
Semantics

Introduction to Natural Language Processing
Computer Science 585—Fall 2009

University of Massachusetts Amherst

David Smith
with slides from Jason Eisner

1

Language as Structure
• So far, we’ve talked about structure

• What structures are more probable?

• Language modeling: Good sequences of words/
characters

• Text classification: Good sequences in defined
contexts

• How can we recover hidden structure?

• Tagging: hidden word classes

• Parsing: hidden word relations

2

What Does It All Mean?

• Studying phonology, morphology, syntax,
etc. independent of meaning is
methodologically very useful

• We can study the structure of languages we
don’t understand

• We can use HMMs and CFGs to study
protein structure and music, which don’t
bear meaning in the same way as language

3

What Does It All Mean?

• How would you know if a computer
“understood” the “meaning” of an (English)
utterance (even in some weak “scare-
quoted” way)?

• How would you know if a person
understood the meaning of an utterance?

4

What Does It All Mean?

• Paraphrase, “state in your own
words” (English to English translation)

• Translation into another language

• Reading comprehension questions

• Drawing appropriate inferences

• Carrying out appropriate actions

• Open-ended dialogue (Turing test)

5

What is meaning of 3+5*6?

First parse it into 3+(5*6)

Programming Language
Interpreter

+

3 *

5 6

6

What is meaning of 3+5*6?

First parse it into 3+(5*6)

Programming Language
Interpreter

+

3 *

5 6

E EF

E

E E

3

F

N

5

N

6

N*

+

6

What is meaning of 3+5*6?

First parse it into 3+(5*6)
Now give a meaning to
each node in the tree
(bottom-up)

Programming Language
Interpreter

+

3 *

5 6

E EF

E

E E

3

F

N

5

N

6

N*

+

7

What is meaning of 3+5*6?

First parse it into 3+(5*6)
Now give a meaning to
each node in the tree
(bottom-up)

Programming Language
Interpreter

+

3 *

5 6

E EF

E

E E

3

F

N

5

N

6

N*

+

3

5 6

30

33

7

What is meaning of 3+5*6?

First parse it into 3+(5*6)
Now give a meaning to
each node in the tree
(bottom-up)

Programming Language
Interpreter

+

3 *

5 6

E EF

E

E E

3

F

N

5

N

6

N*

+

3

5 6

30

33

3

5 6

30

33

add
mult

7

Interpreting in an Environment

+

3 *

5 x

3

5 6

30

33

E EF

E

E E

3

F

N

5

N

6

N*

+3

5 6

30

33

add
mult

8

How about 3+5*x?

Interpreting in an Environment

+

3 *

5 x

3

5 6

30

33

E EF

E

E E

3

F

N

5

N

6

N*

+3

5 6

30

33

add
mult

8

How about 3+5*x?
Same thing: the meaning
of x is found from the
environment (it’s 6)

Interpreting in an Environment

+

3 *

5 x

3

5 6

30

33

E EF

E

E E

3

F

N

5

N

6

N*

+3

5 6

30

33

add
mult

8

How about 3+5*x?
Same thing: the meaning
of x is found from the
environment (it’s 6)

Analogies in language?

Interpreting in an Environment

+

3 *

5 x

3

5 6

30

33

E EF

E

E E

3

F

N

5

N

6

N*

+3

5 6

30

33

add
mult

8

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+

9

How about 3+5*x?

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+

9

How about 3+5*x?

Don’t know x at compile time

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+

9

How about 3+5*x?

Don’t know x at compile time
 “Meaning” at a node
is a piece of code, not a
number

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+

9

How about 3+5*x?

Don’t know x at compile time
 “Meaning” at a node
is a piece of code, not a
number

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+3

5 x

mult(5,x)

add(3,mult(5,x))

add
mult

9

How about 3+5*x?

Don’t know x at compile time
 “Meaning” at a node
is a piece of code, not a
number

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+3

5 x

mult(5,x)

add(3,mult(5,x))

add
mult

5*(x+1)-2 is a different expression
that produces equivalent code

9

How about 3+5*x?

Don’t know x at compile time
 “Meaning” at a node
is a piece of code, not a
number

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+3

5 x

mult(5,x)

add(3,mult(5,x))

add
mult

5*(x+1)-2 is a different expression
that produces equivalent code
(can be converted to the
previous code by optimization)

9

How about 3+5*x?

Don’t know x at compile time
 “Meaning” at a node
is a piece of code, not a
number

Compiling

E EF

E

E E

3

F

N

5

N

x

N*

+3

5 x

mult(5,x)

add(3,mult(5,x))

add
mult

5*(x+1)-2 is a different expression
that produces equivalent code
(can be converted to the
previous code by optimization)
Analogies in language?

9

What Counts as Understanding?
 some notions

10

 We understand if we can respond appropriately
 ok for commands, questions (these demand response)
 “Computer, warp speed 5”
 “throw axe at dwarf”
 “put all of my blocks in the red box”
 imperative programming languages
 SQL database queries and other questions

 We understand statement if we can determine its
truth
 ok, but if you knew whether it was true, why did anyone

bother telling it to you?
 comparable notion for understanding NP is to compute

what the NP refers to, which might be useful

What Counts as Understanding?
 some notions

10

What Counts as Understanding?
 some notions

11

 We understand statement if we know how one could (in
principle) determine its truth
 What are exact conditions under which it would be true?

 necessary + sufficient

 Equivalently, derive all its consequences
 what else must be true if we accept the statement?

 Match statements with a “domain theory”

 Philosophers tend to use this definition

What Counts as Understanding?
 some notions

11

 We understand statement if we know how one could (in
principle) determine its truth
 What are exact conditions under which it would be true?

 necessary + sufficient

 Equivalently, derive all its consequences
 what else must be true if we accept the statement?

 Match statements with a “domain theory”

 Philosophers tend to use this definition

 We understand statement if we can use it to answer
questions [very similar to above – requires reasoning]

 Easy: John ate pizza. What was eaten by John?
 Hard: White’s first move is P-Q4. Can Black checkmate?
 Constructing a procedure to get the answer is enough

What Counts as Understanding?
 some notions

11

What Does It All Mean?
• Paraphrase, “state in your own words” (English to English

translation)

• Translation into another language

• Reading comprehension questions

• Drawing appropriate inferences

• Carrying out appropriate actions

• Open-ended dialogue (Turing test)

• Translation to logical form that we can reason about

• See NLTK chapter 10

12

(First Order) Logic
Some Preliminaries

13

Three major kinds of objects

(First Order) Logic
Some Preliminaries

13

Three major kinds of objects
1. Booleans

 Roughly, the semantic values of sentences

(First Order) Logic
Some Preliminaries

13

Three major kinds of objects
1. Booleans

 Roughly, the semantic values of sentences
2. Entities

 Values of NPs, e.g., objects like this slide
 Maybe also other types of entities, like times

(First Order) Logic
Some Preliminaries

13

Three major kinds of objects
1. Booleans

 Roughly, the semantic values of sentences
2. Entities

 Values of NPs, e.g., objects like this slide
 Maybe also other types of entities, like times

3. Functions of various types
 Functions from booleans to booleans (and, or, not)
 A function from entity to boolean is called a

“predicate” – e.g., frog(x), green(x)

 Functions might return other functions!

(First Order) Logic
Some Preliminaries

13

Three major kinds of objects
1. Booleans

 Roughly, the semantic values of sentences
2. Entities

 Values of NPs, e.g., objects like this slide
 Maybe also other types of entities, like times

3. Functions of various types
 Functions from booleans to booleans (and, or, not)
 A function from entity to boolean is called a

“predicate” – e.g., frog(x), green(x)

 Functions might return other functions!
 Function might take other functions as arguments!

(First Order) Logic
Some Preliminaries

13

 Lambda terms:
A way of writing “anonymous functions”

No function header or function name
But defines the key thing: behavior of the function
Just as we can talk about 3 without naming it “x”

Let square = λp p*p
Equivalent to int square(p) { return p*p; }
But we can talk about λp p*p without naming it

Format of a lambda term: λ variable expression

Logic: Lambda Terms

14

Logic: Lambda Terms

15

 Lambda terms:

Logic: Lambda Terms

15

 Lambda terms:
 Let square = λp p*p

Logic: Lambda Terms

15

 Lambda terms:
 Let square = λp p*p
 Then square(3) = (λp p*p)(3) = 3*3

Logic: Lambda Terms

15

 Lambda terms:
 Let square = λp p*p
 Then square(3) = (λp p*p)(3) = 3*3
 Note: square(x) isn’t a function! It’s just the value x*x.

Logic: Lambda Terms

15

 Lambda terms:
 Let square = λp p*p
 Then square(3) = (λp p*p)(3) = 3*3
 Note: square(x) isn’t a function! It’s just the value x*x.
 But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)?)

Logic: Lambda Terms

15

 Lambda terms:
 Let square = λp p*p
 Then square(3) = (λp p*p)(3) = 3*3
 Note: square(x) isn’t a function! It’s just the value x*x.
 But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)?)

Logic: Lambda Terms

15

 Lambda terms:
 Let square = λp p*p
 Then square(3) = (λp p*p)(3) = 3*3
 Note: square(x) isn’t a function! It’s just the value x*x.
 But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)?)

 Let even = λp (p mod 2 == 0) a predicate: returns true/false

Logic: Lambda Terms

15

 Lambda terms:
 Let square = λp p*p
 Then square(3) = (λp p*p)(3) = 3*3
 Note: square(x) isn’t a function! It’s just the value x*x.
 But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)?)

 Let even = λp (p mod 2 == 0) a predicate: returns true/false

 even(x) is true if x is even

Logic: Lambda Terms

15

 Lambda terms:
 Let square = λp p*p
 Then square(3) = (λp p*p)(3) = 3*3
 Note: square(x) isn’t a function! It’s just the value x*x.
 But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)?)

 Let even = λp (p mod 2 == 0) a predicate: returns true/false

 even(x) is true if x is even
 How about even(square(x))?
 λx even(square(x)) is true of numbers with even squares

 Just apply rules to get λx (even(x*x)) = λx (x*x mod 2 == 0)

Logic: Lambda Terms

15

 Lambda terms:
 Let square = λp p*p
 Then square(3) = (λp p*p)(3) = 3*3
 Note: square(x) isn’t a function! It’s just the value x*x.
 But λx square(x) = λx x*x = λp p*p = square

(proving that these functions are equal – and indeed they are,
as they act the same on all arguments: what is (λx square(x))(y)?)

 Let even = λp (p mod 2 == 0) a predicate: returns true/false

 even(x) is true if x is even
 How about even(square(x))?
 λx even(square(x)) is true of numbers with even squares

 Just apply rules to get λx (even(x*x)) = λx (x*x mod 2 == 0)
 This happens to denote the same predicate as even does

Logic: Lambda Terms

15

Logic: Multiple Arguments

16

All lambda terms have one argument

Logic: Multiple Arguments

16

All lambda terms have one argument
But we can fake multiple arguments ...

Logic: Multiple Arguments

16

All lambda terms have one argument
But we can fake multiple arguments ...

Logic: Multiple Arguments

16

All lambda terms have one argument
But we can fake multiple arguments ...

Suppose we want to write times(5,6)

Logic: Multiple Arguments

16

All lambda terms have one argument
But we can fake multiple arguments ...

Suppose we want to write times(5,6)
Suppose times is defined as λx λy (x*y)

Logic: Multiple Arguments

16

All lambda terms have one argument
But we can fake multiple arguments ...

Suppose we want to write times(5,6)
Suppose times is defined as λx λy (x*y)
Claim that times(5)(6) is 30
 times(5) = (λx λy x*y) (5) = λy 5*y

Logic: Multiple Arguments

16

All lambda terms have one argument
But we can fake multiple arguments ...

Suppose we want to write times(5,6)
Suppose times is defined as λx λy (x*y)
Claim that times(5)(6) is 30
 times(5) = (λx λy x*y) (5) = λy 5*y

If this function weren’t anonymous, what would we call
it?

Logic: Multiple Arguments

16

All lambda terms have one argument
But we can fake multiple arguments ...

Suppose we want to write times(5,6)
Suppose times is defined as λx λy (x*y)
Claim that times(5)(6) is 30
 times(5) = (λx λy x*y) (5) = λy 5*y

If this function weren’t anonymous, what would we call
it?

 times(5)(6) = (λy 5*y)(6) = 5*6 = 30

Logic: Multiple Arguments

16

Logic: Multiple Arguments

 All lambda terms have one argument
 But we can fake multiple arguments ...

 If we write times(5,6), it’s just syntactic sugar for
times(5)(6) or perhaps times(6)(5) [notation varies]
 times(5,6) = times(5)(6)

 = (λx λy x*y) (5)(6) = (λy 5*y)(6) = 5*6 = 30

17

 So we can always get away with 1-arg functions ...

Logic: Multiple Arguments

 All lambda terms have one argument
 But we can fake multiple arguments ...

 If we write times(5,6), it’s just syntactic sugar for
times(5)(6) or perhaps times(6)(5) [notation varies]
 times(5,6) = times(5)(6)

 = (λx λy x*y) (5)(6) = (λy 5*y)(6) = 5*6 = 30

17

 So we can always get away with 1-arg functions ...
 ... which might return a function to take the next

argument. Whoa.

Logic: Multiple Arguments

 All lambda terms have one argument
 But we can fake multiple arguments ...

 If we write times(5,6), it’s just syntactic sugar for
times(5)(6) or perhaps times(6)(5) [notation varies]
 times(5,6) = times(5)(6)

 = (λx λy x*y) (5)(6) = (λy 5*y)(6) = 5*6 = 30

17

 So we can always get away with 1-arg functions ...
 ... which might return a function to take the next

argument. Whoa.
 Remember: square can be written as λx square(x)

Logic: Multiple Arguments

 All lambda terms have one argument
 But we can fake multiple arguments ...

 If we write times(5,6), it’s just syntactic sugar for
times(5)(6) or perhaps times(6)(5) [notation varies]
 times(5,6) = times(5)(6)

 = (λx λy x*y) (5)(6) = (λy 5*y)(6) = 5*6 = 30

17

 So we can always get away with 1-arg functions ...
 ... which might return a function to take the next

argument. Whoa.
 Remember: square can be written as λx square(x)

 And now times can be written as λx λy times(x,y)

Logic: Multiple Arguments

 All lambda terms have one argument
 But we can fake multiple arguments ...

 If we write times(5,6), it’s just syntactic sugar for
times(5)(6) or perhaps times(6)(5) [notation varies]
 times(5,6) = times(5)(6)

 = (λx λy x*y) (5)(6) = (λy 5*y)(6) = 5*6 = 30

17

Grounding out

18

 So what does times actually mean???

Grounding out

18

 So what does times actually mean???
 How do we get from times(5,6) to 30 ?

 Whether times(5,6) = 30 depends on whether symbol * actually
denotes the multiplication function!

Grounding out

18

 So what does times actually mean???
 How do we get from times(5,6) to 30 ?

 Whether times(5,6) = 30 depends on whether symbol * actually
denotes the multiplication function!

Grounding out

18

 So what does times actually mean???
 How do we get from times(5,6) to 30 ?

 Whether times(5,6) = 30 depends on whether symbol * actually
denotes the multiplication function!

 Well, maybe * was defined as another lambda term, so
substitute to get *(5,6) = (blah blah blah)(5)(6)

 But we can’t keep doing substitutions forever!
 Eventually we have to ground out in a primitive term
 Primitive terms are bound to object code

Grounding out

18

 So what does times actually mean???
 How do we get from times(5,6) to 30 ?

 Whether times(5,6) = 30 depends on whether symbol * actually
denotes the multiplication function!

 Well, maybe * was defined as another lambda term, so
substitute to get *(5,6) = (blah blah blah)(5)(6)

 But we can’t keep doing substitutions forever!
 Eventually we have to ground out in a primitive term
 Primitive terms are bound to object code

 Maybe *(5,6) just executes a multiplication function

Grounding out

18

 So what does times actually mean???
 How do we get from times(5,6) to 30 ?

 Whether times(5,6) = 30 depends on whether symbol * actually
denotes the multiplication function!

 Well, maybe * was defined as another lambda term, so
substitute to get *(5,6) = (blah blah blah)(5)(6)

 But we can’t keep doing substitutions forever!
 Eventually we have to ground out in a primitive term
 Primitive terms are bound to object code

 Maybe *(5,6) just executes a multiplication function
 What is executed by loves(john, mary) ?

Grounding out

18

Thus, have “constants” that name some of the
entities and functions (e.g., *):
GeorgeWBush - an entity
 red – a predicate on entities

holds of just the red entities: red(x) is true if x is red!
 loves – a predicate on 2 entities

 loves(GeorgeWBush, LauraBush)
Question: What does loves(LauraBush) denote?

Constants used to define meanings of words
Meanings of phrases will be built from the
constants

Logic: Interesting Constants

19

Logic: Interesting Constants

20

most – a predicate on 2 predicates on entities
most(pig, big) = “most pigs are big”

Equivalently, most(λx pig(x), λx big(x))

 returns true if most of the things satisfying the first
predicate also satisfy the second predicate

Logic: Interesting Constants

20

most – a predicate on 2 predicates on entities
most(pig, big) = “most pigs are big”

Equivalently, most(λx pig(x), λx big(x))

 returns true if most of the things satisfying the first
predicate also satisfy the second predicate

 similarly for other quantifiers
all(pig,big) (equivalent to ∀x pig(x) ⇒ big(x))

exists(pig,big) (equivalent to ∃x pig(x) AND big(x))
 can even build complex quantifiers from English phrases:

 “between 12 and 75”; “a majority of”; “all but the smallest 2”

Logic: Interesting Constants

20

Gilly swallowed a goldfish
First attempt: swallowed(Gilly, goldfish)

Returns true or false. Analogous to
prime(17)
equal(4,2+2)
 loves(GeorgeWBush, LauraBush)
 swallowed(Gilly, Jilly)

… or is it analogous?

A reasonable representation?

21

A reasonable representation?

22

 Gilly swallowed a goldfish
 First attempt: swallowed(Gilly, goldfish)

A reasonable representation?

22

 Gilly swallowed a goldfish
 First attempt: swallowed(Gilly, goldfish)

 But we’re not paying attention to a!

A reasonable representation?

22

 Gilly swallowed a goldfish
 First attempt: swallowed(Gilly, goldfish)

 But we’re not paying attention to a!
 goldfish isn’t the name of a unique object the

way Gilly is

A reasonable representation?

22

 Gilly swallowed a goldfish
 First attempt: swallowed(Gilly, goldfish)

 But we’re not paying attention to a!
 goldfish isn’t the name of a unique object the

way Gilly is

A reasonable representation?

22

 Gilly swallowed a goldfish
 First attempt: swallowed(Gilly, goldfish)

 But we’re not paying attention to a!
 goldfish isn’t the name of a unique object the

way Gilly is

 In particular, don’t want
Gilly swallowed a goldfish and Milly
swallowed a goldfish
to translate as
swallowed(Gilly, goldfish) AND swallowed(Milly, goldfish)
since probably not the same goldfish …

A reasonable representation?

22

Use a Quantifier

23

 Gilly swallowed a goldfish

 First attempt: swallowed(Gilly, goldfish)

Use a Quantifier

23

 Gilly swallowed a goldfish

 First attempt: swallowed(Gilly, goldfish)

 Better: ∃g goldfish(g) AND swallowed(Gilly, g)

Use a Quantifier

23

 Gilly swallowed a goldfish

 First attempt: swallowed(Gilly, goldfish)

 Better: ∃g goldfish(g) AND swallowed(Gilly, g)

 Or using one of our quantifier predicates:
 exists(λg goldfish(g), λg swallowed(Gilly,g))

 Equivalently: exists(goldfish, swallowed(Gilly))
 “In the set of goldfish there exists one swallowed by Gilly”

Use a Quantifier

23

 Gilly swallowed a goldfish

 First attempt: swallowed(Gilly, goldfish)

 Better: ∃g goldfish(g) AND swallowed(Gilly, g)

 Or using one of our quantifier predicates:
 exists(λg goldfish(g), λg swallowed(Gilly,g))

 Equivalently: exists(goldfish, swallowed(Gilly))
 “In the set of goldfish there exists one swallowed by Gilly”

 Here goldfish is a predicate on entities
 This is the same semantic type as red
 But goldfish is noun and red is adjective .. #@!?

Use a Quantifier

23

Tense

24

 Gilly swallowed a goldfish

Tense

24

 Gilly swallowed a goldfish

 Previous attempt: exists(goldfish, λg swallowed(Gilly,g))

Tense

24

 Gilly swallowed a goldfish

 Previous attempt: exists(goldfish, λg swallowed(Gilly,g))

 Improve to use tense:

Tense

24

 Gilly swallowed a goldfish

 Previous attempt: exists(goldfish, λg swallowed(Gilly,g))

 Improve to use tense:
 Instead of the 2-arg predicate swallowed(Gilly,g)

try a 3-arg version swallow(t,Gilly,g) where t is a time

Tense

24

 Gilly swallowed a goldfish

 Previous attempt: exists(goldfish, λg swallowed(Gilly,g))

 Improve to use tense:
 Instead of the 2-arg predicate swallowed(Gilly,g)

try a 3-arg version swallow(t,Gilly,g) where t is a time

 Now we can write:
∃t past(t) AND exists(goldfish, λg swallow(t,Gilly,g))

Tense

24

 Gilly swallowed a goldfish

 Previous attempt: exists(goldfish, λg swallowed(Gilly,g))

 Improve to use tense:
 Instead of the 2-arg predicate swallowed(Gilly,g)

try a 3-arg version swallow(t,Gilly,g) where t is a time

 Now we can write:
∃t past(t) AND exists(goldfish, λg swallow(t,Gilly,g))

 “There was some time in the past such that a goldfish was among the
objects swallowed by Gilly at that time”

Tense

24

 Gilly swallowed a goldfish

 Previous attempt: exists(goldfish, swallowed(Gilly))

 Improve to use tense:
 Instead of the 2-arg predicate swallowed(Gilly,g)

try a 3-arg version swallow(t,Gilly,g)
 Now we can write:
∃t past(t) AND exists(goldfish, swallow(t,Gilly))

 “There was some time in the past such that a goldfish was among the
objects swallowed by Gilly at that time”

(Simplify Notation)

25

Event Properties

26

 Gilly swallowed a goldfish

 Previous: ∃t past(t) AND exists(goldfish, swallow(t,Gilly))

Event Properties

26

 Gilly swallowed a goldfish

 Previous: ∃t past(t) AND exists(goldfish, swallow(t,Gilly))

 Why stop at time? An event has other properties:
 [Gilly] swallowed [a goldfish] [on a dare]
[in a telephone booth] [with 30 other
freshmen] [after many bottles of vodka had
been consumed].

 Specifies who what why when …

Event Properties

26

 Gilly swallowed a goldfish

 Previous: ∃t past(t) AND exists(goldfish, swallow(t,Gilly))

 Why stop at time? An event has other properties:
 [Gilly] swallowed [a goldfish] [on a dare]
[in a telephone booth] [with 30 other
freshmen] [after many bottles of vodka had
been consumed].

 Specifies who what why when …
 Replace time variable t with an event variable e

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …
 As with probability notation, a comma represents AND
 Could define past as λe ∃t before(t,now), ended-at(e,t)

Event Properties

26

 Gilly swallowed a goldfish in a booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

 Gilly swallowed a goldfish in every booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

 Does this mean what we’d expect??

Quantifier Order

27

 Gilly swallowed a goldfish in a booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

 Gilly swallowed a goldfish in every booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

 Does this mean what we’d expect??

Quantifier Order

∃g goldfish(g), swallowee(e,g)

27

 Gilly swallowed a goldfish in a booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

 Gilly swallowed a goldfish in every booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

 Does this mean what we’d expect??

Quantifier Order

∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)

27

 Gilly swallowed a goldfish in a booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

 Gilly swallowed a goldfish in every booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

 Does this mean what we’d expect??

Quantifier Order

∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)

says that there’s only one event
with a single goldfish getting swallowed

that took place in a lot of booths ...

27

 Groucho Marx celebrates quantifier order ambiguity:
 In this country a woman gives birth every 15 min. Our
job is to find that woman and stop her.

 ∃woman (∀15min gives-birth-during(woman, 15min))
∀15min (∃woman gives-birth-during(15min, woman))
 Surprisingly, both are possible in natural language!
 Which is the joke meaning (where it’s always the same woman) and

why?

Quantifier Order

28

 Gilly swallowed a goldfish in a booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

 Gilly swallowed a goldfish in every booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

Quantifier Order

∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)

29

 Gilly swallowed a goldfish in a booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

 Gilly swallowed a goldfish in every booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

Quantifier Order

∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)

Does this mean what we’d expect??

29

 Gilly swallowed a goldfish in a booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

 Gilly swallowed a goldfish in every booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

Quantifier Order

∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)

Does this mean what we’d expect??

 It’s ∃e ∀b which means same event for every booth

29

 Gilly swallowed a goldfish in a booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

 Gilly swallowed a goldfish in every booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), …

Quantifier Order

∃g goldfish(g), swallowee(e,g) ∀b booth(b)⇒location(e,b)

Does this mean what we’d expect??

 It’s ∃e ∀b which means same event for every booth

 Probably false unless Gilly can be in every booth during
her swallowing of a single goldfish

29

 Gilly swallowed a goldfish in a booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

 Gilly swallowed a goldfish in every booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, λb location(e,b))

Quantifier Order

30

 Gilly swallowed a goldfish in a booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

 Gilly swallowed a goldfish in every booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, λb location(e,b))

Quantifier Order

Other reading (∀b ∃e) involves quantifier raising:

30

 Gilly swallowed a goldfish in a booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

 Gilly swallowed a goldfish in every booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, λb location(e,b))

Quantifier Order

Other reading (∀b ∃e) involves quantifier raising:
 all(booth, λb [∃e past(e), act(e,swallowing), swallower

(e,Gilly), exists(goldfish, swallowee(e)), location(e,b)])

30

 Gilly swallowed a goldfish in a booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), …

 Gilly swallowed a goldfish in every booth

 ∃e past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, λb location(e,b))

Quantifier Order

Other reading (∀b ∃e) involves quantifier raising:
 all(booth, λb [∃e past(e), act(e,swallowing), swallower

(e,Gilly), exists(goldfish, swallowee(e)), location(e,b)])
 “for all booths b, there was such an event in b”

30

Intensional Arguments

31

Intensional Arguments
 Willy wants a unicorn

31

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 “there is a particular unicorn u that Willy wants”
 In this reading, the wantee is an individual entity

31

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 “there is a particular unicorn u that Willy wants”
 In this reading, the wantee is an individual entity

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants any entity u that satisfies the unicorn predicate”
 In this reading, the wantee is a type of entity
 Sentence doesn’t claim that such an entity exists

31

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 “there is a particular unicorn u that Willy wants”
 In this reading, the wantee is an individual entity

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants any entity u that satisfies the unicorn predicate”
 In this reading, the wantee is a type of entity
 Sentence doesn’t claim that such an entity exists

 Willy wants Lilly to get married

31

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 “there is a particular unicorn u that Willy wants”
 In this reading, the wantee is an individual entity

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants any entity u that satisfies the unicorn predicate”
 In this reading, the wantee is a type of entity
 Sentence doesn’t claim that such an entity exists

 Willy wants Lilly to get married

 ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λe’ [act(e’,marriage), marrier(e’,Lilly)])

31

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 “there is a particular unicorn u that Willy wants”
 In this reading, the wantee is an individual entity

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants any entity u that satisfies the unicorn predicate”
 In this reading, the wantee is a type of entity
 Sentence doesn’t claim that such an entity exists

 Willy wants Lilly to get married

 ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λe’ [act(e’,marriage), marrier(e’,Lilly)])

 “Willy wants any event e’ in which Lilly gets married”

31

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 “there is a particular unicorn u that Willy wants”
 In this reading, the wantee is an individual entity

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants any entity u that satisfies the unicorn predicate”
 In this reading, the wantee is a type of entity
 Sentence doesn’t claim that such an entity exists

 Willy wants Lilly to get married

 ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λe’ [act(e’,marriage), marrier(e’,Lilly)])

 “Willy wants any event e’ in which Lilly gets married”
 Here the wantee is a type of event

31

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 “there is a particular unicorn u that Willy wants”
 In this reading, the wantee is an individual entity

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants any entity u that satisfies the unicorn predicate”
 In this reading, the wantee is a type of entity
 Sentence doesn’t claim that such an entity exists

 Willy wants Lilly to get married

 ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λe’ [act(e’,marriage), marrier(e’,Lilly)])

 “Willy wants any event e’ in which Lilly gets married”
 Here the wantee is a type of event
 Sentence doesn’t claim that such an event exists

31

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), exists(unicorn, λu wantee(e,u))
 “there is a particular unicorn u that Willy wants”
 In this reading, the wantee is an individual entity

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants any entity u that satisfies the unicorn predicate”
 In this reading, the wantee is a type of entity
 Sentence doesn’t claim that such an entity exists

 Willy wants Lilly to get married

 ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λe’ [act(e’,marriage), marrier(e’,Lilly)])

 “Willy wants any event e’ in which Lilly gets married”
 Here the wantee is a type of event
 Sentence doesn’t claim that such an event exists

 Intensional verbs besides want: hope, doubt, believe,…
31

Intensional Arguments

32

Intensional Arguments
 Willy wants a unicorn

32

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants anything that satisfies the unicorn predicate”
 here the wantee is a type of entity

32

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants anything that satisfies the unicorn predicate”
 here the wantee is a type of entity

 Problem (a fine point I’ll gloss over):

32

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants anything that satisfies the unicorn predicate”
 here the wantee is a type of entity

 Problem (a fine point I’ll gloss over):

 λg unicorn(g) is defined by the actual set of unicorns (“extension”)

32

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants anything that satisfies the unicorn predicate”
 here the wantee is a type of entity

 Problem (a fine point I’ll gloss over):

 λg unicorn(g) is defined by the actual set of unicorns (“extension”)
 But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)

32

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants anything that satisfies the unicorn predicate”
 here the wantee is a type of entity

 Problem (a fine point I’ll gloss over):

 λg unicorn(g) is defined by the actual set of unicorns (“extension”)
 But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
 Then wants a unicorn = wants a dodo. Oops!

32

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants anything that satisfies the unicorn predicate”
 here the wantee is a type of entity

 Problem (a fine point I’ll gloss over):

 λg unicorn(g) is defined by the actual set of unicorns (“extension”)
 But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
 Then wants a unicorn = wants a dodo. Oops!

 So really the wantee should be criteria for unicornness (“intension”)

32

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants anything that satisfies the unicorn predicate”
 here the wantee is a type of entity

 Problem (a fine point I’ll gloss over):

 λg unicorn(g) is defined by the actual set of unicorns (“extension”)
 But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
 Then wants a unicorn = wants a dodo. Oops!

 So really the wantee should be criteria for unicornness (“intension”)

 Traditional solution involves “possible-world semantics”

32

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants anything that satisfies the unicorn predicate”
 here the wantee is a type of entity

 Problem (a fine point I’ll gloss over):

 λg unicorn(g) is defined by the actual set of unicorns (“extension”)
 But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
 Then wants a unicorn = wants a dodo. Oops!

 So really the wantee should be criteria for unicornness (“intension”)

 Traditional solution involves “possible-world semantics”

 Can imagine other worlds where set of unicorn ≠ set of dodos

32

Intensional Arguments
 Willy wants a unicorn

 ∃e act(e,wanting), wanter(e,Willy), wantee(e, λu unicorn(u))
 “Willy wants anything that satisfies the unicorn predicate”
 here the wantee is a type of entity

 Problem (a fine point I’ll gloss over):

 λg unicorn(g) is defined by the actual set of unicorns (“extension”)
 But this set is empty: λg unicorn(g) = λg FALSE = λg dodo(g)
 Then wants a unicorn = wants a dodo. Oops!

 So really the wantee should be criteria for unicornness (“intension”)

 Traditional solution involves “possible-world semantics”

 Can imagine other worlds where set of unicorn ≠ set of dodos
 Other worlds also useful for: You must pay the rent
 You can pay the rent
 If you hadn’t, you’d be homeless

32

Control

33

 Willy wants Lilly to get married

Control

33

 Willy wants Lilly to get married

 ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

Control

33

 Willy wants Lilly to get married

 ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

Control

33

 Willy wants Lilly to get married

 ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

 Willy wants to get married

Control

33

 Willy wants Lilly to get married

 ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

 Willy wants to get married

 Same as Willy wants Willy to get married

Control

33

 Willy wants Lilly to get married

 ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

 Willy wants to get married

 Same as Willy wants Willy to get married

 Just as easy to represent as Willy wants Lilly …

Control

33

 Willy wants Lilly to get married

 ∃e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, λf [act(f,marriage), marrier(f,Lilly)])

 Willy wants to get married

 Same as Willy wants Willy to get married

 Just as easy to represent as Willy wants Lilly …

 The only trick is to construct the representation from the
syntax. The empty subject position of “to get married” is
said to be controlled by the subject of “wants.”

Control

33

Nouns and Their Modifiers

34

 expert
 λg expert(g)

Nouns and Their Modifiers

34

 expert
 λg expert(g)

 big fat expert
 λg big(g), fat(g), expert(g)
 But: bogus expert

Wrong: λg bogus(g), expert(g)
Right: λg (bogus(expert))(g) … bogus maps to new concept

Nouns and Their Modifiers

34

 expert
 λg expert(g)

 big fat expert
 λg big(g), fat(g), expert(g)
 But: bogus expert

Wrong: λg bogus(g), expert(g)
Right: λg (bogus(expert))(g) … bogus maps to new concept

 Baltimore expert (white-collar expert, TV expert …)

 λg Related(Baltimore, g), expert(g) – expert from Baltimore
 Or with different intonation:

 λg (Modified-by(Baltimore, expert))(g) – expert on Baltimore
 Can’t use Related for this case: law expert and dog catcher
= λg Related(law,g), expert(g), Related(dog, g), catcher(g)
= dog expert and law catcher

Nouns and Their Modifiers

34

Nouns and Their Modifiers

 the goldfish that Gilly swallowed

 every goldfish that Gilly swallowed

 three goldfish that Gilly swallowed

35

Nouns and Their Modifiers

 the goldfish that Gilly swallowed

 every goldfish that Gilly swallowed

 three goldfish that Gilly swallowed

λg [goldfish(g), swallowed(Gilly, g)]

35

Nouns and Their Modifiers

 the goldfish that Gilly swallowed

 every goldfish that Gilly swallowed

 three goldfish that Gilly swallowed

λg [goldfish(g), swallowed(Gilly, g)]

 three swallowed-by-Gilly goldfish
like an adjective!

35

Nouns and Their Modifiers

 the goldfish that Gilly swallowed

 every goldfish that Gilly swallowed

 three goldfish that Gilly swallowed

Or for real: λg [goldfish(g), ∃e [past(e), act(e,swallowing),

swallower(e,Gilly), swallowee(e,g)]]

λg [goldfish(g), swallowed(Gilly, g)]

 three swallowed-by-Gilly goldfish
like an adjective!

35

Adverbs

36

 Lili passionately wants Billy
 Wrong?: passionately(want(Lili,Billy)) = passionately(true)

 Better: (passionately(want))(Lili,Billy)

 Best: ∃e present(e), act(e,wanting), wanter(e,Lili),
wantee(e, Billy), manner(e, passionate)

Adverbs

36

 Lili passionately wants Billy
 Wrong?: passionately(want(Lili,Billy)) = passionately(true)

 Better: (passionately(want))(Lili,Billy)

 Best: ∃e present(e), act(e,wanting), wanter(e,Lili),
wantee(e, Billy), manner(e, passionate)

 Lili often stalks Billy
 (often(stalk))(Lili,Billy)

 many(day, λd ∃e present(e), act(e,stalking), stalker(e,Lili),
stalkee(e, Billy), during(e,d))

Adverbs

36

 Lili passionately wants Billy
 Wrong?: passionately(want(Lili,Billy)) = passionately(true)

 Better: (passionately(want))(Lili,Billy)

 Best: ∃e present(e), act(e,wanting), wanter(e,Lili),
wantee(e, Billy), manner(e, passionate)

 Lili often stalks Billy
 (often(stalk))(Lili,Billy)

 many(day, λd ∃e present(e), act(e,stalking), stalker(e,Lili),
stalkee(e, Billy), during(e,d))

 Lili obviously likes Billy
 (obviously(like))(Lili,Billy) – one reading
 obvious(like(Lili, Billy)) – another reading

Adverbs

36

Speech Acts

37

 What is the meaning of a full sentence?
 Depends on the punctuation mark at the end.
 Billy likes Lili. assert(like(B,L))
 Billy likes Lili? ask(like(B,L))

 or more formally, “Does Billy like Lili?”

 Billy, like Lili! command(like(B,L))
 or more accurately, “Let Billy like Lili!”

Speech Acts

37

 What is the meaning of a full sentence?
 Depends on the punctuation mark at the end.
 Billy likes Lili. assert(like(B,L))
 Billy likes Lili? ask(like(B,L))

 or more formally, “Does Billy like Lili?”

 Billy, like Lili! command(like(B,L))
 or more accurately, “Let Billy like Lili!”

 Let’s try to do this a little more precisely, using event
variables etc.

Speech Acts

37

Speech Acts

38

 What did Gilly swallow?

 ask(λx ∃e past(e), act(e,swallowing),
 swallower(e,Gilly),
swallowee(e,x))

 Argument is identical to the modifier “that Gilly swallowed”
 Is there any common syntax?

Speech Acts

38

 What did Gilly swallow?

 ask(λx ∃e past(e), act(e,swallowing),
 swallower(e,Gilly),
swallowee(e,x))

 Argument is identical to the modifier “that Gilly swallowed”
 Is there any common syntax?

 Eat your fish!

 command(λf act(f,eating), eater(f,Hearer), eatee(…))

Speech Acts

38

 What did Gilly swallow?

 ask(λx ∃e past(e), act(e,swallowing),
 swallower(e,Gilly),
swallowee(e,x))

 Argument is identical to the modifier “that Gilly swallowed”
 Is there any common syntax?

 Eat your fish!

 command(λf act(f,eating), eater(f,Hearer), eatee(…))

 I ate my fish.

 assert(∃e past(e), act(e,eating), eater(f,Speaker),
 eatee(…))

Speech Acts

38

 We’ve discussed what semantic representations
should look like.

 But how do we get them from sentences???

 First - parse to get a syntax tree.
 Second - look up the semantics for each word.
 Third - build the semantics for each constituent

 Work from the bottom up
 The syntax tree is a “recipe” for how to do it

Compositional Semantics

39

Compositional Semantics

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

40

Compositional Semantics

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λy λx λe act(e,wanting),
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)

40

Compositional Semantics

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λy λx λe act(e,wanting),
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)

assert(every(nation, λx ∃e present(e),
act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))))

40

Compositional Semantics

41

 Add a “sem” feature to each context-free rule
 S → NP loves NP

 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

 Meaning of S depends on meaning of NPs

Compositional Semantics

41

 Add a “sem” feature to each context-free rule
 S → NP loves NP

 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

 Meaning of S depends on meaning of NPs
 TAG version:

Compositional Semantics

41

 Add a “sem” feature to each context-free rule
 S → NP loves NP

 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

 Meaning of S depends on meaning of NPs
 TAG version:

Compositional Semantics

NPV
loves

VP

S

NP
x

y

loves(x,y)

41

 Add a “sem” feature to each context-free rule
 S → NP loves NP

 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

 Meaning of S depends on meaning of NPs
 TAG version:

Compositional Semantics

NPV
loves

VP

S

NP
x

y

loves(x,y)

NP
 the bucket

V
kicked

VP

S

NP
x

died(x)

41

 Add a “sem” feature to each context-free rule
 S → NP loves NP

 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

 Meaning of S depends on meaning of NPs
 TAG version:

Compositional Semantics

NPV
loves

VP

S

NP
x

y

loves(x,y)

NP
 the bucket

V
kicked

VP

S

NP
x

died(x)

 Template filling: S[sem=showflights(x,y)] →
 I want a flight from NP[sem=x] to NP[sem=y]

41

Compositional Semantics

42

 Instead of S → NP loves NP

 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

Compositional Semantics

42

 Instead of S → NP loves NP

 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

 might want general rules like S → NP VP:

 V[sem=loves] → loves

 VP[sem=v(obj)] → V[sem=v] NP[sem=obj]
 S[sem=vp(subj)] → NP[sem=subj] VP[sem=vp]

Compositional Semantics

42

 Instead of S → NP loves NP

 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

 might want general rules like S → NP VP:

 V[sem=loves] → loves

 VP[sem=v(obj)] → V[sem=v] NP[sem=obj]
 S[sem=vp(subj)] → NP[sem=subj] VP[sem=vp]

 Now George loves Laura has sem=loves(Laura)(George)

Compositional Semantics

42

 Instead of S → NP loves NP

 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y]

 might want general rules like S → NP VP:

 V[sem=loves] → loves

 VP[sem=v(obj)] → V[sem=v] NP[sem=obj]
 S[sem=vp(subj)] → NP[sem=subj] VP[sem=vp]

 Now George loves Laura has sem=loves(Laura)(George)

 In this manner we’ll sketch a version where
 Still compute semantics bottom-up
 Grammar is in Chomsky Normal Form
 So each node has 2 children: 1 function & 1 argument
 To get its semantics, apply function to argument!

Compositional Semantics

42

Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves

λs assert(s)

loves =
λx λy loves(x,y)

L

G

43

Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves

λs assert(s)

loves =
λx λy loves(x,y)

L

G

λy loves(L,y)

43

Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves

λs assert(s)

loves =
λx λy loves(x,y)

L

G

λy loves(L,y)

loves(L,G)

43

Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves

λs assert(s)

loves =
λx λy loves(x,y)

L

G

λy loves(L,y)

loves(L,G)

assert(loves(L,G))

43

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

assert(tall(J))

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

assert(tall(J))
So what do we want here?

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)tall(J)

assert(tall(J))

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

J

tall(J)

assert(tall(J))

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

J

tall(J)

assert(tall(J))

So what do we want here?

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

J

λsubj tall(subj)

tall(J)

assert(tall(J))

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

J

λsubj tall(subj)

tall(J)

assert(tall(J))

tall
= λx tall(x)

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

J

λsubj tall(subj)

tall(J)

assert(tall(J))

tall
= λx tall(x)

So what do we want here?

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

λadj λsubj adj(subj)

J

λsubj tall(subj)

tall(J)

assert(tall(J))

tall
= λx tall(x)

44

Compositional Semantics

AdjP
tall

VPfin

Sfin

START

Punc
.

NP
John

Vpres

is

λs assert(s)

λadj λsubj adj(subj)

J

λsubj tall(subj)

tall(J)

assert(tall(J))

tall
= λx tall(x)

(λadj λsubj adj(subj))(λx tall(x))
= λsubj (λx tall(x))(subj)
= λsubj tall(subj)

44

Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves
loves =

λx λy loves(x,y)
L

G

λy loves(L,y)

loves(L,G)

∃e present(e), act(e,loving),
lover(e,G), lovee(e,L)

45

Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves
loves =

λx λy loves(x,y)
L

G

λy loves(L,y)

loves(L,G)

∃e present(e), act(e,loving),
lover(e,G), lovee(e,L)

 λy ∃e present(e),
act(e,loving),

lover(e,y), lovee(e,L)

45

Compositional Semantics

NP
Laura

VPfin

Sfin

START

Punc
.

NP
George

Vpres

loves
loves =

λx λy loves(x,y)
L

G

λy loves(L,y)

loves(L,G)

∃e present(e), act(e,loving),
lover(e,G), lovee(e,L)

λx λy ∃e present(e),
act(e,loving),

lover(e,y), lovee(e,x)

 λy ∃e present(e),
act(e,loving),

lover(e,y), lovee(e,L)

45

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

Now let’s try a more
complex example, and

really handle tense.

46

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

Now let’s try a more
complex example, and

really handle tense.

46

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

Now let’s try a more
complex example, and

really handle tense.

Treat –s like
yet another
auxiliary

verb

46

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)
the meaning that we
want here: how can
we arrange to get it?

47

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

G

48

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

G

48

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

G
what function should
apply to G to yield the
desired blue result?
 (this is like division!)

48

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

G

49

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

49

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

λa a
λx λe act(e,loving),

lover(e,x), lovee(e,L)

50

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

λa a
λx λe act(e,loving),

lover(e,x), lovee(e,L)

 We’ll say that
“to” is just a bit of syntax that

changes a VPstem to a VPinf
with the same meaning.

50

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

λa a
λx λe act(e,loving),

lover(e,x), lovee(e,L)

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

51

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λx λe act(e,loving),
lover(e,x), lovee(e,L)

52

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λx λe act(e,loving),
lover(e,x), lovee(e,L)

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))
by analogy

52

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λx λe act(e,loving),
lover(e,x), lovee(e,L)

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))
by analogy

53

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λe act(e,loving), lover(e,G), lovee(e,L)

λx λe act(e,loving),
lover(e,x), lovee(e,L)G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λx λe act(e,loving),
lover(e,x), lovee(e,L)

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))

λy λx λe act(e,wanting),
wanter(e,x), wantee(e,y)

by analogy

53

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))

NP
George

54

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

54

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

λv λx ∃e
present(e),

v(x)(e)

54

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

λv λx ∃e
present(e),

v(x)(e)

Your account v is overdrawn, so your
rental application is rejected..
• Deposit some cash x to get v(x)
• Now show you’ve got the money:

∃e present(e), v(x)(e)
• Now you can withdraw x again:

λx ∃e present(e), v(x)(e)
54

Better analogy: How would you modify the
second object on a stack (λx,λe,act…)?

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx λe act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

λv λx ∃e
present(e),

v(x)(e)

Your account v is overdrawn, so your
rental application is rejected..
• Deposit some cash x to get v(x)
• Now show you’ve got the money:

∃e present(e), v(x)(e)
• Now you can withdraw x again:

λx ∃e present(e), v(x)(e)
54

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

55

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

every(nation, λx ∃e present(e),
act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L)))

55

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

every(nation, λx ∃e present(e),
act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L)))

λp every(nation, p)

55

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

every(nation, λx ∃e present(e),
act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L)))

λp every(nation, p)

nation

56

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

λx ∃e present(e), act(e,wanting),
wanter(e,x), wantee(e, λe’

act(e’,loving),
lover(e’,G), lovee(e’,L))

NP
George

every(nation, λx ∃e present(e),
act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L)))

λp every(nation, p)

λn λp
every(n, p)

nation

56

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

NP
George

every(nation, λx ∃e present(e),
act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L)))

λs assert(s)

57

In Summary: From the Words

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λy λx λe act(e,wanting),
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)

58

In Summary: From the Words

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λy λx λe act(e,wanting),
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)

58

In Summary: From the Words

NP
Laura

Vstem

love

VPstem

VPinf

T
to

Sinf

NP
George

VPstem

Vstem

want

VPfin

T
-s

Sfin

NP

N
nation

Det
Every

START

Punc
.

G

λa a

λy λx λe act(e,loving),
lover(e,x), lovee(e,y)

L

λy λx λe act(e,wanting),
wanter(e,x), wantee(e,y)

λv λx ∃e present(e),v(x)(e)

every nation

λs assert(s)

assert(every(nation, λx ∃e present(e),
act(e,wanting), wanter(e,x),
wantee(e, λe’ act(e’,loving),

lover(e’,G), lovee(e’,L))))

58

 Temporal logic
 Gilly had swallowed eight goldfish
 before Milly reached the bowl

 Billy said Jilly was pregnant

 Billy said, “Jilly is pregnant.”

 Generics
 Typhoons arise in the Pacific

 Children must be carried

 Presuppositions
 The king of France is bald.

 Have you stopped beating your wife?

 Pronoun-Quantifier Interaction (“bound anaphora”)
 Every farmer who owns a donkey beats it.

 If you have a dime, put it in the meter.

 The woman who every Englishman loves is his mother.

 I love my mother and so does Billy.

Other Fun Semantic Stuff:
A Few Much-Studied Miscellany

59

In Summary

How do we judge a good meaning
representation?

How can we represent sentence meaning
with first-order logic?

How can logical representations of
sentences be composed from logical forms
of words?

Next time: can we train models to recover
logical forms?

60

