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Final Exam

• Wednesday, Dec. 16, 10:30, CS 142

• At least 2/3 from course’s second half

• Focus on modeling techniques, such as:

• Log-linear models

• Sequence labeling, e.g. for information extraction

• Formal semantics, simple λ-expressions

• Word clustering

• Simple machine translation algorithms: IBM Model-1, ITG
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Conditional Probability

P (A | B) =
P (A,B)
P (B)

P (A,B) = P (B)P (A | B) = P (A)P (B | A)

P (A1, A2, . . . , An) = P (A1)P (A2 | A1)P (A3 | A1, A2)
· · · P (An | A1, . . . , An−1)Chain rule

A

BA
∩B
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Independence

P (A,B) = P (A)P (B)
⇔

P (A | B) = P (A) ∧ P (B | A) = P (B)

In coding terms, knowing B doesn’t 
help in decoding A, and vice versa.
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Another View of 
Markov Models

p(w1, w2, . . . , wn) = p(w1)p(w2 | w1)p(w3 | w1, w2)
p(w4 | w1, w2, w3) · · · p(wn | p1, . . . , pn−1)
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Yet Another View

w1 w2 w3 w4

The results have shown
p(w2|The) p(w3|results) p(w4|have) p(w5|shown)

The results have shown
p(w2|The) p(w3|The,results) p(w4|results,have) p(w5|have,shown)

Directed graphical models: lack of edge means conditional independence
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Forward Algorithm (LM)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ
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Forward Algorithm (LM)

Fed raises interest rates

NNP

NNS

NN

VB

VBZ

sum = αVB(3)
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Bayes’ Theorem

P (A,B) = P (B)P (A | B) = P (A)P (B | A)

P (A | B) =
P (B | A)P (A)

P (B)

By the definition of conditional probability:

we can show:

Seemingly trivial result from 1763; 
interesting consequences...
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A “Bayesian” Classifier

Prior
Likelihood

max
R∈{!̈,"̈}

p(R | w1, w2, . . . , wn) = max
R∈{!̈,"̈}

p(R)p(w1, w2, . . . , wn | R)

Posterior

p(R | w1, w2, . . . , wn) =
p(R)p(w1, w2, . . . , wn | R)

p(w1, w2, . . . , wn)
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Naive Bayes Classifier

w1 w2 w3 w4

R

No dependencies among words!
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NB on Movie Reviews

>>> classifier.show_most_informative_features(5)

classifier.show_most_informative_features(5)
Most Informative Features
   contains(outstanding) = True              pos : neg    =     14.1 : 1.0
         contains(mulan) = True              pos : neg    =      8.3 : 1.0
        contains(seagal) = True              neg : pos    =      7.8 : 1.0
   contains(wonderfully) = True              pos : neg    =      6.6 : 1.0
         contains(damon) = True              pos : neg    =      6.1 : 1.0

• Train models for positive, negative

• For each review, find higher posterior

• Which word probability ratios are highest?
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What’s Wrong With 
NB?

• What happens for word dependencies are 
strong?

• What happens when some words occur 
only once?

• What happens when the classifier sees a 
new word?
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Generative vs. Conditional

! What is the most likely label for a given 
input?

! How likely is a given label for a given input?

! What is the most likely input value?

! How likely is a given input value?

! How likely is a given input value with a given 
label?

! What is the most likely label for an input 
that might have one of two values (but we 
don't know which)?

19

19
14
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Sequence Labeling

• Inputs: x = (x1, …, xn)

• Labels: y = (y1, …, yn)

• Typical goal: Given x, predict y

• Example sequence labeling tasks

– Part-of-speech tagging

– Named-entity-recognition (NER)

• Label people, places, organizations
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NER Example:
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First Solution:

Maximum Entropy Classifier
• Conditional model p(y|x).

– Do not waste effort modeling p(x), since x

is given at test time anyway.

– Allows more complicated input features,

since we do not need to model

dependencies between them.

• Feature functions f(x,y):

– f1(x,y) = { word is Boston & y=Location }

– f2(x,y) = { first letter capitalized & y=Name }

– f3(x,y) = { x is an HTML link & y=Location}
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First Solution: MaxEnt Classifier

• How should we choose a classifier?

• Principle of maximum entropy

– We want a classifier that:

• Matches feature constraints from training data.

• Predictions maximize entropy.

• There is a unique, exponential family

distribution that meets these criteria.
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First Solution: MaxEnt Classifier

• Problem with using a maximum entropy

classifier for sequence labeling:

• It makes decisions at each position

independently!
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Second Solution: HMM

• Defines a generative process.

• Can be viewed as a weighted finite

state machine.! 

P(y,x) = P(yt | yt"1)P(x | yt )
t

#
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Second Solution: HMM

• HMM problems: (ON BOARD)

– Probability of an input sequence.

– Most likely label sequence given an input

sequence.

– Learning with known label sequences.

– Learning with unknown label sequences?
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Second Solution: HMM

• How can represent we multiple features

in an HMM?

– Treat them as conditionally independent

given the class label?

• The example features we talked about are not

independent.

– Try to model a more complex generative

process of the input features?

• We may lose tractability (i.e. lose a dynamic

programming for exact inference).
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Second Solution: HMM

• Let’s use a conditional model instead.
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P (y | x) =
∏

t

P (yt | yt−1,x)

Third Solution: MEMM

• Use a series of maximum entropy

classifiers that know the previous label.

• Define a Viterbi algorithm for inference.

! 

P(y | x) = Pyt"1 (yt | x)
t

#
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Third Solution: MEMM

• Combines the advantages of maximum

entropy and HMM!

• But there is a problem…
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Problem with MEMMs: Label Bias

• In some state space configurations,

MEMMs essentially completely ignore

the inputs.

• Example (ON BOARD).

• This is not a problem for HMMs,

because the input sequence is

generated by the model.
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P (y | x) =
1
Z

∏

t

Ψt(yt, yt−1,x)

Ψt(yt, yt−1,x) = exp

[
∑

k

λkfk(yt, yt−1,x)

]

Z =
∑

y′

∏

t

Ψ(y′t, y
′
t−1,x)

Fourth Solution:

Conditional Random Field

• Conditionally-trained, undirected

graphical model.

• For a standard linear-chain structure:

! 

P(y | x) = "k (yt ,yt#1,x)
t

$

"k (yt ,yt#1,x) = exp %k
k

& f (yt ,yt#1,x)
' 

( 
) 

* 

+ 
, 

Normalize over all 
possible outputs 
using forward alg.

Dot-product of 
weights and features

Bigram model: 
potentials consider 
pairs of labels
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Fourth Solution: CRF

• Have the advantages of MEMMs, but

avoid the label bias problem.

• CRFs are globally normalized, whereas

MEMMs are locally normalized.

• Widely used and applied.  CRFs give

state-the-art results in many domains.
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Example Applications

• CRFs have been applied to:

– Part-of-speech tagging

– Named-entity-recognition

– Table extraction

– Gene prediction

– Chinese word segmentation

– Extracting information from research

papers.

– Many more…
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Edge-Factored Parsers (McDonald et al. 2005)

Byl studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

V A A A N J N V C

byl jasn stud dubn den a hodi odbí třin

 Which edge is better?
 Score of an edge e = θ ⋅ features(e)
 Standard algos  valid parse with max total score

our current weight vector
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Recipe for Conditional 
Training of p(y | x)

1. Gather constraints/features from training data

2. Initialize all parameters to zero

3. Classify training data with current parameters; calculate 
expectations

4. Gradient is

5. Take a step in the direction of the gradient

6. Repeat from 3 until convergence 43 43
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EM!
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Gradient-Based Training

• λ := λ + rate * Gradient(F)

• After all training examples? (batch)

• After every example? (on-line)

• Use second derivative for faster learning?

• A big field: numerical optimization

33



Overfitting
• If we have too many features, we can choose 

weights to model the training data perfectly

• If we have a feature that only appears in spam 
training, not ham training, it will get weight ∞ to 
maximize p(spam | feature) at 1.

• These behaviors

• Overfit the training data

• Will probably do poorly on test data

34



Solutions to Overfitting
• Throw out rare features. 

• Require every feature to occur > 4 times, and > 0 times with 
ling, and > 0 times with spam. 

• Only keep, e.g., 1000 features.  

• Add one at a time, always greedily picking the one that most 
improves performance on held-out data. 

• Smooth the observed feature counts. 

• Smooth the weights by using a prior. 

• max p(λ|data) = max p(λ, data) =p(λ)p(data|λ) 

• decree p(λ) to be high when most weights close to 0 
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Smoothing with Priors
• What if we had a prior expectation that parameter values 

wouldn’t be very large?

• We could then balance evidence suggesting large (or 
infinite) parameters against our prior expectation.

• The evidence would never totally defeat the prior, and 
parameters would be smoothed (and kept finite)

• We can do this explicitly by changing the optimization 
objective to maximum posterior likelihood:

log P(y, λ | x) = log P(λ) + log P(y | x, λ)

Posterior          Prior        Likelihood
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First-order Representations
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 Or using one of our quantifier predicates:
 exists(λg goldfish(g), λg swallowed(Gilly,g)) 

 Equivalently: exists(goldfish, swallowed(Gilly))
 “In the set of goldfish there exists one swallowed by Gilly”

 Here goldfish is a predicate on entities
 This is the same semantic type as red
 But note: goldfish is noun and red is adjective

First-order Representations
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 S[sem=loves(x,y)] → NP[sem=x] loves NP[sem=y] 
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died(x)

 Template filling: S[sem=showflights(x,y)] → 
      I want a flight from NP[sem=x] to NP[sem=y]
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ccg Grammar 34

“Non-constituents” in ccg – Right Node Raising

Google sells but Microsoft buys shares

NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<Φ>

S/NP
>

S

Stephen Clark Practical Linguistically Motivated Parsing JHU, June 2009
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CCG Semantics

• Categories encode argument sequences

• Parallel syntactic combinator operations 
and lambda calculus semantic operations
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Words as Vectors 

 Represent each word type w by a point in k-
dimensional space
 e.g., k is size of vocabulary 
 the 17th coordinate of w represents strength of w’s 

association with vocabulary word 17
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Learning Classes by Clustering 

 Plot all word types in k-dimensional space
 Look for clusters of close-together types

Plot in k dimensions (here k=3)
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Bottom-Up Clustering – Single-Link

each word type is
a single-point cluster

example from Manning & Schütze
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Bottom-Up Clustering – Single-Link

Again, merge closest pair of clusters:
Single-link: clusters are close if any of their points are
             dist(A,B) = min dist(a,b) for a∈A, b∈B
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Bottom-Up Clustering 

Start with one cluster per point
Repeatedly merge 2 closest clusters

 Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B

 Complete-link: dist(A,B) = max dist(a,b) for a∈A, b∈B
 too slow to update cluster distances after each merge; but ∃ alternatives!
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 Average-link: dist(A,B) = mean dist(a,b) for a∈A, b∈B

 Centroid-link: dist(A,B) = dist(mean(A),mean(B))

Stop when clusters are “big enough”
 e.g., provide adequate support for backoff (on a development corpus)

Some flexibility in defining dist(a,b)
 Might not be Euclidean distance; e.g., use vector angle

Start with one cluster per point
Repeatedly merge 2 closest clusters

 Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B
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EM Clustering (for k clusters)

46



EM Clustering (for k clusters)

 EM algorithm
 Viterbi version – called “k-means clustering”
 Full EM version – called “Gaussian mixtures”

46



EM Clustering (for k clusters)

 EM algorithm
 Viterbi version – called “k-means clustering”
 Full EM version – called “Gaussian mixtures”

46



EM Clustering (for k clusters)

 EM algorithm
 Viterbi version – called “k-means clustering”
 Full EM version – called “Gaussian mixtures”

 Expectation step: Use current parameters (and observations) to 
reconstruct hidden structure

46



EM Clustering (for k clusters)

 EM algorithm
 Viterbi version – called “k-means clustering”
 Full EM version – called “Gaussian mixtures”

 Expectation step: Use current parameters (and observations) to 
reconstruct hidden structure

 Maximization step: Use that hidden structure (and observations) to 
reestimate parameters

46



EM Clustering (for k clusters)

 EM algorithm
 Viterbi version – called “k-means clustering”
 Full EM version – called “Gaussian mixtures”

 Expectation step: Use current parameters (and observations) to 
reconstruct hidden structure

 Maximization step: Use that hidden structure (and observations) to 
reestimate parameters

46



EM Clustering (for k clusters)

 EM algorithm
 Viterbi version – called “k-means clustering”
 Full EM version – called “Gaussian mixtures”

 Expectation step: Use current parameters (and observations) to 
reconstruct hidden structure

 Maximization step: Use that hidden structure (and observations) to 
reestimate parameters

 Parameters: k points representing cluster centers

46



EM Clustering (for k clusters)

 EM algorithm
 Viterbi version – called “k-means clustering”
 Full EM version – called “Gaussian mixtures”

 Expectation step: Use current parameters (and observations) to 
reconstruct hidden structure

 Maximization step: Use that hidden structure (and observations) to 
reestimate parameters

 Parameters: k points representing cluster centers
 Hidden structure: for each data point (word type), 

which center generated it?
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1

Lexical translation

• How to translate a word → look up in dictionary

Haus — house, building, home, household, shell.

• Multiple translations

– some more frequent than others
– for instance: house, and building most common
– special cases: Haus of a snail is its shell

• Note: During all the lectures, we will translate from a foreign language into
English

Philipp Koehn JHU SS 6 July 2006
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2

Collect statistics

• Look at a parallel corpus (German text along with English translation)

Translation of Haus Count
house 8,000
building 1,600
home 200
household 150
shell 50

Philipp Koehn JHU SS 6 July 2006
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3

Estimate translation probabilities

• Maximum likelihood estimation

pf(e) =






0.8 if e = house,

0.16 if e = building,

0.02 if e = home,

0.015 if e = household,

0.005 if e = shell.

Philipp Koehn JHU SS 6 July 2006
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4

Alignment

• In a parallel text (or when we translate), we align words in one language with
the words in the other

das Haus ist klein

the house is small

1 2 3 4

1 2 3 4

• Word positions are numbered 1–4

Philipp Koehn JHU SS 6 July 2006
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6

Reordering

• Words may be reordered during translation

das Hausistklein

the house is small
1 2 3 4

1 2 3 4

a : {1→ 3, 2→ 4, 3→ 2, 4→ 1}

Philipp Koehn JHU SS 6 July 2006
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10

IBM Model 1

• Generative model: break up translation process into smaller steps
– IBM Model 1 only uses lexical translation

• Translation probability
– for a foreign sentence f = (f1, ..., flf) of length lf
– to an English sentence e = (e1, ..., ele) of length le
– with an alignment of each English word ej to a foreign word fi according to

the alignment function a : j → i

p(e, a|f) =
ε

(lf + 1)le

le∏

j=1

t(ej|fa(j))

– parameter ε is a normalization constant

Philipp Koehn JHU SS 6 July 2006
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11

Example
das Haus ist klein

e t(e|f)
the 0.7
that 0.15
which 0.075
who 0.05
this 0.025

e t(e|f)
house 0.8
building 0.16
home 0.02
household 0.015
shell 0.005

e t(e|f)
is 0.8
’s 0.16
exists 0.02
has 0.015
are 0.005

e t(e|f)
small 0.4
little 0.4
short 0.1
minor 0.06
petty 0.04

p(e, a|f) =
ε

43
× t(the|das)× t(house|Haus)× t(is|ist)× t(small|klein)

=
ε

43
× 0.7× 0.8× 0.8× 0.4

= 0.0028ε

Philipp Koehn JHU SS 6 July 2006
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12

Learning lexical translation models

• We would like to estimate the lexical translation probabilities t(e|f) from a
parallel corpus

• ... but we do not have the alignments

• Chicken and egg problem

– if we had the alignments,
→ we could estimate the parameters of our generative model

– if we had the parameters,
→ we could estimate the alignments

Philipp Koehn JHU SS 6 July 2006
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13

EM algorithm

• Incomplete data

– if we had complete data, would could estimate model
– if we had model, we could fill in the gaps in the data

• Expectation Maximization (EM) in a nutshell

– initialize model parameters (e.g. uniform)
– assign probabilities to the missing data
– estimate model parameters from completed data
– iterate

Philipp Koehn JHU SS 6 July 2006
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Symmetrizing word alignments

Maria no daba una

bofetada

a la

bruja

verde

Mary

witch

green

the

slap

not

did

Maria no daba una

bofetada

a la

bruja

verde

Mary

witch

green

the

slap

not

did

Maria no daba una

bofetada

a la

bruja

verde

Mary

witch

green

the

slap

not

did

english to spanish spanish to english

intersection

• Intersection of GIZA++ bidirectional alignments

Philipp Koehn JHU SS 6 July 2006
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IBM Model 4

Mary did not slap the green witch

Mary not slap slap slap the green witch

Mary not slap slap slap NULL the green witch

Maria no daba una botefada a la verde bruja

Maria no daba una bofetada a la bruja verde

n(3|slap)

p-null

t(la|the)

d(4|4)

Philipp Koehn JHU SS 6 July 2006
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Phrase Models
I

did

not

unfortunately

receive

an

answer

to

this

question

Auf diese Frage habe ich leider keine Antwort bekom
men

Some good phrase pairs.
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Synchronous Grammars

• Just like monolingual grammars except...
–Each rule involves pairs (tuples) of nonterminals
–Tuples of elementary trees for TAG, etc.

• First proposed for source-source translation in 
compilers

• Can be constituency, dependency, lexicalized, 
etc.

• Parsing speedups for monolingual grammar 
don’t necessarily work
–E.g., no split-head trick for lexicalized parsing

• Binarization less straightforward
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Bilingual Parsing
póll’ oîd’ alṓpēx

the

fox NN/NN

knows
VB/VB

many
JJ/JJ

things

póll’ oîd’ alṓpēx

the fox knows many things

A variant of CKY chart parsing.
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Bilingual Parsing
póll’ oîd’ alṓpēx

the

NP/NP
fox

NP/NP

knows
VP/VP

many

NP/NP
things

NP/NP

póll’ oîd’ alṓpēx

the fox knows many things

NPNP

NP NP

V’

V’
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Bilingual Parsing
póll’ oîd’ alṓpēx

the

S/SS/SS/S

fox

S/SS/SS/S
knows

S/SS/SS/S

many

S/SS/SS/S

things

S/SS/SS/S

póll’ oîd’ alṓpēx

the fox knows many things

NPNP

NP NP

V’

V’

VP

VP

S

S
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