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Language as Structure
• So far, we’ve talked about structure

• What structures are more probable?

• Language modeling: Good sequences of words/
characters

• Text classification: Good sequences in defined 
contexts

• How can we recover hidden structure?

• Tagging: hidden word classes

• Parsing: hidden word relations
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What Does It All Mean?

• Studying phonology, morphology, syntax, 
etc. independent of meaning is 
methodologically very useful

• We can study the structure of languages we 
don’t understand

• We can use HMMs and CFGs to study 
protein structure and music, which don’t 
bear meaning in the same way as language
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What Does It All Mean?

• How would you know if a computer 
“understood” the “meaning” of an (English) 
utterance (even in some weak “scare-
quoted” way)?

• How would you know if a person 
understood the meaning of an utterance?
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What Does It All Mean?

• Paraphrase, “state in your own 
words” (English to English translation)

• Translation into another language

• Reading comprehension questions

• Drawing appropriate inferences

• Carrying out appropriate actions

• Open-ended dialogue (Turing test)
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What is meaning of 3+5*6?

First parse it into 3+(5*6)
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Interpreting in an Environment
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How about 3+5*x?
Same thing: the meaning
of x is found from the
environment (it’s 6)
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How about 3+5*x?

Don’t know x at compile time
 “Meaning” at a node
is a piece of code, not a 
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(can be converted to the 
previous code by optimization)
Analogies in language?

9



What Counts as Understanding?
   some notions
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 We understand if we can respond appropriately
 ok for commands, questions (these demand response)
 “Computer, warp speed 5”
 “throw axe at dwarf”
 “put all of my blocks in the red box”
 imperative programming languages
 SQL database queries and other questions

 We understand statement if we can determine its 
truth
 ok, but if you knew whether it was true, why did anyone 

bother telling it to you?
 comparable notion for understanding NP is to compute 

what the NP refers to, which might be useful

What Counts as Understanding?
   some notions
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 We understand statement if we know how  one could (in 
principle) determine its truth
 What are exact conditions under which it would be true?

 necessary + sufficient

 Equivalently, derive all its consequences 
 what else must be true if we accept the statement?

 Match statements with a “domain theory”

 Philosophers tend to use this definition
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 We understand statement if we know how  one could (in 
principle) determine its truth
 What are exact conditions under which it would be true?

 necessary + sufficient

 Equivalently, derive all its consequences 
 what else must be true if we accept the statement?

 Match statements with a “domain theory”

 Philosophers tend to use this definition

 We understand statement if we can use it to answer 
questions  [very similar to above – requires reasoning]

 Easy: John ate pizza.  What was eaten by John?
 Hard: White’s first move is P-Q4.  Can Black checkmate?
 Constructing a procedure  to get the answer is enough

What Counts as Understanding?
   some notions
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What Does It All Mean?
• Paraphrase, “state in your own words” (English to English 

translation)

• Translation into another language

• Reading comprehension questions

• Drawing appropriate inferences

• Carrying out appropriate actions

• Open-ended dialogue (Turing test)

• Translation to logical form that we can reason about 

• See NLTK chapter 10
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(First Order) Logic
Some Preliminaries
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2. Entities 

 Values of NPs, e.g., objects like this slide
 Maybe also other types of entities, like times

3. Functions of various types 
 Functions from booleans to booleans (and, or, not)
 A function from entity to boolean is called a 

“predicate” – e.g., frog(x), green(x)

 Functions might return other functions!
 Function might take other functions as arguments!

(First Order) Logic
Some Preliminaries
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 Lambda terms: 
A way of writing “anonymous functions” 

No function header or function name
But defines the key thing: behavior of the function
Just as we can talk about 3 without naming it “x”

Let square = λp p*p   
Equivalent to int square(p) { return p*p; }
But we can talk about λp p*p without naming it

Format of a lambda term: λ variable expression

Logic: Lambda Terms
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 Let square = λp p*p   
 Then square(3)  =  (λp p*p)(3) = 3*3
 Note: square(x) isn’t a function!  It’s just the value x*x.
 But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)? )

 Let even = λp (p mod 2 == 0)    a predicate: returns true/false

 even(x) is true if x is even
 How about even(square(x))?  
 λx even(square(x)) is true of numbers with even squares

 Just apply rules to get λx (even(x*x)) = λx (x*x mod 2 == 0)
 This happens to denote the same predicate as even does

Logic: Lambda Terms
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Logic: Multiple Arguments
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All lambda terms have one argument
But we can fake multiple arguments ...

Suppose we want to write times(5,6)
Suppose times is defined as λx λy (x*y)
Claim that times(5)(6) is 30
 times(5) = (λx λy x*y) (5) = λy 5*y

If this function weren’t anonymous, what would we call 
it?

 times(5)(6) = (λy 5*y)(6) = 5*6 = 30

Logic: Multiple Arguments
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Logic: Multiple Arguments

 All lambda terms have one argument
 But we can fake multiple arguments ...

 If we write times(5,6), it’s just syntactic sugar for 
times(5)(6) or perhaps times(6)(5)  [notation varies]
 times(5,6) = times(5)(6) 

      = (λx λy x*y) (5)(6) = (λy 5*y)(6) = 5*6 = 30
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 So we can always get away with 1-arg functions ...
 ... which might return a function to take the next 

argument.  Whoa.
 Remember: square can be written as λx square(x)

 And now times can be written as λx λy times(x,y)

Logic: Multiple Arguments

 All lambda terms have one argument
 But we can fake multiple arguments ...

 If we write times(5,6), it’s just syntactic sugar for 
times(5)(6) or perhaps times(6)(5)  [notation varies]
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 So what does times actually mean???
 How do we get from times(5,6) to 30 ?

 Whether times(5,6) = 30 depends on whether symbol * actually 
denotes the multiplication function!

 Well, maybe * was defined as another lambda term, so 
substitute to get *(5,6) = (blah blah blah)(5)(6) 

 But we can’t keep doing substitutions forever!
 Eventually we have to ground out in a primitive term
 Primitive terms are bound to object code

 Maybe *(5,6) just executes a multiplication function
 What is executed by loves(john, mary) ?

Grounding out
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Thus, have “constants” that name some of the 
entities and functions (e.g., *):
GeorgeWBush  - an entity
 red – a predicate on entities

holds of just the red entities: red(x) is true if x is red!
 loves – a predicate on 2 entities

 loves(GeorgeWBush, LauraBush)
Question: What does loves(LauraBush) denote?

Constants used to define meanings of words
Meanings of phrases will be built from the 
constants

Logic: Interesting Constants
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most – a predicate on 2 predicates on entities
most(pig, big)  = “most pigs are big”

Equivalently,  most(λx pig(x), λx big(x))

 returns true if most of the things satisfying the first 
predicate also satisfy the second predicate

Logic: Interesting Constants
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most – a predicate on 2 predicates on entities
most(pig, big)  = “most pigs are big”

Equivalently,  most(λx pig(x), λx big(x))

 returns true if most of the things satisfying the first 
predicate also satisfy the second predicate

 similarly for other quantifiers
all(pig,big)   (equivalent to ∀x pig(x) ⇒ big(x))

exists(pig,big)   (equivalent to ∃x pig(x) AND big(x))
 can even build complex quantifiers from English phrases:

 “between 12 and 75”; “a majority of”; “all but the smallest 2”

Logic: Interesting Constants
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Gilly swallowed a goldfish
First attempt: swallowed(Gilly, goldfish)

Returns true or false.  Analogous to 
prime(17)
equal(4,2+2)
 loves(GeorgeWBush, LauraBush)
 swallowed(Gilly, Jilly)

… or is it analogous?

A reasonable representation?
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 Gilly swallowed a goldfish
 First attempt: swallowed(Gilly, goldfish)

 But we’re not paying attention to a!
 goldfish isn’t the name of a unique object the 

way Gilly is

 In particular, don’t want
Gilly swallowed a goldfish and Milly 
swallowed a goldfish
to translate as
swallowed(Gilly, goldfish) AND swallowed(Milly, goldfish) 
since probably not the same goldfish …

A reasonable representation?
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Use a Quantifier
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 Gilly swallowed a goldfish

 First attempt: swallowed(Gilly, goldfish)

 Better: ∃g goldfish(g) AND swallowed(Gilly, g)

 Or using one of our quantifier predicates:
 exists(λg goldfish(g), λg swallowed(Gilly,g)) 

 Equivalently: exists(goldfish, swallowed(Gilly))
 “In the set of goldfish there exists one swallowed by Gilly”

 Here goldfish is a predicate on entities
 This is the same semantic type as red
 But goldfish is noun and red is adjective .. #@!?

Use a Quantifier
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 Gilly swallowed a goldfish

 Previous attempt: exists(goldfish, swallowed(Gilly))

 Improve to use tense:
 Instead of the 2-arg predicate swallowed(Gilly,g)

try a 3-arg version swallow(t,Gilly,g)
 Now we can write:
∃t past(t) AND exists(goldfish, swallow(t,Gilly))

 “There was some time in the past such that a goldfish was among the 
objects swallowed by Gilly at that time”

(Simplify Notation)
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Event Properties
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 Gilly swallowed a goldfish

 Previous: ∃t past(t) AND exists(goldfish, swallow(t,Gilly))

 Why stop at time?  An event has other properties:
 [Gilly] swallowed [a goldfish] [on a dare] 
[in a telephone booth] [with 30 other 
freshmen] [after many bottles of vodka had 
been consumed].

 Specifies who what why when …
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 Gilly swallowed a goldfish

 Previous: ∃t past(t) AND exists(goldfish, swallow(t,Gilly))

 Why stop at time?  An event has other properties:
 [Gilly] swallowed [a goldfish] [on a dare] 
[in a telephone booth] [with 30 other 
freshmen] [after many bottles of vodka had 
been consumed].

 Specifies who what why when …
 Replace time variable t with an event variable e

 ∃e past(e), act(e,swallowing), swallower(e,Gilly), 
exists(goldfish, swallowee(e)), exists(booth, location(e)), …
 As with probability notation, a comma represents AND
 Could define past as λe ∃t before(t,now), ended-at(e,t)
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 Gilly swallowed a goldfish in a booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly), 
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 Does this mean what we’d expect??
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says that there’s only one event
with a single goldfish getting swallowed

that took place in a lot of booths ...
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 Groucho Marx celebrates quantifier order ambiguity:
 In this country a woman gives birth every 15 min.  Our 
job is to find that woman and stop her.

 ∃woman (∀15min gives-birth-during(woman, 15min))
∀15min (∃woman gives-birth-during(15min, woman))
 Surprisingly, both are possible in natural language!
 Which is the joke meaning (where it’s always the same woman) and 

why?

Quantifier Order
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exists(goldfish, swallowee(e)), exists(booth, location(e)), …

 Gilly swallowed a goldfish in every booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly), 
exists(goldfish, swallowee(e)), all(booth, location(e)), …
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∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)

Does this mean what we’d expect??

 It’s ∃e ∀b which means same event for every booth

 Probably false unless Gilly can be in every booth during 
her swallowing of a single goldfish
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 ∃e past(e), act(e,swallowing), swallower(e,Gilly), 
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

 Gilly swallowed a goldfish in every booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly), 
exists(goldfish, swallowee(e)), all(booth, λb location(e,b))

Quantifier Order

Other reading (∀b ∃e) involves quantifier raising:
 all(booth, λb [∃e past(e), act(e,swallowing), swallower 

(e,Gilly), exists(goldfish, swallowee(e)), location(e,b)])
 “for all booths b, there was such an event in b”
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 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))   
 “Willy wants any entity u that satisfies the unicorn predicate” 
 In this reading, the wantee is a type of entity
 Sentence doesn’t claim that such an entity exists

 Willy wants Lilly to get married

 ∃e present(e), act(e,wanting), wanter(e,Willy), 
wantee(e, λe’ [act(e’,marriage), marrier(e’,Lilly)])

 “Willy wants any event e’ in which Lilly gets married”
 Here the wantee is a type of event
 Sentence doesn’t claim that such an event exists

 Intensional verbs besides want: hope, doubt, believe,…
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Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))   
 “Willy wants anything that satisfies the unicorn predicate” 
 here the wantee is a type of entity 

 Problem (a fine point I’ll gloss over):

 λg unicorn(g) is defined by the actual set of unicorns (“extension”)
 But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
 Then wants a unicorn = wants a dodo.  Oops!

 So really the wantee should be criteria for unicornness (“intension”)

 Traditional solution involves “possible-world semantics”

 Can imagine other worlds where set of unicorn ≠ set of dodos
 Other worlds also useful for:  You must pay the rent
   You can pay the rent
 If you hadn’t, you’d be homeless
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 Willy wants Lilly to get married

 ∃e present(e), act(e,wanting), wanter(e,Willy), 
wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

 Willy wants to get married

 Same as  Willy wants Willy to get married
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wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

 Willy wants to get married
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 Willy wants Lilly to get married

 ∃e present(e), act(e,wanting), wanter(e,Willy), 
wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

 Willy wants to get married

 Same as  Willy wants Willy to get married

 Just as easy to represent as Willy wants Lilly … 

 The only trick is to construct the representation from the 
syntax.  The empty subject position of “to get married” is 
said to be controlled by the subject of “wants.”

Control
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 λg expert(g)
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 expert
 λg expert(g)

 big fat expert
 λg  big(g), fat(g), expert(g)
 But: bogus expert

Wrong: λg bogus(g), expert(g)
Right: λg (bogus(expert))(g)    … bogus maps to new concept
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 expert
 λg expert(g)

 big fat expert
 λg  big(g), fat(g), expert(g)
 But: bogus expert

Wrong: λg bogus(g), expert(g)
Right: λg (bogus(expert))(g)    … bogus maps to new concept

 Baltimore expert (white-collar expert, TV expert …)

 λg Related(Baltimore, g), expert(g) – expert from Baltimore
 Or with different intonation: 

 λg (Modified-by(Baltimore, expert))(g) – expert on Baltimore
 Can’t use Related for this case: law expert and dog catcher 
= λg Related(law,g), expert(g), Related(dog, g), catcher(g) 
= dog expert and law catcher

Nouns and Their Modifiers
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Nouns and Their Modifiers

 the goldfish that Gilly swallowed

 every goldfish that Gilly swallowed

 three goldfish that Gilly swallowed
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Nouns and Their Modifiers

 the goldfish that Gilly swallowed

 every goldfish that Gilly swallowed

 three goldfish that Gilly swallowed

λg [goldfish(g), swallowed(Gilly, g)] 
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Nouns and Their Modifiers

 the goldfish that Gilly swallowed

 every goldfish that Gilly swallowed

 three goldfish that Gilly swallowed

λg [goldfish(g), swallowed(Gilly, g)] 

 three swallowed-by-Gilly goldfish
like an adjective!
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Nouns and Their Modifiers

 the goldfish that Gilly swallowed

 every goldfish that Gilly swallowed

 three goldfish that Gilly swallowed

Or for real: λg [goldfish(g), ∃e [past(e), act(e,swallowing), 

swallower(e,Gilly), swallowee(e,g) ]] 

λg [goldfish(g), swallowed(Gilly, g)] 

 three swallowed-by-Gilly goldfish
like an adjective!
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 Lili passionately wants Billy
 Wrong?: passionately(want(Lili,Billy)) = passionately(true)

 Better: (passionately(want))(Lili,Billy)

 Best: ∃e present(e), act(e,wanting), wanter(e,Lili), 
wantee(e, Billy), manner(e, passionate)
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 Best: ∃e present(e), act(e,wanting), wanter(e,Lili), 
wantee(e, Billy), manner(e, passionate)

 Lili often stalks Billy
 (often(stalk))(Lili,Billy)

 many(day, λd ∃e present(e), act(e,stalking), stalker(e,Lili), 
stalkee(e, Billy), during(e,d))
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 Lili passionately wants Billy
 Wrong?: passionately(want(Lili,Billy)) = passionately(true)

 Better: (passionately(want))(Lili,Billy)

 Best: ∃e present(e), act(e,wanting), wanter(e,Lili), 
wantee(e, Billy), manner(e, passionate)

 Lili often stalks Billy
 (often(stalk))(Lili,Billy)

 many(day, λd ∃e present(e), act(e,stalking), stalker(e,Lili), 
stalkee(e, Billy), during(e,d))

 Lili obviously likes Billy
 (obviously(like))(Lili,Billy) – one reading
 obvious(like(Lili, Billy)) – another reading

Adverbs
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 What is the meaning of a full sentence?
 Depends on the punctuation mark at the end.  
 Billy likes Lili.   assert(like(B,L))
 Billy likes Lili?   ask(like(B,L))

 or more formally, “Does Billy like Lili?”

 Billy, like Lili!   command(like(B,L))
 or more accurately, “Let Billy like Lili!”
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 Billy likes Lili.   assert(like(B,L))
 Billy likes Lili?   ask(like(B,L))

 or more formally, “Does Billy like Lili?”

 Billy, like Lili!   command(like(B,L))
 or more accurately, “Let Billy like Lili!”

 Let’s try to do this a little more precisely, using event 
variables etc.

Speech Acts
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 What did Gilly swallow?

 ask(λx ∃e past(e), act(e,swallowing),            
      swallower(e,Gilly), 
swallowee(e,x))

 Argument is identical to the modifier “that Gilly swallowed”
 Is there any common syntax?
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 What did Gilly swallow?

 ask(λx ∃e past(e), act(e,swallowing),            
      swallower(e,Gilly), 
swallowee(e,x))

 Argument is identical to the modifier “that Gilly swallowed”
 Is there any common syntax?

 Eat your fish!

 command(λf act(f,eating), eater(f,Hearer), eatee(…))

 I ate my fish.

 assert(∃e past(e), act(e,eating), eater(f,Speaker), 
      eatee(…))

Speech Acts
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 We’ve discussed what semantic representations 
should look like.

 But how do we get them from sentences???

 First - parse to get a syntax tree.
 Second - look up the semantics for each word.
 Third - build the semantics for each constituent

 Work from the bottom up
 The syntax tree is a “recipe” for how to do it

Compositional Semantics
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λy λx λe act(e,loving), 
lover(e,x), lovee(e,y)

L

λy λx λe act(e,wanting), 
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)

assert(every(nation, λx ∃e present(e), 
act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L))))
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 Add a “sem” feature to each context-free rule
 S → NP loves NP

 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y] 

 Meaning of S depends on meaning of NPs
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 Add a “sem” feature to each context-free rule
 S → NP loves NP

 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y] 
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 Template filling: S[sem=showflights(x,y)] → 
      I want a flight from NP[sem=x] to NP[sem=y]

41



Compositional Semantics

42



 Instead of S → NP loves NP

 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

Compositional Semantics

42



 Instead of S → NP loves NP

 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

 might want general rules like S → NP VP:

 V[sem=loves] → loves

 VP[sem=v(obj)] → V[sem=v] NP[sem=obj]
 S[sem=vp(subj)] → NP[sem=subj] VP[sem=vp]

Compositional Semantics

42



 Instead of S → NP loves NP

 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

 might want general rules like S → NP VP:

 V[sem=loves] → loves

 VP[sem=v(obj)] → V[sem=v] NP[sem=obj]
 S[sem=vp(subj)] → NP[sem=subj] VP[sem=vp]

 Now George loves Laura has sem=loves(Laura)(George)

Compositional Semantics

42



 Instead of S → NP loves NP

 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

 might want general rules like S → NP VP:

 V[sem=loves] → loves

 VP[sem=v(obj)] → V[sem=v] NP[sem=obj]
 S[sem=vp(subj)] → NP[sem=subj] VP[sem=vp]

 Now George loves Laura has sem=loves(Laura)(George)

 In this manner we’ll sketch a version where 
 Still compute semantics bottom-up 
 Grammar is in Chomsky Normal Form
 So each node has 2 children: 1 function & 1 argument
 To get its semantics, apply function to argument!
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λs assert(s)
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∃e present(e), act(e,loving), 
lover(e,G), lovee(e,L)
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lover(e,y), lovee(e,L)
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Vpres

loves
loves =

λx λy loves(x,y)
L

G

λy loves(L,y)

loves(L,G)

∃e present(e), act(e,loving), 
lover(e,G), lovee(e,L)

λx λy ∃e present(e), 
act(e,loving), 

lover(e,y), lovee(e,x)

   λy ∃e present(e), 
act(e,loving), 

lover(e,y), lovee(e,L)
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Now let’s try a more 
complex example, and 

really handle tense.
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Now let’s try a more 
complex example, and 

really handle tense.

Treat –s like 
yet another
auxiliary

verb
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λe act(e,loving), lover(e,G), lovee(e,L)
the meaning that we 
want here: how can 
we arrange to get it?
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λe act(e,loving), lover(e,G), lovee(e,L)

G
what function should
apply to G to yield the 
desired blue result?
         (this is like division!)
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λx λe act(e,loving), 

lover(e,x), lovee(e,L)

 We’ll say that
“to” is just a bit of syntax that

changes a VPstem to a VPinf 
with the same meaning. 
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λx λe act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L))
by analogy
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v(x)(e)

Your account v is overdrawn, so your
rental application is rejected..
• Deposit some cash x to get v(x)
• Now show you’ve got the money:

∃e present(e), v(x)(e)
• Now you can withdraw x again:

λx ∃e present(e), v(x)(e)
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Better analogy: How would you modify the 
second object on a stack (λx,λe,act…)?
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λp every(nation, p)
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λs assert(s)
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L

λy λx λe act(e,wanting), 
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)

assert(every(nation, λx ∃e present(e), 
act(e,wanting), wanter(e,x), 
wantee(e, λe’ act(e’,loving), 

lover(e’,G), lovee(e’,L))))
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 Temporal logic
 Gilly had swallowed eight goldfish 
   before Milly reached the bowl

 Billy said Jilly was pregnant

 Billy said, “Jilly is pregnant.”

 Generics
 Typhoons arise in the Pacific

 Children must be carried

 Presuppositions
 The king of France is bald.

 Have you stopped beating your wife?

 Pronoun-Quantifier Interaction (“bound anaphora”)
 Every farmer who owns a donkey beats it.

 If you have a dime, put it in the meter.

 The woman who every Englishman loves is his mother.

 I love my mother and so does Billy.

Other Fun Semantic Stuff: 
A Few Much-Studied Miscellany
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In Summary

How do we judge a good meaning 
representation?

How can we represent sentence meaning 
with first-order logic?

How can logical representations of 
sentences be composed from logical forms 
of words?

Next time: can we train models to recover 
logical forms?
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