Estimation
 Maximum Likelihood and Smoothing

Introduction to Natural Language Processing
Computer Science 585—Fall 2009
University of Massachusetts Amherst

David Smith

Simple Estimation

- Probability courses usually start with equiprobable events
- Coin flips, dice, cards
- How likely to get a 6 rolling I die?
- How likely the sum of two dice is 6 ?
- How likely to see 3 heads in 10 flips?

Binomial Distribution

For n trials, k successes, and success probability p :

$$
\begin{aligned}
P(k) & =\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { Prob. mass function } \\
\binom{n}{k} & =\frac{n!}{k!(n-k)!}
\end{aligned}
$$

Estimation problem: If we observe n and k, what is \boldsymbol{p} ?

Maximum Likelihood

Say we win 40 games out of 100.
$P(40)=\binom{100}{40} p^{40}(1-p)^{60}$
The maximum likelihood estimator for p solves:

$$
\max _{p} P(\text { observed data })=\max _{p}\binom{100}{40} p^{40}(1-p)^{60}
$$

Maximum Likelihood

Likelihood of $40 / 100$ wins

Maximum Likelihood

How to solve $\quad \max _{p}\binom{100}{40} p^{40}(1-p)^{60}$

Maximum Likelihood

How to solve $\quad \max _{p}\binom{100}{40} p^{40}(1-p)^{60}$

$$
\begin{aligned}
0 & =\frac{\partial}{\partial p}\binom{100}{40} p^{40}(1-p)^{60} \\
& =40 p^{39}(1-p)^{60}-60 p^{40}(1-p)^{59} \\
& =p^{39}(1-p)^{59}[40(1-p)-60 p] \\
& =p^{39}(1-p)^{59} 40-100 p
\end{aligned}
$$

Maximum Likelihood

How to solve $\quad \max _{p}\binom{100}{40} p^{40}(1-p)^{60}$

$$
\begin{aligned}
0 & =\frac{\partial}{\partial p}\binom{100}{40} p^{40}(1-p)^{60} \\
& =40 p^{39}(1-p)^{60}-60 p^{40}(1-p)^{59} \\
& =p^{39}(1-p)^{59}[40(1-p)-60 p] \\
& =p^{39}(1-p)^{59} 40-100 p
\end{aligned}
$$

Solutions: 0, I, . 4

Maximum Likelihood

How to solve $\quad \max _{p}\binom{100}{40} p^{40}(1-p)^{60}$

$$
\begin{aligned}
0 & =\frac{\partial}{\partial p}\binom{100}{40} p^{40}(1-p)^{60} \\
& =40 p^{39}(1-p)^{60}-60 p^{40}(1-p)^{59} \\
& =p^{39}(1-p)^{59}[40(1-p)-60 p] \\
& =p^{39}(1-p)^{59} 40-100 p
\end{aligned}
$$

The maximizer!

Solutions: 0, I, . 4

Maximum Likelihood

How to solve $\quad \max _{p}\binom{100}{40} p^{40}(1-p)^{60}$

$$
\begin{aligned}
0 & =\frac{\partial}{\partial p}\binom{100}{40} p^{40}(1-p)^{60} \\
& =40 p^{39}(1-p)^{60}-60 p^{40}(1-p)^{59} \\
& =p^{39}(1-p)^{59}[40(1-p)-60 p] \\
& =p^{39}(1-p)^{59} 40-100 p
\end{aligned}
$$

In general, k / n
Solutions: 0, I, . 4

Maximum Likelihood

How to solve $\quad \max _{p}\binom{100}{40} p^{40}(1-p)^{60}$

$$
\begin{aligned}
0 & =\frac{\partial}{\partial p}\binom{100}{40} p^{40}(1-p)^{60} \\
& =40 p^{39}(1-p)^{60}-60 p^{40}(1-p)^{59} \\
& =p^{39}(1-p)^{59}[40(1-p)-60 p] \\
& =p^{39}(1-p)^{59} 40-100 p
\end{aligned}
$$

In general, k/n
Solutions: 0, I, . 4
This is trivial here, but a widely useful approach.

ML for Language Models

- Say the corpus has "in the" 100 times
- If we see "in the beginning" 5 times,

PML(beginning | in the) $=$?

- If we see "in the end" 8 times, PML(end |in the) $=$?
- If we see "in the kitchen" 0 times, Pmı(kitchen | in the) $=$?

ML for Naive Bayes

- Recall: $\mathrm{p}(+$ | Damon movie)

$$
=p(\text { Damon } \mid+) p(\text { movie } \mid+) p(+)
$$

- If corpus of positive reviews has 1000 words, and "Damon" occurs 50 times, Pml(Damon | +) = ?
- If pos. corpus has "Affleck" 0 times, $p(+\mid$ Affleck Damon movie $)=$?

Will the Sun Rise Tomorrow?

Will the Sun Rise Tomorrow?

Laplace's Rule of Succession:
On day $n+I$, we've observed that the sun has risen s times before.

$$
p_{L a p}\left(S_{n+1}=1 \mid S_{1}+\cdots+S_{n}=s\right)=\frac{s+1}{n+2}
$$

What's the probability on day 0 ?
On day I?
On day 10^{6} ?
Start with prior assumption of equal rise/not-rise probabilities; update after every observation.

Laplace (Add One) Smoothing

- From our earlier example:

PML(beginning |in the) $=5 / 100$? reduce! $\operatorname{PML}($ end \mid in the $)=8 / 100$? reduce! $\operatorname{PML}($ kitchen \mid in the $)=0 / 100$? increase!

Laplace (Add One) Smoothing

- Let V be the vocabulary size:
i.e., the number of unique words that could follow "in the"
- From our earlier example:

PML(beginning | in the) $=(5+\mathrm{I}) /(100+\mathrm{V})$
PmL(end |in the) $=(8+1) /(100+V)$
PML(kitchen \mid in the $)=(0+\mathrm{I}) /(\mathrm{I} 00+\mathrm{V})$

Generalized Additive Smoothing

- Laplace add-one smoothing now assigns too much probability to unseen words
- More common to use λ instead of I:

$$
\begin{aligned}
p\left(w_{3} \mid w_{1}, w_{2}\right) & =\frac{C\left(w_{1}, w_{2}, w_{3}\right)+\lambda}{C\left(w_{1}, w_{2}\right)+\lambda V} \\
& =\mu \frac{C\left(w_{1}, w_{2}, w_{3}\right)}{C\left(w_{1}, w_{2}\right)}+(1-\mu) \frac{1}{V} \\
\mu & =\frac{C\left(w_{1}, w_{2}\right)}{C\left(w_{1}, w_{2}\right)+\lambda V}
\end{aligned}
$$

Generalized Additive Smoothing

- Laplace add-one smoothing now assigns too much probability to unseen words
- More common to use λ instead of I:
interpolation $=\mu \frac{C\left(w_{1}, w_{2}, w_{3}\right)}{C\left(w_{1}, w_{2}\right)}+(1-\mu) \frac{1}{V}$
$p\left(w_{3} \mid w_{1}, w_{2}\right)=\frac{C\left(w_{1}, w_{2}, w_{3}\right)+\lambda}{C\left(w_{1}, w_{2}\right)+\lambda V}$

$$
\mu=\frac{C\left(w_{1}, w_{2}\right)}{C\left(w_{1}, w_{2}\right)+\lambda V}
$$

Generalized Additive Smoothing

- Laplace add-one smoothing now assigns too much probability to unseen words
- More common to use λ instead of I:
$p\left(w_{3} \mid w_{1}, w_{2}\right)=\frac{C\left(w_{1}, w_{2}, w_{3}\right)+\lambda}{C\left(w_{1}, w_{2}\right)+\lambda V}$
interpolation
$=\mu \frac{C\left(w_{1}, w_{2}, w_{3}\right)}{C\left(w_{1}, w_{2}\right)}+(1-\mu) \frac{1}{V}$

$$
\mu=\frac{C\left(w_{1}, w_{2}\right)}{C\left(w_{1}, w_{2}\right)+\lambda V}
$$

Picking Parameters

- What happens if we optimize parameters on training data, i.e. the same corpus we use to get counts?
- Maximum likelihood estimate!
- Use held-out data aka development data

Good-Turing Smoothing

- Intuition: Can judge rate of novel events by rate of singletons
- Developed to estimate \# of unseen species in field biology
- Let $\mathrm{N}_{\mathrm{r}}=\#$ of word types with r training tokens
- e.g., $\mathrm{N}_{0}=$ number of unobserved words
- e.g., $\mathrm{N}_{\mathrm{I}}=$ number of singletons (hapax legomena)
- Let $N=\sum r N_{r}=$ total \# of training tokens

Good-Turing Smoothing

- Max. likelihood estimate if w has r tokens? r / N
- Total max. likelihood probability of all words with r tokens? N_{r} r/N
- Good-Turing estimate of this total probability:
- Defined as: $\mathrm{N}_{\mathrm{r}+1}(\mathrm{r}+\mathrm{I}) / \mathrm{N}$
- So proportion of novel words in test data is estimated by proportion of singletons in training data.
- Proportion in test data of the N_{1} singletons is estimated by proportion of the N_{2} doubletons in training data. etc.
- $p($ any given word $w / f r e q . r)=N_{r+1}(r+I) /\left(N N_{r}\right)$
- NB: No parameters to tune on held-out data

Backoff

- Say we have the counts:
$C($ in the kitchen $)=0$
C (the kitchen) $=3$
C (kitchen) $=4$
C (arboretum) $=0$
- ML estimates seem counterintuitive:
$p($ kitchen \mid in the $)=p($ arboretum \mid in the $)=0$

Backoff

- Clearly we shouldn't treat "kitchen" the same as "arboretum"
- Basic add- λ (and other) smoothing methods assign the same prob. to all unseen events
- Backoff divides up prob. of unseen unevenly in proportion to, e.g., lower-order n-grams
- If $p(z \mid x, y)=0$, use $p(z \mid y)$, etc.

Deleted Interpolation

- Simplest form of backoff
- Form a mixture of different order n-gram models; learn weights on held-out data

$$
\begin{aligned}
p_{\text {del }}(z \mid x, y) & =\alpha_{3} p(z \mid x, y)+\alpha_{2} p(z \mid y)+\alpha_{1} p(z) \\
\sum \alpha_{i} & =1
\end{aligned}
$$

- How else could we back off?

Readings, etc.

- For more information on basic probability, read M\&S 2.1
- For more information on language model estimation, read M\&S 6
- Next, time Hidden Markov Models

