Review Slides

Introduction to Natural Language Processing
 Computer Science 585-Fall 2009
 University of Massachusetts Amherst

David Smith

Final Exam

- Wednesday, Dec. 16, I0:30, CS I42
- At least $2 / 3$ from course's second half
- Focus on modeling techniques, such as:
- Log-linear models
- Sequence labeling, e.g. for information extraction
- Formal semantics, simple λ-expressions
- Word clustering
- Simple machine translation algorithms: IBM Model-I, ITG

Conditional Probability

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

$$
P(A, B)=P(B) P(A \mid B)=P(A) P(B \mid A)
$$

$P\left(A_{1}, A_{2}, \ldots, A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1}, A_{2}\right)$
Chain rule
$\cdots P\left(A_{n} \mid A_{1}, \ldots, A_{n-1}\right)$

Independence

$$
\begin{aligned}
P(A, B) & =P(A) P(B) \\
& \Leftrightarrow \\
P(A \mid B)=P(A) & \wedge P(B \mid A)=P(B)
\end{aligned}
$$

In coding terms, knowing B doesn't help in decoding A, and vice versa.

Another View of Markov Models

$$
\begin{aligned}
p\left(w_{1}, w_{2}, \ldots, w_{n}\right)= & p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{3} \mid w_{1}, w_{2}\right) \\
& p\left(w_{4} \mid w_{1}, w_{2}, w_{3}\right) \cdots p\left(w_{n} \mid p_{1}, \ldots, p_{n-1}\right)
\end{aligned}
$$

Another View of Markov Models

$$
\begin{aligned}
p\left(w_{1}, w_{2}, \ldots, w_{n}\right)= & p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{3} \mid w_{1}, w_{2}\right) \\
& p\left(w_{4} \mid w_{1}, w_{2}, w_{3}\right) \cdots p\left(w_{n} \mid p_{1}, \ldots, p_{n-1}\right)
\end{aligned}
$$

Markov independence assumption

$$
p\left(w_{i} \mid w_{1}, \ldots w_{i-1}\right) \approx p\left(w_{i} \mid w_{i-1}\right)
$$

Another View of Markov Models

$$
\begin{aligned}
p\left(w_{1}, w_{2}, \ldots, w_{n}\right)= & p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{3} \mid w_{1}, w_{2}\right) \\
& p\left(w_{4} \mid w_{1}, w_{2}, w_{3}\right) \cdots p\left(w_{n} \mid p_{1}, \ldots, p_{n-1}\right)
\end{aligned}
$$

Markov independence assumption

$$
p\left(w_{i} \mid w_{1}, \ldots w_{i-1}\right) \approx p\left(w_{i} \mid w_{i-1}\right)
$$

$$
\begin{aligned}
p\left(w_{1}, w_{2}, \ldots, w_{n}\right) \approx & p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{3} \mid w_{2}\right) \\
& p\left(w_{4} \mid w_{3}\right) \cdots p\left(w_{n} \mid p_{n-1}\right)
\end{aligned}
$$

Yet Another View

Yet Another View

Directed graphical models: lack of edge means conditional independence

Yet Another View

Directed graphical models: lack of edge means conditional independence

Yet Another View

Directed graphical models: lack of edge means conditional independence

Yet Another View

Directed graphical models: lack of edge means conditional independence

Forward Algorithm (LM)

Setting up a Classifier

Setting up a Classifier

- What we want:

$$
\left.p\left({ }^{\circ} \mid w_{1}, w_{2}, \ldots, w_{n}\right)>p^{(\otimes} \mid w_{1}, w_{2}, \ldots, w_{n}\right) ?
$$

Setting up a Classifier

- What we want:
$P\left(\odot \mid w_{1}, w_{2}, \ldots, w_{n}\right)>P\left({ }^{\ominus} \mid w_{1}, w_{2}, \ldots, w_{n}\right) ?$
- What we know how to build:

Setting up a Classifier

- What we want:
$\left.p()^{-} \mid w_{1}, w_{2}, \ldots, w_{n}\right)>p\left({ }^{\ominus} \mid w_{1}, w_{2}, \ldots, w_{n}\right) ?$
- What we know how to build:
- A language model for each class

Setting up a Classifier

- What we want:

$$
P\left(\odot \mid w_{1}, w_{2}, \ldots, w_{n}\right)>p\left({ }^{\ominus} \mid w_{1}, w_{2}, \ldots, w_{n}\right) ?
$$

- What we know how to build:
- A language model for each class
- $p\left(w_{1}, w_{2}, \ldots, w_{n} \mid \odot\right)$

Setting up a Classifier

- What we want:

$$
P\left(\odot \mid w_{1}, w_{2}, \ldots, w_{n}\right)>p\left({ }^{\ominus} \mid w_{1}, w_{2}, \ldots, w_{n}\right) ?
$$

- What we know how to build:
- A language model for each class
- $p\left(w_{1}, w_{2}, \ldots, w_{n} \mid \odot\right)$
- $p\left(w_{1}, w_{2}, \ldots, w_{n} \mid \odot\right)$

Bayes' Theorem

By the definition of conditional probability:

$$
P(A, B)=P(B) P(A \mid B)=P(A) P(B \mid A)
$$

we can show:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Seemingly trivial result from 1763; interesting consequences...

A "Bayesian" Classifier

$$
p\left(R \mid w_{1}, w_{2}, \ldots, w_{n}\right)=\frac{p(R) p\left(w_{1}, w_{2}, \ldots, w_{n} \mid R\right)}{p\left(w_{1}, w_{2}, \ldots, w_{n}\right)}
$$

Naive Bayes Classifier

R

NB on Movie Reviews

- Train models for positive, negative
- For each review, find higher posterior
- Which word probability ratios are highest?

```
>>> classifier.show_most_informative_features(5)
classifier.show_most_informative_features(5)
Most Informative Features
    contains(outstanding) = True
            contains(mulan) = True
            contains(seagal) = True
    contains(wonderfully) = True
            contains(damon) = True
\begin{tabular}{rlr} 
pos \(:\) neg & \(=\) & \(14.1: 1.0\) \\
pos \(:\) neg & \(=\) & \(8.3: 1.0\) \\
neg \(:\) pos & \(=\) & \(7.8: 1.0\) \\
pos \(:\) neg & \(=\) & \(6.6: 1.0\) \\
pos \(:\) neg & \(=\) & \(6.1: 1.0\)
\end{tabular}
```


What's Wrong With NB?

- What happens for word dependencies are strong?
- What happens when some words occur only once?
- What happens when the classifier sees a new word?

Generative vs. Conditional

- What is the most likely label for a given input?
- How likely is a given label for a given input?
- What is the most likely input value?
- How likely is a given input value?
- How likely is a given input value with a given label?
- What is the most likely label for an input that might have one of two values (but we don't know which)?

Generative vs. Conditional

- What is the most likely label for a given input?
- How likely is a given label for a given input? What is the most likely input value? How likely is a given input value?
- How likely is a given input value with a given label?
- What is the most likely label for an input that might have one of two values (but we don't know which)?

Sequence Labeling

- Inputs: $x=\left(x_{1}, \ldots, x_{n}\right)$
- Labels: $y=\left(y_{1}, \ldots, y_{n}\right)$
- Typical goal: Given x, predict y
- Example sequence labeling tasks
- Part-of-speech tagging
- Named-entity-recognition (NER)
- Label people, places, organizations

NER Example:

Red Sox and Their Fans Let Loose

Fans of the slugger David Ortiz in Boston's Copley Square.
By PETE THAMEL
Published: October 31, 2007
E E-MAIL
BOSTON, Oct. 30 - Jonathan Papelbon turned Boston's World Series victory parade into a full-scale dance party Tuesday as the Red Sox put an exclamation point on the 2007 season.

吕PRINT
㞓 REPRINTS
Ci save

First Solution:

Maximum Entropy Classifier

- Conditional model $\mathrm{p}(\mathrm{y} \mid \mathrm{x})$.
- Do not waste effort modeling $p(x)$, since x is given at test time anyway.
- Allows more complicated input features, since we do not need to model dependencies between them.
- Feature functions $f(x, y)$:
$-f_{1}(x, y)=\{$ word is Boston $\& y=$ Location $\}$
$-f_{2}(x, y)=\{$ first letter capitalized \& $y=$ Name $\}$
$-f_{3}(x, y)=\{x$ is an HTML link \& $y=$ Location $\}$

First Solution: MaxEnt Classifier

- How should we choose a classifier?
- Principle of maximum entropy
- We want a classifier that:
- Matches feature constraints from training data.
- Predictions maximize entropy.
- There is a unique, exponential family distribution that meets these criteria.

First Solution: MaxEnt Classifier

- Problem with using a maximum entropy classifier for sequence labeling:
- It makes decisions at each position independently!

Second Solution: HMM

$$
P(\mathbf{y}, \mathbf{x})=\prod_{t} P\left(y_{t} \mid y_{t-1}\right) P\left(x \mid y_{t}\right)
$$

- Defines a generative process.
- Can be viewed as a weighted finite state machine.

Second Solution: HMM

- HMM problems: (ON BOARD)
- Probability of an input sequence.
- Most likely label sequence given an input sequence.
- Learning with known label sequences.
- Learning with unknown label sequences?

Second Solution: HMM

- How can represent we multiple features in an HMM?
- Treat them as conditionally independent given the class label?
- The example features we talked about are not independent.
- Try to model a more complex generative process of the input features?
- We may lose tractability (i.e. lose a dynamic programming for exact inference).

Second Solution: HMM

- Let's use a conditional model instead.

Third Solution: MEMM

- Use a series of maximum entropy classifiers that know the previous label.
- Define a Viterbi algorithm for inference.

$$
P(\mathbf{y} \mid \mathbf{x})=\prod_{t} P\left(y_{t} \mid y_{t-1}, \mathbf{x}\right)
$$

Third Solution: MEMM

- Combines the advantages of maximum entropy and HMM!
- But there is a problem...

Problem with MEMMs: Label Bias

- In some state space configurations, MEMMs essentially completely ignore the inputs.
- Example (ON BOARD).
- This is not a problem for HMMs, because the input sequence is generated by the model.

Fourth Solution: Conditional Random Field

- Conditionally-trained, undirected graphical model.
- For a standard linear-chain structure:

$$
\begin{aligned}
P(\mathbf{y} \mid \mathbf{x}) & =\frac{1}{Z} \prod_{t} \Psi_{t}\left(y_{t}, y_{t-1}, \mathbf{x}\right) \\
\Psi_{t}\left(y_{t}, y_{t-1}, \mathbf{x}\right) & =\exp \left[\sum_{k} \lambda_{k} f_{k}\left(y_{t}, y_{t-1}, \mathbf{x}\right)\right] \\
Z & =\sum_{\mathbf{y}^{\prime}} \prod_{t} \Psi\left(y_{t}^{\prime}, y_{t-1}^{\prime}, \mathbf{x}\right)
\end{aligned}
$$

Bigram model:
potentials consider pairs of labels

Dot-product of
weights and features

Normalize over all possible outputs using forward alg.

Fourth Solution: CRF

- Have the advantages of MEMMs, but avoid the label bias problem.
- CRFs are globally normalized, whereas MEMMs are locally normalized.
- Widely used and applied. CRFs give state-the-art results in many domains.

Example Applications

- CRFs have been applied to:
- Part-of-speech tagging
- Named-entity-recognition
- Table extraction
- Gene prediction
- Chinese word segmentation
- Extracting information from research papers.
- Many more...

Edge-Factored Parsers (McDonald et al. 2005)

Byl jasny studený dubnový den a hodiny odbíjely třináctou

| V | A | A | A | N | J | N | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | C |
| :---: |
| byl |
| jasn | | stud | dubn |
| :--- | :--- | | den a | hodi |
| :---: | :--- |
| odbí | třin |

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Which edge is better?

Byl jasny studený dubnový den a hodiny odbíjely třináctou

V	A	A	A	N	J	N	V		C
byl	asn	stud	dubn	den	a	hodi	odb		

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Which edge is better?

Byl jasny studený dubnový den a hodiny odbíjely třináctou

| V | A | A | A | N | J | N | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | C |
| :---: |
| byl |
| jasn | | stud | dubn |
| :--- | :--- | | den a | hodi |
| :---: | :--- |
| odbí | třin |

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Which edge is better?
- Score of an edge $\mathrm{e}=\boldsymbol{\theta}$. features(e)

Byl jasny studený dubnový den a hodiny odbíjely třináctou

V	A	A	A	N	J	N	V	C
byl	jasn	stud	dubn	den a	hodi	odbí	trín	

"It was a bright cold day in April and the clocks were striking thirteen"

Edge-Factored Parsers (McDonald et al. 2005)

- Which edge is better?
- Score of an edge e $=\theta$. features(e)
- Standard algos \rightarrow valid parse with max total score

Byl jasny studený dubnový den a hodiny odbíjely třináctou

V	A	A	A	N	J	N	V	C
byl	jasn	stud	dubn	den a	hodi	odbí	třin	

"It was a bright cold day in April and the clocks were striking thirteen"

Recipe for Conditional Training of $p(y \mid x)$

I. Gather constraints/features from training data

$$
\alpha_{i y}=\tilde{E}\left[f_{i y}\right]=\sum_{x_{j}, y_{j} \in D} f_{i y}\left(\bar{x}_{j}, y_{j}\right)
$$

2. Initialize all parameters to zero
3. Classify training data with current parameters; calculate expectations $\quad E_{\Theta}\left[f_{i y}\right]=\sum_{x_{j} \in D} \sum_{y^{\prime}} p_{\Theta}\left(y^{\prime} \mid x_{j}\right) f_{i y}\left(x_{j}, y^{\prime}\right)$
4. Gradient is $\tilde{E}\left[f_{i y}\right]-E_{\Theta}\left[f_{i y}\right]$
5. Take a step in the direction of the gradient
6. Repeat from 3 until convergence

Recipe for Conditional Training of $p(y \mid x)$

I. Gather constraints/features from training data

$$
\alpha_{i y}=\tilde{E}\left[f_{i y}\right]=\sum_{x_{j}, y_{j} \in D} f_{i y}\left(\bar{x}_{j}, y_{j}\right)
$$

2. Initialize all parameters to zero
3. Classify training data with current parameters; calculate expectations $E_{\Theta}\left[f_{i y}\right]=\sum_{x_{j} \in D} \sum_{y^{\prime}} p_{\Theta}\left(y^{\prime} \mid x_{j}\right) f_{i y}\left(x_{j}, y^{\prime}\right)$
4. Gradient is $\tilde{E}\left[f_{i y}\right]-E_{\Theta}\left[f_{i y}\right]$
5. Take a step in the direction the gradient
6. Repeat from 3 until convergen

Where have we seen
expected counts before?

Recipe for Conditional Training of $p(y \mid x)$

I. Gather constraints/features from training data

$$
\alpha_{i y}=\tilde{E}\left[f_{i y}\right]=\sum_{x_{j}, y_{j} \in D} f_{i y}\left(\bar{x}_{j}, y_{j}\right)
$$

2. Initialize all parameters to zero
3. Classify training data with current parameters; calculate expectations $E_{\Theta}\left[f_{i y}\right]=\sum_{x_{j} \in D} \sum_{y^{\prime}} p_{\Theta}\left(y^{\prime} \mid x_{j}\right) f_{i y}\left(x_{j}, y^{\prime}\right)$
4. Gradient is $\tilde{E}\left[f_{i y}\right]-E_{\Theta}\left[f_{i y}\right]$
5. Take a step in the direction the gradient
6. Repeat from 3 until convergen

Where have we seen
expected counts before?

Gradient-Based Training

- $\lambda:=\lambda+$ rate $* \operatorname{Gradient}(\mathrm{~F})$
- After all training examples? (batch)
- After every example? (on-line)
- Use second derivative for faster learning?
- A big field: numerical optimization

Overfitting

- If we have too many features, we can choose weights to model the training data perfectly
- If we have a feature that only appears in spam training, not ham training, it will get weight ∞ to maximize $\mathrm{p}(\mathrm{spam} \mid$ feature) at I .
- These behaviors
- Overfit the training data
- Will probably do poorly on test data

Solutions to Overfitting

- Throw out rare features.
- Require every feature to occur >4 times, and >0 times with ling, and >0 times with spam.
- Only keep, e.g., IO00 features.
- Add one at a time, always greedily picking the one that most improves performance on held-out data.
- Smooth the observed feature counts.
- Smooth the weights by using a prior.
- $\quad \max p(\lambda \mid d a t a)=\max p(\lambda$, data $)=p(\lambda) p($ data $\mid \lambda)$
- decree $p(\lambda)$ to be high when most weights close to 0

Smoothing with Priors

- What if we had a prior expectation that parameter values wouldn't be very large?
- We could then balance evidence suggesting large (or infinite) parameters against our prior expectation.
- The evidence would never totally defeat the prior, and parameters would be smoothed (and kept finite)
- We can do this explicitly by changing the optimization objective to maximum posterior likelihood:
$\log P(y, \lambda \mid x)=\log P(\lambda)+\log P(y \mid x, \lambda)$
Posterior Prior Likelihood

(First Order) Logic
 Some Preliminaries

(First Order) Logic Some Preliminaries

Three major kinds of objects

(First Order) Logic Some Preliminaries

Three major kinds of objects

1. Booleans

- Roughly, the semantic values of sentences

(First Order) Logic Some Preliminaries

Three major kinds of objects

1. Booleans

- Roughly, the semantic values of sentences

2. Entities

- Values of NPs, e.g., objects like this slide
- Maybe also other types of entities, like times

(First Order) Logic Some Preliminaries

Three major kinds of objects

1. Booleans

- Roughly, the semantic values of sentences

2. Entities

- Values of NPs, e.g., objects like this slide
- Maybe also other types of entities, like times

3. Functions of various types

- Functions from booleans to booleans (and, or, not)
- A function from entity to boolean is called a "predicate" - e.g., frog(x), green(x)
- Functions might return other functions!

(First Order) Logic Some Preliminaries

Three major kinds of objects

1. Booleans

- Roughly, the semantic values of sentences

2. Entities

- Values of NPs, e.g., objects like this slide
- Maybe also other types of entities, like times

3. Functions of various types

- Functions from booleans to booleans (and, or, not)
- A function from entity to boolean is called a "predicate" - e.g., frog(x), green(x)
- Functions might return other functions!
- Function might take other functions as arguments!

First-order Representations

First-order Representations

- Gilly swallowed a goldfish

First attempt: swallowed(Gilly, goldfish)

First-order Representations

- Gilly swallowed a goldfish

First attempt: swallowed(Gilly, goldfish)

- Better: $\exists \mathrm{g}$ goldfish(g) AND swallowed(Gilly, g)

First-order Representations

- Gilly swallowed a goldfish

First attempt: swallowed(Gilly, goldfish)

- Better: $\exists \mathrm{g}$ goldfish(g) AND swallowed(Gilly, g)
- Or using one of our quantifier predicates:
- exists($\lambda \mathrm{g}$ goldfish(g), $\lambda \mathrm{g}$ swallowed(Gilly,g))
" Equivalently: exists(goldfish, swallowed(Gilly))
" "In the set of goldfish there exists one swallowed by Gilly"

First-order Representations

- Gilly swallowed á goldfish
- First attempt: swallowed(Gilly, goldfish)
- Better: $\exists \mathrm{g}$ goldfish(g) AND swallowed(Gilly, g)
- Or using one of our quantifier predicates:
- exists($\lambda \mathrm{g}$ goldfish(g), $\lambda \mathrm{g}$ swallowed(Gilly,g))
" Equivalently: exists(goldfish, swallowed(Gilly))
" "In the set of goldfish there exists one swallowed by Gilly"
- Here goldfish is a predicate on entities
- This is the same semantic type as red
- But note: goldfish is noun and red is adjective

Compositional Semantics

Compositional Semantics

Add a "sem" feature to each context-free rule

- $\mathrm{S} \rightarrow$ NP loves NP
- S[sem=loves $(x, y)] \rightarrow$ NP[sem=x] loves NP[sem=y]
- Meaning of S depends on meaning of NPs

Compositional Semantics

" Add a "sem" feature to each context-free rule

- $\mathrm{S} \rightarrow \mathrm{NP}$ loves NP
- S[sem=loves $(x, y)] \rightarrow N P[$ sem=x] loves NP[sem=y]
- Meaning of S depends on meaning of NPs
- TAG version:

Compositional Semantics

" Add a "sem" feature to each context-free rule

- S \rightarrow NP loves NP
- S[sem=loves $(x, y)] \rightarrow N P[$ sem=x] loves NP[sem=y]
- Meaning of S depends on meaning of NPs
- TAG version:

Compositional Semantics

" Add a "sem" feature to each context-free rule

- $\mathrm{S} \rightarrow \mathrm{NP}$ loves NP
- S[sem=loves $(x, y)] \rightarrow N P[$ sem=x] loves NP[sem=y]
- Meaning of S depends on meaning of NPs
- TAG version:

Compositional Semantics

" Add a "sem" feature to each context-free rule

- $\mathrm{S} \rightarrow \mathrm{NP}$ loves NP
- S[sem=loves $(x, y)] \rightarrow N P[$ sem=x] loves NP[sem=y]
- Meaning of S depends on meaning of NPs
- TAG version:

- Template filling: S[sem=showflights($\mathrm{X}, \mathrm{y})] \rightarrow$

I want a flight from NP[sem=x] to NP[sem=y]

"Non-constituents" in CCG - Right Node Raising

CCG Semantics

- Categories encode argument sequences
- Parallel syntactic combinator operations and lambda calculus semantic operations

```
John}\vdash\textrm{NP}:john
shares }\vdash\mathrm{ NP : shares'
buys}\vdash(\textrm{S}\\textrm{NP})/NP : \lambdax.\lambday.buys'xy
sleeps }\vdash\textrm{S}\NP:\lambdax.sleeps'
well }\vdash(\textrm{S}\\textrm{NP})\(S\NP) : \lambdaf.\lambdax.well'( fx
```


Words as Vectors

- Represent each word type w by a point in k dimensional space
e.g., k is size of vocabulary
- the $17^{\text {th }}$ coordinate of w represents strength of w's association with vocabulary word 17

Words as Vectors

- Represent each word type w by a point in k dimensional space
e.g., k is size of vocabulary
"the $17^{\text {th }}$ coordinate of w represents strength of w's association with vocabulary word 17

Words as Vectors

- Represent each word type w by a point in k dimensional space
e.g., k is size of vocabulary
"the $17^{\text {th }}$ coordinate of w represents strength of w's association with vocabulary word 17
$(0,0,3,1, \quad 0,7, \quad \ldots \quad 1,0)$

Words as Vectors

- Represent each word type w by a point in k dimensional space
- e.g., k is size of vocabulary
"the $17^{\text {th }}$ coordinate of w represents strength of w 's association with vocabulary word 17

1 ,

Words as Vectors

" Represent each word type w by a point in k -
dimensional space
" e.g., k is size of vocabulary
" the $17^{\text {th }}$ coordinate of w represents strength of w's association with vocabulary word 17

From Arlen Specter abandoned the Republican party. corpus: There were lots of abbots and nuns dancing at that party. The party above the art gallery was, above all, a laboratory for synthesizing zygotes and beer.

Words as Vectors

- Represent each word type w by a point in k dimensional space
- e.g., k is size of vocabulary
"the $17^{\text {th }}$ coordinate of w represents strength of w's association with vocabulary word 17

From Arlen Specter abandoned the Republican party. corpus: There were lots of abbots and nuns dancing at that party. The party above the art gallery was, above all, a laboratory for synthesizing zygotes and beer.

Words as Vectors

- Represent each word type w by a point in k dimensional space
" e.g., k is size of vocabulary
"the $17^{\text {th }}$ coordinate of w represents strength of w's association with vocabulary word 17

From Arlen Specter abandoned the Republican party. corpus: There were lots of abbots and nuns dancing at that party.
The party above the art gallery was, above all, a laboratory for synthesizing zygotes and beer.

Learning Classes by Clustering

- Plot all word types in k-dimensional space
- Look for clusters of close-together types

Plot in k dimensions (here $\mathrm{k}=3$)

Learning Classes by Clustering

- Plot all word types in k-dimensional space
- Look for clusters of close-together types

Plot in k dimensions (here $\mathrm{k}=3$)

Learning Classes by Clustering

- Plot all word types in k-dimensional space
- Look for clusters of close-together types

Plot in k dimensions (here $\mathrm{k}=3$)

Bottom-Up Clustering - Single-Link

Bottom-Up Clustering - Single-Link

Bottom-Up Clustering - Single-Link

each word type is
a single-point cluster
\square

Bottom-Up Clustering - Single-Link

Bottom-Up Clustering - Single-Link

each word type is
a single-point cluster

Bottom-Up Clustering - Single-Link

Again, merge closest pair of clusters:
Single-link: clusters are close if any of their points are
$\operatorname{dist}(A, B)=\min \operatorname{dist}(a, b)$ for $a \in A, b \in B$

Bottom-Up Clustering - Single-Link

Again, merge closest pair of clusters:
Single-link: clusters are close if any of their points are $\operatorname{dist}(A, B)=\min \operatorname{dist}(a, b)$ for $a \in A, b \in B$

Bottom-Up Clustering - Single-Link

each word type is
a single-point cluster

Again, merge closest pair of clusters:
Single-link: clusters are close if any of their points are $\operatorname{dist}(A, B)=\min \operatorname{dist}(a, b)$ for $a \in A, b \in B$

Bottom-Up Clustering

- Start with one cluster per point
- Repeatedly merge 2 closest clusters
- Single-link: dist(A, B) = min dist($a, b)$ for $a \in A, b \in B$
- Complete-link: $\operatorname{dist}(A, B)=\max \operatorname{dist}(a, b)$ for $a \in A, b \in B$
- too slow to update cluster distances after each merge; but \exists alternatives!

Bottom-Up Clustering

- Start with one cluster per point
- Repeatedly merge 2 closest clusters
- Single-link: dist(A, B) = min dist($a, b)$ for $a \in A, b \in B$
- Complete-link: dist(A, B) = max dist(a, b) for $a \in A, b \in B$
- too slow to update cluster distances after each merge; but \exists alternatives!
- Average-link: $\operatorname{dist}(A, B)=$ mean $\operatorname{dist}(a, b)$ for $a \in A, b \in B$
- Centroid-link: $\operatorname{dist}(A, B)=\operatorname{dist}(m e a n(A), m e a n(B))$

Bottom-Up Clustering

- Start with one cluster per point
- Repeatedly merge 2 closest clusters
- Single-link: dist(A, B) = min dist($a, b)$ for $a \in A, b \in B$
- Complete-link: dist(A,B) = max dist(a, b) for $a \in A, b \in B$
- too slow to update cluster distances after each merge; but \exists alternatives!
- Average-link: $\operatorname{dist}(A, B)=$ mean $\operatorname{dist}(a, b)$ for $a \in A, b \in B$
- Centroid-link: dist(A,B) = dist(mean(A),mean(B))
"Stop when clusters are "big enough"
- e.g., provide adequate support for backoff (on a development corpus)

Bottom-Up Clustering

- Start with one cluster per point
- Repeatedly merge 2 closest clusters
- Single-link: dist(A, B) = min dist($a, b)$ for $a \in A, b \in B$
- Complete-link: $\operatorname{dist}(A, B)=\max \operatorname{dist}(a, b)$ for $a \in A, b \in B$
- too slow to update cluster distances after each merge; but \exists alternatives!
- Average-link: $\operatorname{dist}(A, B)=$ mean $\operatorname{dist}(a, b)$ for $a \in A, b \in B$
- Centroid-link: dist(A,B) = dist(mean(A),mean(B))
"Stop when clusters are "big enough"
" e.g., provide adequate support for backoff (on a development corpus)
- Some flexibility in defining dist(a,b)
- Might not be Euclidean distance; e.g., use vector angle

EM Clustering (for k clusters)

EM Clustering (for k clusters)

- EM algorithm

Viterbi version - called "k-means clustering"
" Full EM version - called "Gaussian mixtures"

EM Clustering (for k clusters)

- EM algorithm

Viterbi version - called "k-means clustering"
" Full EM version - called "Gaussian mixtures"

EM Clustering (for k clusters)

- EM algorithm
"Viterbi version - called "k-means clustering"
" Full EM version - called "Gaussian mixtures"
- Expectation step: Use current parameters (and observations) to reconstruct hidden structure

EM Clustering (for k clusters)

- EM algorithm
"Viterbi version - called "k-means clustering"
" Full EM version - called "Gaussian mixtures"
- Expectation step: Use current parameters (and observations) to reconstruct hidden structure
- Maximization step: Use that hidden structure (and observations) to reestimate parameters

EM Clustering (for k clusters)

- EM algorithm
"Viterbi version - called "k-means clustering"
" Full EM version - called "Gaussian mixtures"
- Expectation step: Use current parameters (and observations) to reconstruct hidden structure
- Maximization step: Use that hidden structure (and observations) to reestimate parameters

EM Clustering (for k clusters)

- EM algorithm
"Viterbi version - called "k-means clustering"
" Full EM version - called "Gaussian mixtures"
- Expectation step: Use current parameters (and observations) to reconstruct hidden structure
- Maximization step: Use that hidden structure (and observations) to reestimate parameters
- Parameters: k points representing cluster centers

EM Clustering (for k clusters)

- EM algorithm
"Viterbi version - called "k-means clustering"
" Full EM version - called "Gaussian mixtures"
- Expectation step: Use current parameters (and observations) to reconstruct hidden structure
- Maximization step: Use that hidden structure (and observations) to reestimate parameters
- Parameters: k points representing cluster centers
- Hidden structure: for each data point (word type), which center generated it?

Lexical translation

- How to translate a word \rightarrow look up in dictionary Haus - house, building, home, household, shell.
- Multiple translations
- some more frequent than others
- for instance: house, and building most common
- special cases: Haus of a snail is its shell
- Note: During all the lectures, we will translate from a foreign language into English

Collect statistics

- Look at a parallel corpus (German text along with English translation)

Translation of Haus	Count
house	8,000
building	1,600
home	200
household	150
shell	50

Estimate translation probabilities

- Maximum likelihood estimation

$$
p_{f}(e)= \begin{cases}0.8 & \text { if } e=\text { house } \\ 0.16 & \text { if } e=\text { building } \\ 0.02 & \text { if } e=\text { home } \\ 0.015 & \text { if } e=\text { household } \\ 0.005 & \text { if } e=\text { shell. }\end{cases}
$$

informatroftics

Alignment

- In a parallel text (or when we translate), we align words in one language with the words in the other

1	2^{2}	${ }^{3}$	4
das	Haus	ist	klein
the	house	is	small

- Word positions are numbered 1-4

Reordering

- Words may be reordered during translation

infor'matics

IBM Model 1

- Generative model: break up translation process into smaller steps
- IBM Model 1 only uses lexical translation
- Translation probability
- for a foreign sentence $\mathbf{f}=\left(f_{1}, \ldots, f_{l_{f}}\right)$ of length l_{f}
- to an English sentence $\mathbf{e}=\left(e_{1}, \ldots, e_{l_{e}}\right)$ of length l_{e}
- with an alignment of each English word e_{j} to a foreign word f_{i} according to the alignment function $a: j \rightarrow i$

$$
p(\mathbf{e}, a \mid \mathbf{f})=\frac{\epsilon}{\left(l_{f}+1\right)^{l_{e}}} \prod_{j=1}^{l_{e}} t\left(e_{j} \mid f_{a(j)}\right)
$$

- parameter ϵ is a normalization constant

informátics

Example

das		Haus		ist		klein	
e	$t(e \mid f)$						
the	0.7	house	0.8	is	0.8	small	0.4
that	0.15	building	0.16	's	0.16	little	0.4
which	0.075	home	0.02	exists	0.02	short	0.1
who	0.05	household	0.015	has	0.015	minor	0.06
this	0.025	shell	0.005	are	0.005	petty	0.04

$$
\begin{aligned}
p(e, a \mid f) & =\frac{\epsilon}{4^{3}} \times t(\text { the } \mid \text { das }) \times t(\text { house } \mid \text { Haus }) \times t(\text { is } \mid \text { ist }) \times t(\text { small } \mid \text { klein }) \\
& =\frac{\epsilon}{4^{3}} \times 0.7 \times 0.8 \times 0.8 \times 0.4 \\
& =0.0028 \epsilon
\end{aligned}
$$

Learning lexical translation models

- We would like to estimate the lexical translation probabilities $t(e \mid f)$ from a parallel corpus
- ... but we do not have the alignments
- Chicken and egg problem
- if we had the alignments,
\rightarrow we could estimate the parameters of our generative model
- if we had the parameters,
\rightarrow we could estimate the alignments

EM algorithm

- Incomplete data
- if we had complete data, would could estimate model
- if we had model, we could fill in the gaps in the data
- Expectation Maximization (EM) in a nutshell
- initialize model parameters (e.g. uniform)
- assign probabilities to the missing data
- estimate model parameters from completed data
- iterate

Symmetrizing word alignments

- Intersection of GIZA++ bidirectional alignments

informátics

IBM Model 4

Phrase Models

Phrase Models

Synchronous Grammars

- Just like monolingual grammars except...
-Each rule involves pairs (tuples) of nonterminals
-Tuples of elementary trees for TAG, etc.
- First proposed for source-source translation in compilers
- Can be constituency, dependency, lexicalized, etc.
- Parsing speedups for monolingual grammar don't necessarily work
-E.g., no split-head trick for lexicalized parsing
- Binarization less straightforward

Bilingual Parsing

A variant of CKY chart parsing.

	póll'	oîd'	alốpēx
the			
fox			NN/NN
knows		VB/VB	
many	JJ/JJ		
things			

Bilingual Parsing

Bilingual Parsing

	póll'	oîd'	alốpēx
the			
fox			NP/NP
knows			
many	VP/VP		
things			

Bilingual Parsing

