
Online Graph Spectra Learning

Stefan Dernbach and Don Towsley
College of Information and Computer Sciences

University of Massachusetts
Amherst, MA, USA 01003

{dernbach,towsley}@cs.umass.edu

Abstract— Spectral graph signal processing techniques use
the eigenvectors of the graph Laplacian to transform a graph
signal from the spatial domain to the frequency domain of
the graph. In general eigendecompositons requires knowledge
of the entire graph structure to compute. In cases where this
isn’t possible, spectral signal processing techniques can’t be
readily applied. We propose an iterative method of calculating
the spectra of the graph Laplacian from sampling edges of the
graph.

I. INTRODUCTION

The graph Fourier transform is a pivotal tool in spectral
graph signal processing techniques [1] as well as spectral
graph convolution neural networks [2]. These techniques
utilize the spectral decomposition of the graph Laplacian (or
similar matrix) to define this transform. This decomposition
requires knowledge of the entire graph to perform; a require-
ment not always practical when dealing with excessively
large, dynamic, or obfuscated graphs. In this work we pro-
pose an iterative, online method to learn the eigenvectors of
the graph Laplacian from single edge samples of the graph.
Our technique does not require storing any information
about the graph aside from its size, and current eigenvector
estimates.

The following notation and definitions are used throughout
the paper. Given an undirected graph G=(V,E) composed
of a set of N vertices V , and M edges E, the matrices A
and D denote the adjacency and diagonal degree matrices
respectively. The graph Fourier transform transforms a signal
x ∈ RN from the spatial domain into the frequency domain
of the graph: f̂G(x) = UTx where U is the matrix
whose columns are composed of the eigenvectors of the
graph Laplacian, L = D − A. We order the eigenvectors,
ui, according to their corresponding eigenvalues, λi, from
smallest eigenvalue to largest. We assume G is connected so
that 0 = λ0 < λ1 and u0 aligns with the vector of all ones.
Of interest are eigenvectors {ui : i = 1, ..., N−1}.

II. METHOD

Given a graph G, the incidence matrix B ∈ RM×N relates
edges to their incident vertices by:

Bk = ei − ej (1)

where ei is a vector of zeros with a 1 in the i-th position
and (vi, vj) is the k-th edge in E. It can be easily verified

that L = BTB. Equivalently, this can be rewritten as a sum
of the outer products of the rows of B:

L =
∑

(vi,vj)∈E

(ei − ej)(ei − ej)
T . (2)

It follows from (2) that for a randomly sampled edge
(vi, vj) the outer product:

L̃ij = (ei − ej)(ei − ej)
T (3)

is an unbiased estimate of L/M ; the mean of L̃ij over all
(vi, vj) ∈ E is exactly L/M . This estimate forms the basis
for our online learning approach because L and L/M have
the same eigenvectors with scaled eigenvalues. Note that the
ordering of the nodes in an edge does not affect the outer
product: (ei − ej)(ei − ej)

T = (ej − ei)(ej − ei)
T .

In the setting where the entire graph is known, the
Rayleigh quotient

r =
wTLw

wTw
, (4)

with w denoting the current eigenvector approximation, can
be used as a loss function in gradient descent to learn the
eigenvectors of L as an alternative to performing a singular
value decomposition. In the online setting, we replace L with
each estimate L̃ij as we sample edges (vi, vj). This provides
an update equation for w:

w(t+1) = w(t) − α
(
L̃ijw

(t) − (w(t))T L̃ijw
(t)w(t)

)
(5)

that is similar to the Oja update rule for minor component
analysis [3].

The sparse nature of L̃ij allow us to reduce many of
the matrix and vector products to scalar arithmetic lead-
ing to Algorithm 1 below. Multiple eigenvectors can be
learned simultaneously by including orthogonalization steps
(i.e. Grahm-Schmidt) intermittently during the process. The
trivial eigenvector u0 can be ignored in the learning by mean
centering w as an efficient method of orthogonalizing the
vector to u0.

The update in (5) can be trivially repurposed to learn
eigenvectors of the symmetric normalized graph Laplacian,
L̂ = D−

1
2LD−

1
2 , if the degree of the nodes incident to the

sampled edge are given. Changing (3) to:

L̃ij =
(
D
− 1

2
ii ei −D

− 1
2

jj ej

)(
D
− 1

2
ii ei −D

− 1
2

jj ej

)T
(6)

gives an unbiased estimate of L̂/M .

Algorithm 1 Online Graph Spectra

1: Input: α, N
2: Initialize w(0) ∈ RN

3: for n = 0 to N do
4: Sample edge (vi, vj) from G

5: y(n) ← w
(n)
i −w

(n)
j

6: ∆w(n) ← −(y(n))2 ∗w(n) + y(n)ei − y(n)ej
7: w(n+1) ← w(n) − α∆w(n)

8: end for

III. EVALUATION

We evaluate our method using two error metrics that
highlight different forms of error in the approximated eigen-
vectors. Given an eigenvector estimate w (normalized to unit
length), and actual eigenvalue λ the normalized eigenvalue
error is evaluated as

error(w, λ) =
|wTLw − λ|

λ
. (7)

The second evaluation metric is the cosine distance between
the estimated eigenvector and the actual eigenvector u,

dist(w,u) = 1−wTu, (8)

These metrics emphasize different errors in the estimates.
The value wTLw in (7) can be written in point wise form
as
∑

(vi,vj)∈E (wi −wj)
2 which highlights that errors in

high degree nodes have a larger effect than low degree
nodes because they appear more often in the summation.
Conversely, a node in the graph with only a single edge
can have a very large error in the eigenvector without
significantly affecting the eigenvalue. The cosine distance
measure, on the other hand, weights all nodes in the graph
equally for purposes of evaluating the eigenvector estimate.
In effect, the eigenvalue difference is an edge focused error
metric, while the cosine distance is a node focused one.

We evaluate our method on learning the first five eigen-
vectors of the Zachary Karate Club Network [4] composed
of 34 nodes and 78 edges. Edges are sampled uniformly with
replacement. Figure 1 shows the convergence of our method
as we sample edges from the graph. We compare against
learning the eigenvectors using gradient descent on the entire
graph Laplacian. We use the Grahm-Schmidt process to
orthogonalize the vectors in both methods. Orthogonalization
is performed an equal number of times for both methods
by processing the vectors after every batch update and after
every 78 edge samples for the online method. Reported errors
are averaged over five trials.

Errors are comparable between both the online method
and the batch setting. Noticeably, the online method appears
slightly better by the eigenvalue metric and slightly worse in
the cosine metric for lower eigenvectors. This is unsurprising
given that edges are uniformly sampled leading, leading to
a larger number of updates of the high degree nodes.

Fig. 1: A comparison of online (solid lines) and batch (x ticks)
learning for the eigenvectors of the karate club network graph.
The top figure measures the normalized eigenvalue error and the
bottom measures cosine distance. Both plots show the number of
edge samples along the x-axis. Batch updates are placed 78 samples
apart, the number of edges in the graph.

IV. CONCLUSIONS AND FUTURE WORK
We proposed an online learning approach to approximate

the eigenvectors of a graph from edge samples. Our method
is computationally efficient and demonstrates comparable
learning speed to batch gradient descent on our example case.

The majority of the computation in our method stems from
the orthogonalization step in the method currently performed
using the Grahm-Schmidt process. Reducing the computa-
tional complexity of the algorithm depends on improving
this step. Additionally, the method is fully inductive and can
not generalize to unseen nodes in the graph. There are two
approaches to solving this issue, the first is to develop an
approach to quickly extend the well converged eigenvector
estimates on a portion of the graph to new nodes based
on their neighbors. The second approach is a transductive
method of learning the values of the eigenvectors as functions
of node features so that new nodes could be approximated
based on their features.

REFERENCES

[1] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,”
IEEE transactions on signal processing, vol. 61, no. 7, pp. 1644–1656,
2013.

[2] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” arXiv preprint arXiv:1312.6203,
2013.

[3] E. Oja, “Simplified neuron model as a principal component analyzer,”
Journal of mathematical biology, vol. 15, no. 3, pp. 267–273, 1982.

[4] Z. W., “An information flow model for conflict and fission in small
groups.” Jounral of Anthropological Research, vol. 33, pp. 452–473,
1977.

