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Abstract. In recent years, neural network architectures designed to operate on
graph-structured data have pushed the state-of-the-art in the field. A large set of
these architectures utilize a form of classical random walks to diffuse information
throughout the graph. We propose quantum walk neural networks (QWNN), a
novel graph neural network architecture based on quantum random walks, the
quantum parallel to classical random walks. A QWNN learns a quantum walk
on a graph to construct a diffusion operator which can then be applied to graph-
structured data. We demonstrate the use of this model on a variety of prediction
tasks on graphs involving temperature, biological, and molecular datasets.

Keywords: graph neural networks, quantum walks, graph classification, graph
regression

1 Introduction

While classical neural network approaches for structured data in the form of images
and ordered sequences have been well investigated, there has been growing interest in
extending neural network architectures beyond grid-structured data [17] to the more
general domain of graph-structured data [4,9,12,13,16,18,19,25]. A subset of these
graph deep learning architectures are based on classical random walks to extract and
learn information from the graph. We detail several of them here for comparison to our
quantum random walk approach.

Diffusion convolution neural networks [4] are a spatial convolutional method that
performs random walks on the graph and combines information from spatially close
neighbors. DCNNs use powers of the transition matrix P = D−1A to diffuse information
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across the graph, where A is the adjacency matrix, and D is the diagonal degree matrix
such that Dii = ∑ j Ai j.

Graph convolution networks [16], was proposed to tackle semi-supervised learning
using a CNN architecture built via a localized approximation of spectral graph convo-
lutions [9]. The GCN works in a similar fashion as DCNN described above. Here the
augmented adjacency matrix Ã = A+ I and degree matrix D̃ii = ∑ j Ãi j replace A and D.
Ã can be equivalently thought of as the adjacency matrix of G with a self-loop on every
node.

While many graph neural network models are inspired by convolutional networks
used for image processing, other classical deep learning models have also seen transla-
tions to the graph domain. One such model, graph attention networks [25] are inspired
by attention models common in natural language processing and weight importance of
different node neighbors. This nonuniform weighting of neighbors is a shared aspect
with quantum walk neural networks.

Quantum walks have previously been used in graph kernel methods. Bai et al. [5]
propose a kernel method to compare pairs of graphs based on the density matrices of
the corresponding quantum walk evolution. Our proposed quantum walk neural network
(QWNN) technique is a new graph neural network architecture based on discrete-time
quantum walks [1,3,21]. To the best of our knowledge, this paper represents a first step
at developing a quantum neural network technique that can operate on graph-structured
data. We show that the proposed approach obtains better or competitive results in
comparison to other state-of-the-art graph neural network approaches on a wide range of
graph datasets, suggesting that quantum techniques should be further investigated in the
domain of graph-structured data.

The rest of the paper is organized as follows. The setting of quantum walks on
graphs is studied in Section 2, followed by a formal description of the proposed quantum
walk neural network technique in Section 3. Experimental results on node and graph
regression and graph classification tasks are described in Section 4, followed by a brief
discussion on the limitations of our approach in Section 5. Finally, concluding remarks
and a discussion on future work is presented in Section 6.

2 Graph Quantum Walks

Quantum walks are a universal model for quantum computation [10]. They offer an
alternative approach for implementing a variety of quantum algorithms, including data-
base search [24], graph isomorphism [20], network analysis and navigation, and quantum
simulation. Quantum walks are the quantum parallel to their classical counterparts –
While a classical walker is modeled by a probability distribution over positions in a
graph, a quantum walker is described by a superposition over position states. We utilize
the form of a discrete time quantum walk on a general graph as outlined in [2,15].
Given an undirected graph G = (V,E), we define a position Hilbert space HP spanned
by basis vectors

{
ê(p)

v , v ∈V
}

and define HC , the coin space, as an auxiliary Hilbert

space of dimension dmax spanned by the basis vectors
{

ê(c)i , i ∈ 1, . . . ,dmax

}
, where

i corresponds to edges incident on a vertex and dmax is the maximum degree of the
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Fig. 1. The probability distribution of a classical random walk (Top) and a quantum random walk
(Bottom) on a lattice over four steps (Left to Right). The walks diverge after two steps.

graph. For purpose of brevity, we will use d instead of dmax. These states form the spin
directions of a walker at vertex v.

A quantum walk has an associated Hilbert space HW = HP
⊗

HC , which is the
tensor product of position and coin Hilbert spaces. The basis states in this Hilbert space
are of the form ê(p)

v ⊗ ê(c)i , where v ∈V spans over set of all vertices, and i is the ith edge
incident on node v. Therefore, the position vector of a quantum walker can be written as
a linear combination of position state basis vectors, ∑v∈V αvê(p)

v , for some coefficients
{αv, v ∈V} satisfying ∑v |αv|2 = 1; while the spin state at each vertex v ∈V can also be
expressed as linear combinations of spin state basis vectors, ∑i∈1,...,d βv,iê

(c)
i , for some

coefficients {βv,i, i ∈ 1, . . . ,d} satisfying ∑i |βv,i|2 = 1. The coefficients |αv|2 and |βv,i|2
indicate the probabilities of finding the walker at vertex v and the walker having spin i at
that vertex respectively when a measurement is done.

A single step in the quantum random walk consists of first applying a coin operator
C that transforms the spin state at a vertex through a unitary transformation acting on
the coin Hilbert space HC . After applying the coin operator, a unitary shift operator
S swaps the states of two vertices connected by an edge, i.e., for an edge (u,v) if u is
the ith neighbor of v and v is the jth neighbor of u, then the coefficient corresponding to
the basis state ê(p)

v ⊗ ê(c)i gets swapped with that of the basis state ê(p)
u ⊗ ê(c)j . Let Φ (t)

in HW denote the superposition state of the quantum walker at time t. If Φ (0) is the
initial state of the quantum walker on G then after t time steps the state of the walker is
described by Φ (t)=U tΦ (0), where a single step of the discrete quantum walk on graph
G can be expressed in shorthand as U = S (C ⊗ I|V |). Note that the quantum walks
behave very differently from classical random walks in that they are heavily influenced
by the choice of the initial superposition as well as the coin operator. This allows more
degrees of freedom to the deep learning technique to fit the data through a controlled
diffusion process. Figure 1 shows how the quantum walk differs from a classical walk
over a lattice in that the probability distribution of the classical walk is uniform over
space which is not true for the quantum walk.
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3 Quantum Walk Neural Networks
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Fig. 2. A schematic diagram of the QWNN architecture. The initial superposition Φ(0), and graph
G, are fed to the quantum step (QS) layers to obtain the final superposition Φ(T ), which in turn is
fed to the quantum diffusion (QD) layer along with the feature matrix X to obtain the output Y .

Our proposed neural network architecture, Quantum Walk Neural Network (QWNN),
learns a quantum random walk on a graph by means of learning the coin operators and/or
the initial superposition of the walker. We further suggest two separate implementations
of a QWNN based on whether the coin operators are defined spatially or temporally. In
the spatial setting, there is a separate coin operator for each node in the graph. In the
temporal case, every node in the graph shares the same coin operator, but that operator
is unique to each step in the walk. The first setting allows the quantum walk to behave
differently in different sections of the graph while the latter setting allows the walk
dynamics to evolve over time.

A QWNN then uses the walker distribution induced by the quantum random walk to
form a diffusion operator which act on an input feature matrix. Given a tensor ΦΦΦ (0) ∈
RW×N×d representing a set of W walkers and their corresponding initial superpositions,
a set of spatial coins C ∈ RN×d×d or temporal coins C ∈ RT×d×d and a shift tensor
S ∈ ZN×d×N×d

2 , a quantum walk neural network takes as input a matrix of F features
per node X ∈ RN×F , and outputs diffused features Y ∈ RN×F . Note that, when spatially
distributing coins, the dimension of the coin on each node equals its degree, but for the
sake of implementation we use d universally and set the extra coin variables to zero. For
temporally distributed coins, the graph is made d-regular by adding self-loops to nodes.

The network architecture is composed of a sequence of quantum step layers leading
to a diffusion layer. Each quantum step layer takes as input the shift tensor which
encodes the graph structure and the current superposition tensor. The layer evolves the
superposition as follows: For an edge (u,v), with u being the ith neighbor of v and v

being the jth neighbor of u, ΦΦΦ
(t+1)
wu j =

(
ΦΦΦ (t)C

)
wvi

and ΦΦΦ
(t+1)
wvi =

(
ΦΦΦ (t)C

)
wu j

. Hence,

we set the shift tensor S as Su jvi = 1 iff u is the the ith neighbor of v and v is the jth

neighbor of u. The output ΦΦΦ (t+1) is fed into either the next quantum step layer or a final
diffusion layer. The diffusion layer accepts a superposition tensor ΦΦΦ and transforms it
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into a diffusion matrix P by summing the squares of the spin states at each vertex to
calculate a transition probability. It then uses P to diffuse the input feature matrix X
across the graph and outputs a new feature matrix Y.

For the first layer in the network, we initialize ΦΦΦ (0) by constructing a unique walker
at each node in the graph with equal spin along each incident edge. If we are learning
initial amplitudes, ΦΦΦ (0) is stored as a variable that is updated during backpropagation.
The method for a forward pass of the complete network (using spatial coins) is given in
Algorithm 1. Equation ΦΦΦ

(t)
·i· ←ΦΦΦ

(t−1)
·i· ·Ci·· is replaced with ΦΦΦ

(t)
·i· ←ΦΦΦ

(t−1)
·i· ·Ct·· in the

temporal coin case (i.e. coins are indexed spatially rather than temporally). The notation
A ·B denotes the inner product between tensors A and B, the operator A : B is the inner
product of A and B over two dimensions, and A�B is an elementwise product. The
final diffusion equation Y← PX is similar to other classical graph neural networks that
use a random walk diffusion operation. However, there is no explicit weight matrix in
the network because it is implicit in learning the random walks.

Algorithm 1: QWNN Forward Pass

given : Initial Superpositions ΦΦΦ (0), Coins C, Shift S
input : Features X
output : Diffused Features Y

1 for t = 1 to T do
2 for All nodes vi do
3 ΦΦΦ

(t)
·i· ←ΦΦΦ

(t−1)
·i· ·Ci··

4 end
5 ΦΦΦ (t)←ΦΦΦ (t) : S

(
i.e., ΦΦΦ

(T )
wu j = ∑v ∑i ΦΦΦ

(T )
wviSviu j

)
6 end
7 P← ∑k ΦΦΦ

(T )
··k �ΦΦΦ

(T )
··k

8 Y← h(PX+b)

Previous work on quantum walks [2] use Grover’s diffusion operator as the coin
operator because it is the only nontrivial, real-valued transform that is (1) unitary and (2)
treats all edges connected to a vertex identically. The first requirement guarantees that
superposition of each walker retain unit norm. The second restriction is added in order
to prevent edge ordering from affecting the walk. In a QWNN we can choose to relax
these conditions for certain tasks to allow for learning biased coin operators. Removing
the unitary constraint allows us to learn expansive or contractive diffusion operators. In
the spatial coin setting, learning can adapt to any edge ordering equally, so the second
condition is unnecessary.

When the unitary property of the coin operator is desirable, we can initialize each
coin to any unitary matrix. However, in general, gradient updates to the coin operators
cause them to leave the space of unitary matrices. The result of this is that the matrix P
is no longer a probability matrix and Puv no longer describes the likelihood of a walker
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beginning on node u and ending on node v of the graph. Several methods have been
proposed in the literature to enforce that a unitary matrix receiving gradient updates
remains unitary. Within neural networks, the common use case for this is recurrent neural
networks. In this work, we use the general parametrization method in [14] to ensure
unitarity of the coin operators after each gradient update.

3.1 Edge Ordering

When sharing coin operators across nodes, edge ordering plays an important role in
determining the span of possible quantum walks. We propose two heuristic approaches
to edge ordering that imposes a shared logic to the coin operation between nodes. First
is a global ordering of nodes based on their betweenness centrality. The betweenness
centrality [8] of node, vi is calculated as:

g(vi) = ∑
j 6=i6=k

σ jk(vi)

σ jk

where σ jk is the number of shortest paths from v j to vk and σ jk(vi) is the number of
shortest paths from v j to vk that pass through vi. This ranks all nodes and an edge
connected to a higher ranked node will always precede an edge connected to a lower
ranked node. In this setting, a walker moving along a higher ranked edge is moving
towards a more central part of the graph compared to a walker moving along a lower
ranked edge.

The second approach is a local edge ordering where a similarity score between every
pair of adjacent nodes is computed and the edges incident to each node are ordered
according to the score of the two nodes it connects. This ordering does not induce a
global ranking of nodes, each node has its own ranking of neighbors. This approach
allows the quantum walk to distinguish between transitioning to more or less similar
nodes in the graph. We use a random walk node similarity measure defined as

S(vi,v j) = Wk
i

(
Wk

j

)T

where Wk is a (classical) random walk matrix raised to the kth power.
Neither of these methods guarantees that there will not be a need to break ties

between edges. However, in practice, these ties often come from symmetries in the graph
and do not have a tangible effect on the global behavior of the quantum walk.

4 Experiments

We demonstrate the effectiveness of QWNNs across three different types of tasks:
regression at both the node and the graph level and graph classification. We focus on
comparisons with three other graph neural network architectures: diffusion convolution
neural networks (DCNN) [4], graph convolution networks (GCN) [16], and graph
attention networks (GAT) [25].
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Fig. 3. The nearest neighbor temperature graph with a sample day’s temperatures.

4.1 Node Regression

The node regression task is to predict temperatures at 409 locations across the United
States using recordings from 2009 [27]. A nearest neighbors graph is constructed using
longitudes and latitudes of the recording locations by connecting each station to its
closest neighbors. Adding edges to each stations’ eight closest neighbors was found
empirically to construct a connected graph (Fig.3). The high-temperature readings from
each location across the US on a single day are used to predict the next day’s temperatures.
We form our neural network from a series of quantum step layers (indicated by walk
length) and a single diffusion layer. The QWNN uses the spatial coin setup and the
unitary constraint on the coin operator is relaxed. For this experiment, we also compare
the results with multiple DCNN walk lengths. The data is divided into thirds for training,
validation, and testing and learning is limited to 128 epochs with early stopping if the
validation score stops improving.

Table. 1 gives the test results for the trained networks. QW (A) and QW (C) learn
only the initial walk amplitudes or the coin operators respectively while leaving the other
fixed. The root mean squared prediction error and standard deviation are reported from
five trials. We observe that quantum walk techniques yield lower errors compared to other
graph neural network techniques. Learning both coin operators and initial amplitudes
gives a small improvement over learning only one of the two and, perhaps surprisingly,
learning only the initial amplitudes of the walk shows a marginal improvement over
learning just the coin operators despite the coin operators having a larger potential effect
on the walk. This may be due to the reduced number of parameters in the former making
learning easier.

4.2 Graph Classification

The second type of graph problem we focus on is graph classification. We apply the
graph neural networks to several common graph classification datasets: Enzymes [7],
Mutag [11], and NCI1 [26]. Enzymes is a set of 600 molecules extracted from the Brenda
database [23]. The task is to classify each enzyme into 1 of 6 classes. Mutag is a dataset
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Table 1. Temperature Prediction Results

RMSE ± STD
Walk Length

2 3 4
GCN 8.56±0.02

DCNN 7.40±0.13 7.46±0.06 7.44±0.10
GAT 7.84±0.16

QW (A+C) 5.54±0.16 5.38±0.07 5.28±0.08
QW (A) 5.43±0.15 5.43±0.04 5.42±0.23
QW (C) 6.05±0.27 5.85±0.07 5.97±0.12

of 188 mutagenic aromatic and heteroaromatic nitro compounds that are classified into 1
of 2 categories, mutagenic or nonmutagenic. NCI1 consists of 4110 graphs representing
two balanced subsets of datasets of chemical compounds screened for activity against
nonsmall cell lung cancer. Summary statistics for each dataset are given in Table 2.

Each graph neural network consists of a graph layer, a dense layer with 10 hidden
features and an output layer with a softmax activation. The QWNN uses a walk of
length 4 and a single coin per timestep, while DCNN uses a 2-hop layer. Table 2 reports
results for QWNN using the two different edge ordering given in Section 3.1. QWNNs
demonstrate the highest mean accuracy on 2 out of the 3 datasets while underperforming
the other methods on the Enzymes dataset.

Table 2. Graph Classification Datasets Summary and Results

Enzymes Mutag NCI1
Graphs 600 188 4110

Average Nodes 33 18 30
Max Nodes 126 28 111
Max Degree 9 4 4
Node Classes 3 7 37
Graph Classes 6 2 2

Classification Accuracy ± STD
GCN 0.41±0.08 0.83±0.09 0.70±0.02

DCNN 0.39±0.05 0.86±0.08 0.69±0.01
GAT 0.34±0.03 0.88±0.035 0.70±0.01

QWNN (centrality) 0.32±0.03 0.85±0.06 0.68±0.02
QWNN (similarity) 0.32±0.03 0.92±0.03 0.71±0.01
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4.3 Graph Regression

Our graph regression task uses the QM7 dataset [6,22], a collection of 7165 molecules
each containing up to 23 atoms. The geometries of these molecules are stored in Coulomb
matrix format defined as

Ci j =

{
0.5Z2.4

i i = j
ZiZ j
|Ri−R j | i 6= j

where Zi, Ri are the charge of and position of the i-th atom in the molecule respectively.
The goal of the task is to predict the atomization energy of each molecule. Atomization
energies of the molecules range from -440 to -2200 kcal/mol.

For this task, we form an approximation of the molecular graph from the Coulomb
matrix by normalizing out the charges and separating the distances between atoms into 2
sets using K-means. One set contains the atom pairs with larger distances between them
and the other the smaller distances. We create an adjacency matrix from all pairs of atoms
in the smaller distance set. This creates connected graphs for all but 19 of the molecules.
For the remaining 19 molecules, distant pairs of atoms are added iteratively until each
molecular graph becomes fully connected. We take this approach to constructing the
graphs because most molecules have a noticeable distance gap between directly bonded
and unbonded pairs of atoms. We use the element of each atom, encoded as a one-hot
vector, as the input features for each node.

The QWNN is composed of a four-step quantum random walk using a separate
unitary coin at each step. Graphs smaller than the largest molecules (23 atoms) have
both their feature and adjacency matrices appended with zeros to bring them up to size.
For each graph neural network architecture, the graph layers feed two hidden layers of
size 400 and 100 respectively and a final layer that outputs a single value with a sigmoid
activation which is then rescaled to the range of atomization energies.

The RMSE and MAE (with standard deviations) are given in Table 3. QWNNs give
noticeably better results over the other graph neural network approaches.

Table 3. Atomization Energy Prediction Results

RMSE MAE
GCN 19.26±0.47 14.77±0.26

DCNN 15.51±1.12 10.73±0.35
GAT 26.31±4.09 19.64±4.27

QWNN (centrality) 12.52±0.91 8.93±0.14
QWNN (similarity) 16.01±0.96 10.78±0.22

5 Limitations

Storing the superposition of a walker requires O(Nd) space, with N the number of nodes
in the graph, and d the max degree of the graph. To calculate a complete diffusion matrix
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requires a walker to begin at every node, and for the superposition of the walkers to
be tracked for T time steps. This leads to a space requirement of O(N2dT ) which is
intractable for very large graphs, especially when doing learning on a GPU.

Quantum walks with shared coins across nodes are not invariant to the ordering
of the edges to each node. In practice, we find that our heuristic ordering works well,
Nonetheless, a QWNN can perform differently on isomorphic graphs. The spatial coin
implementation of the QWNN does not inherit this problem because each coin can be
tuned to the edge ordering specific to the node it operates at.

6 Concluding Remarks

Quantum walk neural networks offer a noticeable improvement over standard graph
neural networks in both node and graph regression tasks and are competitive in graph
classification tasks. QWNNs are able to adapt both spatially across the graph or tem-
porally over the walk. The final diffusion matrix after learning has converged can be
cached for quick forward passes in the network. However, the constant coin and shift
operations during learning lead to a marked slowdown in our architecture compared to
others, with space complexity also being an issue. In the current work, each walker on
the graph operates independently. A future research direction is to investigate learning
multi-walker quantum walks on graphs. Reducing the number of independent walkers
and allowing interactions can reduce the space complexity of the quantum step layers.
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