gives us probs, not just scores.
 Can use ’em to bet, or combine w/ other probs.

 We can now learn weights from data!

 Choose weights λi that maximize logprob of labeled

training data = log ∏j p(cj) p(mj | cj)

 where cj∈{ling,spam} is classification of message mj

 and p(mj | cj) is log-linear model from previous slide

 Convex function – easy to maximize! (why?)

15

15

Why Bother?

 Gives us probs, not just scores.
 Can use ’em to bet, or combine w/ other probs.

 We can now learn weights from data!

 Choose weights λi that maximize logprob of labeled

training data = log ∏j p(cj) p(mj | cj)

 where cj∈{ling,spam} is classification of message mj

 and p(mj | cj) is log-linear model from previous slide

 Convex function – easy to maximize! (why?)

 But: p(mj | cj) for a given λ requires Z(λ): hard!
15

16

Attempt to Cancel out Z

16

16

Attempt to Cancel out Z

 Set weights to maximize ∏j p(cj) p(mj | cj)

 where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)
 But normalizer Z(λ) is awful sum over all possible emails

16

16

Attempt to Cancel out Z

 Set weights to maximize ∏j p(cj) p(mj | cj)

 where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)
 But normalizer Z(λ) is awful sum over all possible emails

 So instead: Maximize ∏j p(cj | mj)

 Doesn’t model the emails mj, only their classifications cj
 Makes more sense anyway given our feature set

16

16

Attempt to Cancel out Z

 Set weights to maximize ∏j p(cj) p(mj | cj)

 where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)
 But normalizer Z(λ) is awful sum over all possible emails

 So instead: Maximize ∏j p(cj | mj)

 Doesn’t model the emails mj, only their classifications cj
 Makes more sense anyway given our feature set

16

16

Attempt to Cancel out Z

 Set weights to maximize ∏j p(cj) p(mj | cj)

 where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)
 But normalizer Z(λ) is awful sum over all possible emails

 So instead: Maximize ∏j p(cj | mj)

 Doesn’t model the emails mj, only their classifications cj
 Makes more sense anyway given our feature set

 p(spam | m) = p(spam)p(m|spam) / (p(spam)p(m|spam)+p(ling)p(m|ling))

16

16

Attempt to Cancel out Z

 Set weights to maximize ∏j p(cj) p(mj | cj)

 where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)
 But normalizer Z(λ) is awful sum over all possible emails

 So instead: Maximize ∏j p(cj | mj)

 Doesn’t model the emails mj, only their classifications cj
 Makes more sense anyway given our feature set

 p(spam | m) = p(spam)p(m|spam) / (p(spam)p(m|spam)+p(ling)p(m|ling))

 Z appears in both numerator and denominator

16

16

Attempt to Cancel out Z

 Set weights to maximize ∏j p(cj) p(mj | cj)

 where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)
 But normalizer Z(λ) is awful sum over all possible emails

 So instead: Maximize ∏j p(cj | mj)

 Doesn’t model the emails mj, only their classifications cj
 Makes more sense anyway given our feature set

 p(spam | m) = p(spam)p(m|spam) / (p(spam)p(m|spam)+p(ling)p(m|ling))

 Z appears in both numerator and denominator
 Alas, doesn’t cancel out because Z differs for the spam and ling models

16

16

Attempt to Cancel out Z

 Set weights to maximize ∏j p(cj) p(mj | cj)

 where p(m | spam) = (1/Z(λ)) exp ∑i λi fi(m)
 But normalizer Z(λ) is awful sum over all possible emails

 So instead: Maximize ∏j p(cj | mj)

 Doesn’t model the emails mj, only their classifications cj
 Makes more sense anyway given our feature set

 p(spam | m) = p(spam)p(m|spam) / (p(spam)p(m|spam)+p(ling)p(m|ling))

 Z appears in both numerator and denominator
 Alas, doesn’t cancel out because Z differs for the spam and ling models
 But we can fix this …

16

17

So: Modify Setup a Bit

17

17

So: Modify Setup a Bit

 Instead of having separate models
 p(m|spam)*p(spam) vs. p(m|ling)*p(ling)

17

17

So: Modify Setup a Bit

 Instead of having separate models
 p(m|spam)*p(spam) vs. p(m|ling)*p(ling)

 Have just one joint model p(m,c)
 gives us both p(m,spam) and p(m,ling)

17

17

So: Modify Setup a Bit

 Instead of having separate models
 p(m|spam)*p(spam) vs. p(m|ling)*p(ling)

 Have just one joint model p(m,c)
 gives us both p(m,spam) and p(m,ling)

 Equivalent to changing feature set to:
 spam
 spam and Contains Buy

 spam and Contains supercalifragilistic
 …

 ling
 ling and Contains Buy

 ling and Contains supercalifragilistic

17

17

So: Modify Setup a Bit

 Instead of having separate models
 p(m|spam)*p(spam) vs. p(m|ling)*p(ling)

 Have just one joint model p(m,c)
 gives us both p(m,spam) and p(m,ling)

 Equivalent to changing feature set to:
 spam
 spam and Contains Buy

 spam and Contains supercalifragilistic
 …

 ling
 ling and Contains Buy

 ling and Contains supercalifragilistic

 No real change, but 2 categories now share single
feature set and single value of Z(λ)

17

17

So: Modify Setup a Bit

 Instead of having separate models
 p(m|spam)*p(spam) vs. p(m|ling)*p(ling)

 Have just one joint model p(m,c)
 gives us both p(m,spam) and p(m,ling)

 Equivalent to changing feature set to:
 spam
 spam and Contains Buy

 spam and Contains supercalifragilistic
 …

 ling
 ling and Contains Buy

 ling and Contains supercalifragilistic

 No real change, but 2 categories now share single
feature set and single value of Z(λ)

old spam model’s weight for “contains Buy”

old ling model’s weight for “contains Buy”

17

17

So: Modify Setup a Bit

 Instead of having separate models
 p(m|spam)*p(spam) vs. p(m|ling)*p(ling)

 Have just one joint model p(m,c)
 gives us both p(m,spam) and p(m,ling)

 Equivalent to changing feature set to:
 spam
 spam and Contains Buy

 spam and Contains supercalifragilistic
 …

 ling
 ling and Contains Buy

 ling and Contains supercalifragilistic

 No real change, but 2 categories now share single
feature set and single value of Z(λ)

 weight of this feature is log p(spam) + a constant

 weight of this feature is log p(ling) + a constant

old spam model’s weight for “contains Buy”

old ling model’s weight for “contains Buy”

17

18

Now we can cancel out Z

18

18

Now we can cancel out Z

Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

18

18

Now we can cancel out Z

Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

 Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

18

18

Now we can cancel out Z

Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

 Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

 New: choose weights λi that maximize prob of labels given messages

= ∏j p(cj | mj)

18

18

Now we can cancel out Z

Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

 Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

 New: choose weights λi that maximize prob of labels given messages

= ∏j p(cj | mj)

18

18

Now we can cancel out Z

Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

 Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

 New: choose weights λi that maximize prob of labels given messages

= ∏j p(cj | mj)

 Now Z cancels out of conditional probability!

18

18

Now we can cancel out Z

Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

 Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

 New: choose weights λi that maximize prob of labels given messages

= ∏j p(cj | mj)

 Now Z cancels out of conditional probability!
 p(spam | m) = p(m,spam) / (p(m,spam) + p(m,ling))

18

18

Now we can cancel out Z

Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

 Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

 New: choose weights λi that maximize prob of labels given messages

= ∏j p(cj | mj)

 Now Z cancels out of conditional probability!
 p(spam | m) = p(m,spam) / (p(m,spam) + p(m,ling))

 = exp ∑i λi fi(m,spam) / (exp ∑i λi fi(m,spam) + exp ∑i λi fi(m,ling))

18

18

Now we can cancel out Z

Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

 Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

 New: choose weights λi that maximize prob of labels given messages

= ∏j p(cj | mj)

 Now Z cancels out of conditional probability!
 p(spam | m) = p(m,spam) / (p(m,spam) + p(m,ling))

 = exp ∑i λi fi(m,spam) / (exp ∑i λi fi(m,spam) + exp ∑i λi fi(m,ling))

 Easy to compute now …

18

18

Now we can cancel out Z

Now p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c) where c∈{ling, spam}

 Old: choose weights λi that maximize prob of labeled training data =

∏j p(mj, cj)

 New: choose weights λi that maximize prob of labels given messages

= ∏j p(cj | mj)

 Now Z cancels out of conditional probability!
 p(spam | m) = p(m,spam) / (p(m,spam) + p(m,ling))

 = exp ∑i λi fi(m,spam) / (exp ∑i λi fi(m,spam) + exp ∑i λi fi(m,ling))

 Easy to compute now …

 ∏j p(cj | mj) is still convex, so easy to maximize too

18

Generative vs. Conditional

 What is the most likely label for a given
input?

 How likely is a given label for a given input?
 What is the most likely input value?
 How likely is a given input value?
 How likely is a given input value with a given

label?
 What is the most likely label for an input

that might have one of two values (but we
don't know which)?

19
19

Generative vs. Conditional

 What is the most likely label for a given
input?

 How likely is a given label for a given input?
 What is the most likely input value?
 How likely is a given input value?
 How likely is a given input value with a given

label?
 What is the most likely label for an input

that might have one of two values (but we
don't know which)?

19
19

20

Maximum Entropy

20

20

Maximum Entropy

 Suppose there are 10 classes, A through J.

20

20

Maximum Entropy

 Suppose there are 10 classes, A through J.
 I don’t give you any other information.

20

20

Maximum Entropy

 Suppose there are 10 classes, A through J.
 I don’t give you any other information.
 Question: Given message m: what is your guess for p(C | m)?

20

20

Maximum Entropy

 Suppose there are 10 classes, A through J.
 I don’t give you any other information.
 Question: Given message m: what is your guess for p(C | m)?

20

20

Maximum Entropy

 Suppose there are 10 classes, A through J.
 I don’t give you any other information.
 Question: Given message m: what is your guess for p(C | m)?

 Suppose I tell you that 55% of all messages are in class A.

20

20

Maximum Entropy

 Suppose there are 10 classes, A through J.
 I don’t give you any other information.
 Question: Given message m: what is your guess for p(C | m)?

 Suppose I tell you that 55% of all messages are in class A.
 Question: Now what is your guess for p(C | m)?

20

20

Maximum Entropy

 Suppose there are 10 classes, A through J.
 I don’t give you any other information.
 Question: Given message m: what is your guess for p(C | m)?

 Suppose I tell you that 55% of all messages are in class A.
 Question: Now what is your guess for p(C | m)?

20

20

Maximum Entropy

 Suppose there are 10 classes, A through J.
 I don’t give you any other information.
 Question: Given message m: what is your guess for p(C | m)?

 Suppose I tell you that 55% of all messages are in class A.
 Question: Now what is your guess for p(C | m)?

 Suppose I also tell you that 10% of all messages contain Buy
and 80% of these are in class A or C.

20

20

Maximum Entropy

 Suppose there are 10 classes, A through J.
 I don’t give you any other information.
 Question: Given message m: what is your guess for p(C | m)?

 Suppose I tell you that 55% of all messages are in class A.
 Question: Now what is your guess for p(C | m)?

 Suppose I also tell you that 10% of all messages contain Buy
and 80% of these are in class A or C.

 Question: Now what is your guess for p(C | m),
 if m contains Buy?

20

20

Maximum Entropy

 Suppose there are 10 classes, A through J.
 I don’t give you any other information.
 Question: Given message m: what is your guess for p(C | m)?

 Suppose I tell you that 55% of all messages are in class A.
 Question: Now what is your guess for p(C | m)?

 Suppose I also tell you that 10% of all messages contain Buy
and 80% of these are in class A or C.

 Question: Now what is your guess for p(C | m),
 if m contains Buy?

 OUCH!
20

21

Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.003 0.029 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Other 0.499 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045

 Column A sums to 0.55 (“55% of all messages are in class A”)

21

22

Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.003 0.029 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Other 0.499 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045

 Column A sums to 0.55
 Row Buy sums to 0.1 (“10% of all messages contain Buy”)

22

23

Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.003 0.029 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Other 0.499 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045

 Column A sums to 0.55
 Row Buy sums to 0.1
 (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

23

23

Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.003 0.029 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Other 0.499 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045

 Column A sums to 0.55
 Row Buy sums to 0.1
 (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

 Given these constraints, fill in cells “as equally as possible”:
maximize the entropy (related to cross-entropy, perplexity)

23

23

Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.003 0.029 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Other 0.499 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045

 Column A sums to 0.55
 Row Buy sums to 0.1
 (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

 Given these constraints, fill in cells “as equally as possible”:
maximize the entropy (related to cross-entropy, perplexity)

Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - …

23

23

Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.003 0.029 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Other 0.499 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045

 Column A sums to 0.55
 Row Buy sums to 0.1
 (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

 Given these constraints, fill in cells “as equally as possible”:
maximize the entropy (related to cross-entropy, perplexity)

Entropy = -.051 log .051 - .0025 log .0025 - .029 log .029 - …
Largest if probabilities are evenly distributed

23

24

Maximum Entropy

A B C D E F G H I J
Buy 0.051 0.003 0.029 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Other 0.499 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045

 Column A sums to 0.55
 Row Buy sums to 0.1
 (Buy, A) and (Buy, C) cells sum to 0.08 (“80% of the 10%”)

 Given these constraints, fill in cells “as equally as possible”:
maximize the entropy

 Now p(Buy, C) = .029 and p(C | Buy) = .29
 We got a compromise: p(C | Buy) < p(A | Buy) < .55

24

25

Generalizing to More Features

A B C D E F G H …
Buy 0.051 0.003 0.029 0.003 0.003 0.003 0.003 0.003

Other 0.499 0.045 0.045 0.045 0.045 0.045 0.045 0.045

<$100
Other

25

26

What we just did

26

26

What we just did

 For each feature (“contains Buy”), see what
fraction of training data has it

26

26

What we just did

 For each feature (“contains Buy”), see what
fraction of training data has it

 Many distributions p(c,m) would predict these
fractions (including the unsmoothed one where all mass
goes to feature combos we’ve actually seen)

26

26

What we just did

 For each feature (“contains Buy”), see what
fraction of training data has it

 Many distributions p(c,m) would predict these
fractions (including the unsmoothed one where all mass
goes to feature combos we’ve actually seen)

 Of these, pick distribution that has max entropy

26

26

What we just did

 For each feature (“contains Buy”), see what
fraction of training data has it

 Many distributions p(c,m) would predict these
fractions (including the unsmoothed one where all mass
goes to feature combos we’ve actually seen)

 Of these, pick distribution that has max entropy

26

26

What we just did

 For each feature (“contains Buy”), see what
fraction of training data has it

 Many distributions p(c,m) would predict these
fractions (including the unsmoothed one where all mass
goes to feature combos we’ve actually seen)

 Of these, pick distribution that has max entropy

 Amazing Theorem: This distribution has the form
p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c)

 So it is log-linear. In fact it is the same log-linear
distribution that maximizes ∏j p(mj, cj) as before!

26

26

What we just did

 For each feature (“contains Buy”), see what
fraction of training data has it

 Many distributions p(c,m) would predict these
fractions (including the unsmoothed one where all mass
goes to feature combos we’ve actually seen)

 Of these, pick distribution that has max entropy

 Amazing Theorem: This distribution has the form
p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c)

 So it is log-linear. In fact it is the same log-linear
distribution that maximizes ∏j p(mj, cj) as before!

26

26

What we just did

 For each feature (“contains Buy”), see what
fraction of training data has it

 Many distributions p(c,m) would predict these
fractions (including the unsmoothed one where all mass
goes to feature combos we’ve actually seen)

 Of these, pick distribution that has max entropy

 Amazing Theorem: This distribution has the form
p(m,c) = (1/Z(λ)) exp ∑i λi fi(m,c)

 So it is log-linear. In fact it is the same log-linear
distribution that maximizes ∏j p(mj, cj) as before!

 Gives another motivation for our log-linear approach.
26

27 26

Log-linear form derivation

• Say we are given some constraints in the form of
feature expectations:

• In general, there may be many distributions p(x) that
satisfy the constraints. Which one to pick?

• The one with maximum entropy (making fewest possible
additional assumptions---Occum’s Razor)

• This yields an optimization problem

27

28 27

Log-linear form derivation

28

29 28

MaxEnt = Max Likelihood

29

30 30

30

31 31

31

32 32

32

33 33

33

34 34

34

35 35

35

36 36

By gradient ascent or conjugate gradient.

36

37 37

37

38 38

38

39

Overfitting

 If we have too many features, we can choose
weights to model the training data perfectly.

 If we have a feature that only appears in spam
training, not ling training, it will get weight ∞ to
maximize p(spam | feature) at 1.

 These behaviors overfit the training data.
 Will probably do poorly on test data.

39

40

Solutions to Overfitting

40

40

Solutions to Overfitting

1. Throw out rare features.
 Require every feature to occur > 4 times, and > 0

times with ling, and > 0 times with spam.

40

40

Solutions to Overfitting

1. Throw out rare features.
 Require every feature to occur > 4 times, and > 0

times with ling, and > 0 times with spam.

2. Only keep 1000 features.
 Add one at a time, always greedily picking the one

that most improves performance on held-out data.

40

40

Solutions to Overfitting

1. Throw out rare features.
 Require every feature to occur > 4 times, and > 0

times with ling, and > 0 times with spam.

2. Only keep 1000 features.
 Add one at a time, always greedily picking the one

that most improves performance on held-out data.

3. Smooth the observed feature counts.

40

40

Solutions to Overfitting

1. Throw out rare features.
 Require every feature to occur > 4 times, and > 0

times with ling, and > 0 times with spam.

2. Only keep 1000 features.
 Add one at a time, always greedily picking the one

that most improves performance on held-out data.

3. Smooth the observed feature counts.
4. Smooth the weights by using a prior.

 max p(λ|data) = max p(λ, data) =p(λ)p(data|λ)

 decree p(λ) to be high when most weights close to 0

40

41 41

41

42 42

42

43 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters. Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.

43

