Log-Linear Models with Structured Outputs (continued)

Introduction to Natural Language Processing
Computer Science 585-Fall 2009
University of Massachusetts Amherst
David Smith

Overview

- What computations do we need?
- Smoothing log-linear models
- MEMMs vs. CRFs again
- Action-based parsing and dependency parsing

Recipe for Conditional Training of $p(y \mid x)$

I. Gather constraints/features from training data

$$
\alpha_{i y}=\tilde{E}\left[f_{i y}\right]=\sum_{x_{j}, y_{j} \in D} f_{i y}\left(\bar{x}_{j}, y_{j}\right)
$$

2. Initialize all parameters to zero
3. Classify training data with current parameters; calculate expectations $\quad E_{\Theta}\left[f_{i y}\right]=\sum_{x_{j} \in D} \sum_{y^{\prime}} p_{\Theta}\left(y^{\prime} \mid x_{j}\right) f_{i y}\left(x_{j}, y^{\prime}\right)$
4. Gradient is $\tilde{E}\left[f_{i y}\right]-E_{\Theta}\left[f_{i y}\right]$
5. Take a step in the direction of the gradient
6. Repeat from 3 until convergence

Recipe for Conditional Training of $p(y \mid x)$

I. Gather constraints/features from training data

$$
\alpha_{i y}=\tilde{E}\left[f_{i y}\right]=\sum_{x_{j}, y_{j} \in D} f_{i y}\left(\bar{x}_{j}, y_{j}\right)
$$

2. Initialize all parameters to zero
3. Classify training data with current parameters; calculate expectations $E_{\Theta}\left[f_{i y}\right]=\sum_{x_{j} \in D} \sum_{y^{\prime}} p_{\Theta}\left(y^{\prime} \mid x_{j}\right) f_{i y}\left(x_{j}, y^{\prime}\right)$
4. Gradient is $\tilde{E}\left[f_{i y}\right]-E_{\Theta}\left[f_{i y}\right]$
5. Take a step in the direction the gradient
6. Repeat from 3 until convergen

Recipe for Conditional Training of $p(y \mid x)$

I. Gather constraints/features from training data

$$
\alpha_{i y}=\tilde{E}\left[f_{i y}\right]=\sum_{x_{j}, y_{j} \in D} f_{i y}\left(\bar{x}_{j}, y_{j}\right)
$$

2. Initialize all parameters to zero
3. Classify training data with current parameters; calculate expectations $E_{\Theta}\left[f_{i y}\right]=\sum_{x_{j} \in D} \sum_{y^{\prime}} p_{\Theta}\left(y^{\prime} \mid x_{j}\right) f_{i y}\left(x_{j}, y^{\prime}\right)$
4. Gradient is $\tilde{E}\left[f_{i y}\right]-E_{\Theta}\left[f_{i y}\right]$
5. Take a step in the direction the gradient
6. Repeat from 3 until convergen

Gradient-Based Training

- $\lambda<-\lambda+$ rate $* \operatorname{Gradient}(\mathrm{~F})$
- After all training examples? (batch)
- After every example? (on-line)
- Use second derivative?
- A big field: numerical optimization

Overfitting

- If we have too many features, we can choose weights to model the training data perfectly
- If we have a feature that only appears in spam training, not ham training, it will get weight ∞ to maximize $\mathrm{p}(\mathrm{spam} \mid$ feature) at I .
- These behaviors
- Overfit the training data
- Will probably do poorly on test data

Solutions to Overfitting

- Throw out rare features.
- Require every feature to occur >4 times, and >0 times with ling, and >0 times with spam.
- Only keep, e.g., IO00 features.
- Add one at a time, always greedily picking the one that most improves performance on held-out data.
- Smooth the observed feature counts.
- Smooth the weights by using a prior.
- $\quad \max p(\lambda \mid d a t a)=\max p(\lambda$, data $)=p(\lambda) p($ data $\mid \lambda)$
- decree $p(\lambda)$ to be high when most weights close to 0

Smoothing with Priors

- What if we had a prior expectation that parameter values wouldn't be very large?
- We could then balance evidence suggesting large (or infinite) parameters against our prior expectation.
- The evidence would never totally defeat the prior, and parameters would be smoothed (and kept finite)
- We can do this explicitly by changing the optimization objective to maximum posterior likelihood:
$\log P(y, \lambda \mid x)=\log P(\lambda)+\log P(y \mid x, \lambda)$
Posterior Prior Likelihood

Smoothing: Priors

- Gaussian, or quadratic, priors:
- Intuition: parameters shouldn't be large.
- Formalization: prior expectation that each parameter will be distributed according to a gaussian with mean μ and variance σ^{2}.

$$
P\left(\lambda_{i}\right)=\frac{1}{\sigma_{i} \sqrt{2 \pi}} \exp \left(-\frac{\left(\lambda_{i}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)
$$

- Penalizes parameters for drifting to far from their mean prior value (usually $\mu=0$).
- $2 \sigma^{2}=1$ works surprisingly well.

Parsing as Structured Prediction

Shift-reduce parsing

Stack	Input remaining	Action
()	Book that flight	shift
(Book)	that flight	reduce, Verb \rightarrow book, (Choice \#1 of 2)
(Verb)	that flight	shift
(Verb that)	flight	reduce, Det \rightarrow that
(Verb Det)	flight	shift
(Verb Det flight)		reduce, Noun \rightarrow flight
(Verb Det Noun)		reduce, NOM \rightarrow Noun
(Verb Det NOM)		reduce,NP \rightarrow Det NOM
(Verb NP)	reduce, VP \rightarrow Verb NP	
(Verb)	reduce, \rightarrow V	
(S)	SUCCESS!	

Ambiguity may lead to the need for backtracking.

Shift-reduce parsing

Stack	Input remaining	Action
()	Book that flight	shift
(Book)	that flight	reduce, Verb \rightarrow book, (Choice \#1 of 2)
(Verb)	that flight	shift
(Verb that)	flight	reduce, Det \rightarrow that
(Verb Det)	flight	shift
(Verb Det flight)		reduce, Noun \rightarrow flight
(Verb Det Noun)		reduce, NOM \rightarrow Noun
(Verb Det NOM)		reduce,NP \rightarrow Det NOM
(Verb NP)	reduce, VP \rightarrow Verb NP	
(Verb)	reduce, S \rightarrow V	
(S)	SUCCESS!	

Shift-reduce parsing

Stack	Input remaining	Action
()	Book that flight	shift
(Book)	that flight	reduce, Verb \rightarrow book, (Choice \#1 of 2)
(Verb)	that flight	shift
(Verb that)	flight	reduce, Det \rightarrow that
(Verb Det)	flight	shift
(Verb Det flight)		reduce, Noun \rightarrow flight
(Verb Det Noun)		reduce, NOM \rightarrow Noun
(Verb Det NOM)	reduce, NP \rightarrow Det NOM	
(Verb NP)	reduce, VP \rightarrow Verb NP	
(Verb)	reduce, $S \rightarrow V$	
(S)	SUCCESS!	
Ambiguity may lead to the ned for backtresking.		

Train log-linear model of p(action | context)

Word Dependency Parsing

Raw sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.

Word Dependency Parsing

Raw sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.

POS-tagged sentence

- Part-of-speech tagging

He reckons the current account deficit will narrow to only 1.8 billion in September.

Word Dependency Parsing

Raw sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.

POS-tagged sentence

\Perp Part-of-speech tagging
He reckons the current account deficit will narrow to only 1.8 billion in September.
PRP VBZ DT JJ NN NN MD VB TO RB CD CD IN NNP
\square Word dependency parsing

Word dependency parsed sentence

He reckons the current account deficit will narrow to only 1.8 billion in September .

Word Dependency Parsing

Raw sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.

POS-tagged sentence

- Part-of-speech tagging

He reckons the current account deficit will narrow to only 1.8 billion in September.
PRP VBZ DT JJ NN NN MD VB TO RB CD CD IN NNP
\square Word dependency parsing

Word dependency parsed sentence

He reckons the current account deficit will narrow to only 1.8 billion in September .

Word Dependency Parsing

Raw sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.

POS-tagged sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.
PRP VBZ DT JN NN MD VB TO RB J CD CD IN NNP
\square Word dependency parsing

Word dependency parsed sentence

He reckons the current account deficit will narrow to only 1.8 billion in September .

Word Dependency Parsing

Raw sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.

POS-tagged sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.
PRP VBZ DT JN NN MD VB TO RB J CD CD IN NNP
\square Word dependency parsing

Word dependency parsed sentence

He reckons the current account deficit will narrow to only 1.8 billion in September .

Word Dependency Parsing

Raw sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.

POS-tagged sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.
PRP VBZ DT JN NN MD VB TO RB J CD CD IN NNP
\square Word dependency parsing

Word dependency parsed sentence

He reckons the current account deficit will narrow to only 1.8 billion in September .

Word Dependency Parsing

Raw sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.

POS-tagged sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.
PRP VBZ DT JN NN MD VB TO RB J CD CD IN NNP
\square Word dependency parsing

Word dependency parsed sentence

He reckons the current account deficit will narrow to only 1.8 billion in September .

Word Dependency Parsing

Raw sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.

POS-tagged sentence

He reckons the current account deficit will narrow to only 1.8 billion in September.

Word dependency parsing

Word dependency parsed sentence

He reckons the current account deficit will narrow to only 1.8 billion in September .

Great ideas in NLP: Log-linear models

(Berger, della Pietra, della Pietra 1996; Darroch \& Ratcliff 1972)

- In the beginning, we used generative models.

$$
p(A) * p(B \mid A)^{*} p(C \mid A, B)^{*} p(D \mid A, B, C)^{*} \ldots
$$

Great ideas in NLP: Log-linear models

(Berger, della Pietra, della Pietra 1996; Darroch \& Ratcliff 1972)

- In the beginning, we used generative models.

$$
p(A) * p(B \mid A) * p(C \mid \mathscr{A}, B)^{*} p(D \mid \mathscr{X}, B, C)^{*} \ldots
$$

Great ideas in NLP: Log-linear models

(Berger, della Pietra, della Pietra 1996; Darroch \& Ratcliff 1972)

- In the beginning, we used generative models.

$$
\begin{aligned}
& p(A) * p(B \mid A) * p(C \mid A, B) * p(D \mid A, B, C)^{*} \ldots \\
& \text { each choice depends on a limited part of the history }
\end{aligned}
$$

Great ideas in NLP: Log-linear models

(Berger, della Pietra, della Pietra 1996; Darroch \& Ratcliff 1972)

- In the beginning, we used generative models.

$$
p(A) * p(B \mid A)^{*} p(C \mid \mathscr{A}, B)^{*} p(D \mid \mathscr{A}, B, C)^{*} \ldots
$$

each choice depends on a limited part of the history
but which dependencies to allow? $p(D \mid A, B, C)$?
what if they're all worthwhile? $p(D \mid A, B, C)$?

$$
\ldots p(D \mid A, B)^{*} p(C \mid A, B, D) \text { ? }
$$

Great ideas in NLP: Log-linear models

(Berger, della Pietra, della Pietra 1996; Darroch \& Ratcliff 1972)

$$
p(A) * p(B \mid A) * p(C \mid \mathscr{X}, B) * p(D \mid \mathscr{A}, B, C) * \ldots
$$

which dependencies to allow? (given limited training data)

Great ideas in NLP: Log-linear models

(Berger, della Pietra, della Pietra 1996; Darroch \& Ratcliff 1972)

- In the beginning, we used generative models.

$$
\begin{aligned}
& p(A) * p(B \mid A) * p(C \mid \mathscr{K}, B) * p(D \mid \mathscr{A}, B, C) * \ldots \\
& \text { which dependencies to allow? (given limited training data) }
\end{aligned}
$$

Great ideas in NLP: Log-linear models

(Berger, della Pietra, della Pietra 1996; Darroch \& Ratcliff 1972)

- In the beginning, we used generative models.

$$
p(A) * p(B \mid A) * p(C \mid A X, B) * p(D \mid A, B, C) * \ldots
$$

which dependencies to allow? (given limited training data)
$(1 / Z)$ * $\Phi(A)$ * $\Phi(B, A)$ * $\Phi(C, A)$ * $\Phi(C, B)$
throw them all in $\Phi(D, A, B)$ * $\Phi(D, B, C)$ * $\Phi(D, A, C)$ *

Great ideas in NLP: Log-linear models

(Berger, della Pietra, della Pietra 1996; Darroch \& Ratcliff 1972)

- In the beginning, we used generative models.

$$
\begin{aligned}
& p(A)^{*} p(B \mid A)^{*} p(C \mid \mathscr{K}, B)^{*} p(D \mid \mathscr{A}, B, C)^{*} \ldots \\
& \text { which dependencies to allow? (given limited training data) }
\end{aligned}
$$

- Solution: Log-linear (max-entropy) modeling

$$
\begin{aligned}
& (1 / Z) * \Phi(A) * \Phi(B, A) * \Phi(C, A) * \Phi(C, B) \\
& \text { throw them all in! } \Phi(D, A, B) * \Phi(D, B, C) * \Phi(D, A, C) *
\end{aligned}
$$

\square Featüres may interact in arbitrary ways

- Iterative scaling keeps adjusting the feature weights until the model agrees with the training data.

How about structured outputs?

How about structured outputs?

- Log-linear models great for n-way classification

How about structured outputs?

- Log-linear models great for n-way classification
- Also good for predicting sequences

How about structured outputs?

- Log-linear models great for n-way classification
- Also good for predicting sequences

but to allow fast dynamic programming,
only use n-gram features

How about structured outputs?

- Log-linear models great for n-way classification
- Also good for predicting sequences

but to allow fast dynamic programming,
only use n-gram features

How about structured outputs?

- Log-linear models great for n-way classification
- Also good for predicting sequences

but to allow fast dynamic programming,
only use n-gram features

How about structured outputs?

- Log-linear models great for n-way classification
- Also good for predicting sequences

but to allow fast dynamic programming,
only use n-gram features

How about structured outputs?

- Log-linear models great for n-way classification
- Also good for predicting sequences

but to allow fast dynamic programming, only use n-gram features
- Also good for dependency parsing

How about structured outputs?

- Log-linear models great for n-way classification
- Also good for predicting sequences

but to allow fast dynamic programming, only use n-gram features
- Also good for dependency parsing

but to allow fast dynamic programming or MST parsing, only use single-edge features

How about structured outputs?

but to allow fast dynamic programming or MST parsing, only use single-edge features

How about structured outputs?

but to allow fast dynamic programming or MST parsing, only use single-edge features

How about structured outputs?

but to allow fast dynamic programming or MST parsing, only use single-edge features

How about structured outputs?

but to allow fast dynamic programming or MST parsing, only use single-edge features

How about structured outputs?

but to allow fast dynamic programming or MST parsing, only use single-edge features

How about structured outputs?

but to allow fast dynamic programming or MST parsing, only use single-edge features

Edge-Factored Parsers (McDonald et al. 2005)

- Is this a good edge?

Byl jasný studený dubnový den a hodiny odbíjely trrináctou
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Is this a good edge?
yes, lots of green ...

Byl jasný studený dubnový den a hodiny odbíjely třináctou
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Is this a good edge?

Byl jasný studený dubnový den a hodiny odbíjely třináctou
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Is this a good edge?

jasný \leftarrow den ("bright day")

Byl jasný studený dubnový den a hodiny odbíjely třináctou
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Is this a good edge?

jasný \leftarrow den
 ("bright day")

Byl jasný studený dubnový den a hodiny odbíjely trrináctou

| V | A | A | A | N | J | V | C |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Is this a good edge?

jasný \leftarrow den ("bright day")

```
jasný < N
    ("bright NOUN")
```

Byl jasný studený dubnový den a hodiny odbíjely třináctou

| V | A | A | A | N | J | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Is this a good edge?

jasný \leftarrow den
 ("bright day")

jasný $\leftarrow N$
 ("bright NOUN")

Byl jasný studený dubnový den a hodiny odbíjely třináctou
V A A A \quad A J N \quad I
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Is this a good edge?

jasný \leftarrow den
 ("bright day")

jasný $\leftarrow N$
 ("bright NOUN")

Byl jasný studený dubnový den a hodiny odbíjely trrináctou $\begin{array}{llllllll} & A & A & A & N & J & V & C\end{array}$
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Is this a good edge?

jasný \leftarrow den
 ("bright day")

```
jasný < < N
("bright NOUN")
```


Byl jasný studený dubnový den a hodiny odbíjely třináctou

	A	A	A	N	J	N	V	C

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Is this a good edge?

Edge-Factored Parsers (McDonald et al. 2005)

- How about this competing edge?

Byl jasný studený dubnový den a hodiny odbíjely třináctou
$\begin{array}{lllllllll}\mathrm{V} & \mathrm{A} & \mathrm{A} & \mathrm{N} & \text { J } & \mathrm{N} & \mathrm{V} & \mathrm{C}\end{array}$
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

-How about this competing edge?
not as good, lots of red ...

Byl jasný studený dubnový den a hodiny odbíjely trrináctou

V	A	A	A	N	J	N	V	C

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- How about this competing edge?

Byl jasný studený dubnový den a hodiny odbíjely třináctou V A A A N J N V C
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- How about this competing edge?
jasný \leftarrow hodiny
("bright clocks")

Byl jasný studený dubnový den a hodiny odbíjely třináctou
$\begin{array}{lllllllll}V & A & A & A & N & \text { J } & \text { V }\end{array}$
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- How about this competing edge?
jasný \leftarrow hodiny
("bright clocks")
... undertrained ...

Byl jasný studený dubnový den a hodiny odbíjely třináctou $\begin{array}{lllllllll}V & A & A & A & N & \text { J }\end{array}$
"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

-How about this competing edge?
jasný \leftarrow hodiny
("bright clocks")
... undertrained ...

Byl jasný studený dubnový den a hodiny odbíjely třináctou

V	A	A	A	N	J	N	V	C
byl	jasn	stud	dubn	den a	hodi	odbí	třin	

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- How about this competing edge?

Byl jasný studený dubnový den a hodiny odbíjely třináctou

V	A	A	A	N	J	N	V	C
byl	jasn	stud	dubn	den a	hodi	odbí	třin	

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- How about this competing edge?

Byl jasný studený dubnový den a hodiny odbíjely třináctou

V	A	A	A	N	J	N	V
byl	jasn	stud	dubn	den a	hodi	odbí	třin

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- How about this competing edge?

Byl jasný studený dubnový den a hodiny odbíjely třináctou

V	A	A	A	N	J	N	V	C
byl	jasn	stud	dubn	den a		hodi	odbí	

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- How about this competing edge?

Byl jasný studený dubnový den a hodiny odbíjely třináctou

| V | A | A | A | N | J | N | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | C |
| :---: |
| byl |

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- How about this competing edge?

Byl jasný studený dubnový den a hodiny odbíjely trrináctou

| V | A | A | A | N | J | N | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | C |
| :---: |
| byl |

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Which edge is better?
- "bright day" or "bright clocks"?

Byl jasny studený dubnový den a hodiny odbíjely třináctou

V	A	A	A	N	J	N	V	C
byl	jasn	stud	dubn	den a	hodi	odbí	třin	

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasny studený dubnový den a hodiny odbíjely třináctou

V	A	A	A	N	J	N	V	C
byl	jasn	stud	dubn	den a	hodi	odbí	třin	

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Which edge is better?

Byl jasny studený dubnový den a hodiny odbíjely třináctou

V	A	A	A	N	J	N	V	C
byl	jasn	stud	dubn	den a	hodi	odbí	třin	

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Which edge is better? our current weight vector

Byl jasny studený dubnový den a hodiny odbíjely třináctou

V	A	A	A	N	J	N	V	C
byl	jasn	stud	dubn	den a	hodi	odbí	třin	

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Which edge is better? our current weight vector
- Score of an edge e $=\varnothing$ features(e)

Byl jasny studený dubnový den a hodiny odbíjely trrináctou

V	A	A	A	N	J	N	V
byl	jasn	stud	dubn	den a	hodi	odbí	třin

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Which edge is better?
- Score of an edge e = \varnothing.features(e)
- Standard algos \rightarrow valid parse with max total score

Byl jasny studený dubnový den a hodiny odbíjely trrináctou

| V | A | A | A | N | J | N | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | C |
| :---: |
| byl |
| jasn | | stud | dubn |
| :---: | :--- | | den a | hodi |
| :---: | :--- |
| odbí | třin |

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Which edge is better?
- Score of an edge e $=€$ features(e)
- Standard algos $\boldsymbol{\rightarrow}$ valid parse with max total score

Edge-Factored Parsers (McDonald et al. 2005)

- Which edge is better?
- Score of an edge e = $€$ features(e)
- Standard algos \rightarrow valid parse with max total score

can't have both
(one parent per word)

Edge-Factored Parsers (McDonald et al. 2005)

- Which edge is better?
- Score of an edge e = $€$ features(e)
- Standard algos $\boldsymbol{\rightarrow}$ valid parse with max total score

can't have both
(one parent per word)

can't have both
(no crossing links)

Edge-Factored Parsers (McDonald et al. 2005)

- Which edge is better?
- Score of an edge e = $€$ features(e)
- Standard algos \rightarrow valid parse with max total score

can't have both
(one parent per word)

Can't have all three
(no cycles)

can't have both
(no crossing links)

Edge-Factored Parsers (McDonald et al. 2005)

- Which edge is better?
- Score of an edge e = ϵ. features(e)
- Standard algos \rightarrow valid parse with max total score

can't have both
(one parent per word)

Can't have all three (no cycles)

can't have both
(no crossing links)

Thus, an edge may lose (or win) because of a consensus of other edges.

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming

Finding Highest-Scoring Parse

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming
\square CKY algorithm for CFG parsing is $O\left(n^{3}\right)$

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming
\square CKY algorithm for CFG parsing is $O\left(n^{3}\right)$
\square Unfortunately, $\mathrm{O}\left(\mathrm{n}^{5}\right)$ in this case

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming
\square CKY algorithm for CFG parsing is $O\left(n^{3}\right)$
\square Unfortunately, $\mathrm{O}\left(\mathrm{n}^{5}\right)$ in this case
- to score "cat \leftarrow wore" link, not enough to know this is NP

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming
\square CKY algorithm for CFG parsing is $O\left(n^{3}\right)$
- Unfortunately, $\mathrm{O}\left(\mathrm{n}^{5}\right)$ in this case
- to score "cat \leftarrow wore" link, not enough to know this is NP
- must know it’s rooted at "cat"

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming
\square CKY algorithm for CFG parsing is $O\left(n^{3}\right)$
- Unfortunately, $\mathrm{O}\left(\mathrm{n}^{5}\right)$ in this case
- to score "cat \leftarrow wore" link, not enough to know this is NP
- must know it's rooted at "cat"
- so expand nonterminal set by $\mathrm{O}(\mathrm{n}):\left\{\mathrm{NP}_{\text {the }}, \mathrm{NP}_{\text {cat }}, N P_{\text {hat }}, \ldots\right\}$

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming
\square CKY algorithm for CFG parsing is $O\left(n^{3}\right)$
\square Unfortunately, $\mathrm{O}\left(\mathrm{n}^{5}\right)$ in this case
- to score "cat \leftarrow wore" link, not enough to know this is NP
- must know it's rooted at "cat"
- so expand nonterminal set by $\mathrm{O}(\mathrm{n})$: $\left\{\mathrm{NP}_{\text {the }}, \mathrm{NP}_{\text {cat }}, N P_{\text {hat }}, \ldots\right\}$
- so CKY's "grammar constant" is no longer constant $*$

Finding Highest-Scoring Parse

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming
\square CKY algorithm for CFG parsing is $O\left(n^{3}\right)$
\square Unfortunately, $\mathrm{O}\left(\mathrm{n}^{5}\right)$ in this case
\square Solution: Use a different decomposition (Eisner 1996)
- Back to O(n^{3})

Spans vs. constituents

Two kinds of substring.

"Constituent of the tree: links to the rest only through its headword (root).

Decomposing a tree into spans

Finding Highest-Scoring Parse

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming
-CKY algorithm for CFG parsing is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
\square Unfortunately, $\mathrm{O}\left(\mathrm{n}^{5}\right)$ in this case
\square Solution: Use a different decomposition (Eisner 1996)
- Back to O(n3)

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming
\square CKY algorithm for CFG parsing is $O\left(n^{3}\right)$
- Unfortunately, $\mathrm{O}\left(\mathrm{n}^{5}\right)$ in this case
\square Solution: Use a different decomposition (Eisner 1996)
- Back to O(n^{3})
- Can play usual tricks for dynamic programming parsing
- Further refining the constituents or spans
- Allow prob. model to keep track of even more internal information

ㅁ A*, best-first, coarse-to-fine

- Training by EM etc.

Finding Highest-Scoring Parse

- Convert to context-free grammar (CFG)
- Then use dynamic programming
\square CKY algorithm for CFG parsing is $O\left(n^{3}\right)$
\square Unfortunately, $\mathrm{O}\left(\mathrm{n}^{5}\right)$ in this case
\square Solution: Use a different decomposition (Eisner 1996)
- Back to O(n ${ }^{3}$)
- Can play usual tricks for dynamic programming parsing
- Further refining the constituents or spans
- Allow prob. model to keep track of even more internal information

ㅁ A*, best-first, coarse-to-fine

- Training by EM etc.

Hard Constraints on Valid Trees

Score of an edge e $=\ominus$ features(e)

- Standard algos \rightarrow valid parse with max total score

can't have both
(no crossing links)

Can't have all three (no cycles)

Thus, an edge may lose (or win) because of a consensus of other edges.

Hard Constraints on Valid Trees

Non-Projective Parses

The "projectivity" restriction. Do we really want it?

Non-Projective Parses

ROOT I 'll give a talk tomorrow on bootstrapping

can't have both
(no crossing links)

The "projectivity" restriction.
Do we really want it?

Non-Projective Parses

ROOT I'll give a talk tomorrow on bootstrapping

can't have both
(no crossing links)

The "projectivity" restriction.
Do we really want it?

Non-Projective Parses

ROOT

subtree rooted at "talk" is a discontiguous noun phrase

can't have both
(no crossing links)

The "projectivity" restriction. Do we really want it?

Non-Projective Parses

ROOT

I 'll give a talk tomorrow on bootstrapping occasional non-projectivity in English

Non-Projective Parses

ROOT I'll give a'talk tomorrow on bootstrapping occasional non-projectivity in English

frequent non-projectivity in Latin, etc.

Non-Projective Parses

ROOT I'll give a'talk tomorrow on bootstrapping occasional non-projectivity in English

That glory may-know my going-gray
(i.e., it shall last till I go gray)
frequent non-projectivity in Latin, etc.

Non-Projective Parses

ROOT I 'll give a talk tomorrow on bootstrapping

 occasional non-projectivity in English

That glory may-know my going-gray
(i.e., it shall last till I go gray)
frequent non-projectivity in Latin, etc.

Non-Projective Parses

ROOT I 'll give a talk tomorrow on bootstrapping

 occasional non-projectivity in English

That glory may-know my going-gray
(i.e., it shall last till I go gray)
frequent non-projectivity in Latin, etc.

Non-Projective Parses

ROOT I 'll give a talk tomorrow on bootstrapping

 occasional non-projectivity in English

That glory may-know my going-gray
(i.e., it shall last till I go gray)
frequent non-projectivity in Latin, etc.

Finding highest-scoring non-projective tree

- Consider the sentence "John saw Mary" (left).
- The Chu-Liu-Edmonds algorithm finds the maximumweight spanning tree (right) - may be non-projective.
- Can be found in time $O\left(n^{2}\right)$.

- Consider the sentence "John saw Mary" (left).
- The Chu-Liu-Edmonds algorithm finds the maximumweight spanning tree (right) - may be non-projective.
- Can be found in time $O\left(n^{2}\right)$.
- How about total weight Z of all trees?
- How about outside probabilities or gradients?
- Can be found in time $O\left(n^{3}\right)$ by matrix determinants and inverses (Smith \& Smith, 2007).

Graph Theory to the Rescue!

Tutte's Matrix-Tree Theorem (1948)

The determinant of the Kirchoff (aka Laplacian) adjacency matrix of directed graph G without row and column r is equal to the sum of scores of all directed spanning trees of G rooted at node r.

Graph Theory to the Rescue!

Tutte's Matrix-Tree Theorem (1948)

The determinant of the Kirchoff (aka Laplacian) adjacency matrix of directed graph G without row and column r is equal to the sum of scores of all directed spanning trees of G rooted at node r.

Exactly the Z we need!

Graph Theory to the Rescue!

$O\left(n^{3}\right)$ time!

es Matrix-Tree Theorem (1948)

The determinant of the Kirchoff (aka Laplacian) adjacency matrix of directed graph G without row and column r is equal to the sum of scores of all directed spanning trees of G rooted at node r.

Exactly the Z we need!

Building the Kirchoff (Laplacian) Matrix

$\left[\begin{array}{ccccc}0 & -s(1,0) & -s(2,0) & \mathrm{L} & -s(n, 0) \\ 0 & 0 & -s(2,1) & \mathrm{L} & -s(n, 1) \\ 0 & -s(1,2) & 0 & \mathrm{~L} & -s(n, 2) \\ \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{M} \\ 0 & -s(1, n) & -s(2, n) & \mathrm{L} & 0\end{array}\right]$

- Negate edge scores
- Sum columns (children)
- Strike root row/col.
- Take determinant

Building the Kirchoff (Laplacian) Matrix

$\left[\begin{array}{c|c|ccc}0 & -s(1,0) & -s(2,0) & \mathrm{L} & -s(n, 0) \\ 0 & 0 & -s(2,1) & \mathrm{L} & -s(n, 1) \\ 0 & -s(1,2) & 0 & \mathrm{~L} & -s(n, 2) \\ \mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{M} \\ 0 & -s(1, n) & -s(2, n) & \mathrm{L} & 0\end{array}\right]$

- Negate edge scores
- Sum columns (children)
- Strike root row/col.
- Take determinant

Building the Kirchoff (Laplacian) Matrix

$$
\left[\begin{array}{ccccc}
0 & -s(1,0) & -s(2,0) & \mathrm{L} & -s(n, 0) \\
0 & \sum_{j \neq 1} s(1, j) & -s(2,1) & \mathrm{L} & -s(n, 1) \\
0 & -s(1,2) & \sum_{j \neq 2} s(2, j) & \Lambda & -s(n, 2) \\
\mathrm{M} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{M} \\
0 & -s(1, n) & -s(2, n) & \mathrm{L} & \sum_{j \neq n} s(n, j)
\end{array}\right]
$$

- Negate edge scores
- Sum columns (children)
- Strike root row/col.
- Take determinant

Building the Kirchoff (Laplacian) Matrix

$$
\left.\left\lvert\, \begin{array}{cccc|}
\sum_{j \neq 1} s(1, j) & -s(2,1) & \mathbf{L} & -s(n, 1) \\
-s(1,2) & \sum_{j \neq 2} s(2, j) & \mathbf{L} & -s(n, 2) \\
\mathbf{M} & \mathbf{M} & \mathbf{O} & \mathbf{M}
\end{array} \begin{array}{l}
\text { • Negate edge scores } \\
\text { • Sum columns } \\
\text { (children) }
\end{array}\right.\right\} \text { • Strike root row/col. }
$$

Building the Kirchoff (Laplacian) Matrix

$$
\left.\left|\begin{array}{cccc}
\sum_{j \neq 1} s(1, j) & -s(2,1) & \mathbf{L} & -s(n, 1) \\
-s(1,2) & \sum_{j \neq 2} s(2, j) & \mathbf{L} & -s(n, 2) \\
\mathbf{M} & \mathbf{M} & \mathbf{O} & \mathbf{M}
\end{array}\right| \begin{array}{l}
\text { • Negate edge scores } \\
\text { • Sum columns } \\
\text { (children) }
\end{array}\right) \text { • Strike root row/col. } \begin{aligned}
& \text { - Take determinant }
\end{aligned}
$$

N.B.: This allows multiple children of root, but see Koo et al. 2007.

Why Should This Work?

Clear for 1x1 matrix; use induction
Chu-Liu-Edmonds analogy: Every node selects best parent If cycles, contract and recur
$K^{\prime} \equiv K$ with contracted edge 1,2
$K^{\prime \prime} \equiv K(\{1,2\} \mid\{1,2\})$
$|K|=s(1,2)\left|K^{\prime}\right|+\left|K^{\prime \prime}\right|$

Why Should This Work?

Clear for 1x1 matrix; use induction

$$
\left|\begin{array}{cccc}
\sum_{j \neq 1} s(1, j) & -s(2,1) & \mathrm{L} & -s(n, 1) \\
-s(1,2) & \sum_{j \neq 2} s(2, j) & \Lambda & -s(n, 2) \\
\mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{M} \\
-s(1, n) & -s(2, n) & \mathrm{L} & \sum_{j \neq n} s(n, j)
\end{array}\right|
$$

$K^{\prime} \equiv K$ with contracted edge 1,2
$K^{\prime \prime} \equiv K(\{1,2\} \mid\{1,2\})$
$|K|=s(1,2)\left|K^{\prime}\right|+\left|K^{\prime \prime}\right|$

Chu-Liu-Edmonds analogy: Every node selects best parent If cycles, contract and recur

