
Asymmetric Node Similarity Embedding for
Directed Graphs

Stefan Dernbach and Don Towsley

University of Massachusetts, Amherst
College of Information and Computer Sciences

{dernbach,towsley}@cs.umass.edu

Abstract. Node embedding is the process of mapping a set of vertices
from a graph onto a vector space. Modern deep learning embedding meth-
ods use random walks on the graph to sample relationships between ver-
tices. These methods rely on symmetric affinities between nodes and do
not translate well to directed graphs. We propose a method to learn
vector embeddings of nodes in a graph as well as the parameters of an
asymmetric similarity function that can be used to retain the direction
of relationships in the embedding space. The effectiveness of our ap-
proach is illustrated visually by the 2D embedding of a lattice graph as
well quantitatively in multiple link prediction experiments on real world
datasets.
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1 Introduction

Networks and graphs are ubiquitous in modern information settings. A graph’s
representational power of objects and relationships make them an essential tool
in data visualization and processing. To further aid in many data processing
tasks, we seek to learn a vector representation of the objects in a network. Many
embedding schemes utilize the spectra of an affinity matrix of the graph to
form vector representations of nodes [1, 2, 15]. These approaches, while effective,
require eigen decompositions of large matrices and so do not scale well as the
number of nodes in the graph increases. Recent embedding methods sample
random walks from the graph and use a stochastic gradient descent process
to learn vector representations for the nodes [10, 3]. These methods have been
shown to be efficient on graphs scaling up to millions of nodes.

Implementing most undirected network embedding methods (such as those
above) on a directed network requires making sacrifices to the network structure
because these methods rely on symmetric affinities between nodes. This leads
to the unrecoverable loss of the asymmetric relationships between nodes. In
this work we propose a directed random walk based approach to learning node
embeddings that does not sacrifice the asymmetries of the directed graph. Our
approach, asymmetric node similarity embedding (ANSE), simultaneously learns
the node embedding vectors and the parameters of an asymmetric similarity
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function on the embeddings. This function allows the direction of edges to be
recovered from the embeddings. Additionally we provide an adaptation to our
method which embeds the graph onto a hypersphere. Like other random walk
approaches, our method scales linearly with the size of the graph. We provide
an illustration of a 2-dimensional embedding of a small lattice graph as well as
demonstrate the effectiveness of our technique in several link prediction tasks on
real world directed networks.

2 Problem Definition

A network, or graph, is used to represent objects and relationships. We de-
fine an undirected graph G = (V,E) to be a set of vertices (nodes), V =
{v0, v1, ..., vN−1}, and a set of edges, E = {(vi, vj) : vi, vj ∈ V }, represent-
ing the objects and relationships respectively. A directed graph (digraph) im-
poses an ordering on the vertices of each edge such that (vi, vj) denotes an edge
pointing from node vi to node vj . A random walk on a graph is a sequence of
nodes

(
v(0), v(1), ..., v(K)

)
ordered such that v(k+1) is selected at random from

the (outgoing) neighbors of v(k).
A node embedding is a function on a graph that maps each node in the graph

to a d-dimensional vector fG : V → Rd. The rows of the matrix ΦΦΦ ∈ R|V |×d
correspond to the vector embeddings of each node, i.e. ΦΦΦi = fG(vi). Define
the similarity between two nodes S(vi, vj) as proportional to the probability of
visiting node vj within k steps of a random walk beginning at node vi. This
function is asymmetric, S(vi, vj) 6= S(vj , vi) for most complex networks. This is
especially true for a directed graph in which S(vi, vj) > 0 6=⇒ S(vj , vi) > 0.

Our goal is to preserve the asymmetric similarity between nodes in the em-
bedded space. To this end, we aim to learn an embedding matrix ΦΦΦ as well as a
similarity measure K : ΦΦΦ×ΦΦΦ→ R such that K(ΦΦΦi,ΦΦΦj) ∝∼ S(vi, vj).

3 Skip-Gram Embedding

This section describes the skip-gram embedding model that forms the basis for
random walk embedding methods including our approach and describes two
algorithms that use skip-gram for embedding nodes in undirected graphs. The
skip-gram method, first proposed for word embedding [6, 7] in natural language
processing, extracts sentences from a document corpus and embeds each word to
maximize the probability of predicting surrounding words. DeepWalk [10] and
subsequent algorithms such Node2Vec [3] adapt the skip-gram model to node
embedding for undirected graphs by substituting random walks for sentences.

Algorithm 1 outlines a model for skip-gram style node embedding meth-
ods. Lines 4 and 7 are the two key steps in the algorithm and consequently
are where many node embedding methods differ from one another. Function
RandomWalk(G, vi, k) on line 4 collects a sequence of k nodes on the graph
from a random walk originating at vertex vi. DeepWalk samples classical walks
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while Node2Vec uses a random walk that can be weighted to remain close to the
initial node or explore further away in the graph. In both methods, every pair of
nodes in a walk within k-steps of one another are collected as positive samples.

The probability in line 7 of Alg. 1 is calculated using a softmax:

P (vk|φφφj) =
exp 〈φφφj ,φφφk〉∑
l exp 〈φφφj ,φφφl〉

. (1)

In practice this calculation is prohibitively expensive because it requires an in-
ner product between the embeddings of the source node and each other node
in the graph. Many algorithms employ alternative, less computationally expen-
sive, methods of approximating the conditional probabilities. DeepWalk utilizes
a hierarchical softmax [8] for computing probabilities while Node2Vec uses a
negative sampling approach [7]. Negative sampling samples N node pairs from
a noise distribution P (v) as negative samples to approximates the log softmax
as:

logP (vk|φφφj) ≈ log (σ 〈φφφj ,φφφk〉) +

N∑
n=1

Evn∼P (v) log(σ 〈−φφφj ,φφφn〉) (2)

where σ is the sigmoid function. The hierarchical softmax in DeepWalk reduces
the complexity of each softmax calculation from O(|V |) to O(log |V |) by using
a binary tree to calculate the conditional probabilities. The negative sampling
approach of Node2Vec reduces the complexity further to O(N) where N is the
number of negative samples.

Algorithm 1: Skip-Gram Model of Node Embedding

input : graph: G=(V,E)
window size: w
embedding size: d
walks per vertex: γ
walk length: k

output: node embeddings: φφφ

1 Initialize ΦΦΦ ∈ R|V |×d
2 for i = 1 to γ do
3 for All nodes vi ∈ V do
4 Wvi = RandomWalk(G, vi, k)
5 for vj ∈Wvi do
6 for vk ∈Wvi [j − w : j + w] do
7 J(ΦΦΦ) = − logP (vk|φφφj)
8 ΦΦΦ = ΦΦΦ− α ∗ ∂J

∂ΦΦΦ

9 end

10 end

11 end

12 end



4 Stefan Dernbach and Don Towsley

4 Method

Many symmetric properties of undirected graphs are asymmetric on digraphs.
For example the graph geodesic, the length of the shortest path between nodes,
is not symmetric for a directed network. The existence of a path from vi to vj
does not even imply that a path exists for vj to vi.

To learn an embedding that can retain the asymmetric relationships between
nodes, we replace the standard (symmetric) inner product used in the softmax
(1) and negative sampling (2) equations with an asymmetric bilinear product
defined by a matrix A:

kA(vi, vj) = 〈φφφi,φφφj〉A = φφφTi Aφφφj . (3)

If A is not symmetric then in general kA(vi, vj) 6= kA(vj , vi). Matrix A ∈
Rd×d can be learned in tandem with the embedding matrix ΦΦΦ through stochastic
gradient descent. Geometrically, A can be viewed as defining a vector field that
determines the direction of the most similar embedding vectors at any point.

Several challenges in sampling random walks on a digraph must be addressed
that aren’t present in undirected graphs. First, due to the directed nature of
edges, positive node pair samples must remain ordered as they appear in the
random walk. Second, walks in directed graphs may dead end. In a connected
undirected graph a random walk can continue indefinitely by retracing the last
edge the walk took to return from an otherwise terminal node. This is not the
case for a connected digraph in which nodes may not have any outgoing edges.
In such an event the walk is forced to terminate early.

A consequence of these two issues is that nodes without outgoing edges will
never be sampled first in a pair. In these cases there is an increased importance in
reaching the node from random walks beginning at other nodes so that positive
samples containing the node are still collected. In scenarios in which a node has
an arbitrarily small likelihood of being reached in a random walk, e.g. the only
incoming edge to a node comes from another node with a high out-degree, the
node is unlikely to appear as the second node in any positive pair. To address
these issues we introduce a reverse random walk sampling method in addition to
regular random walk sampling. Reverse walks are sampled from a dual graph,
G∗ = (V, (vj , vi) : (vi, vj) ∈ E), where all edges are reversed. The sequence of
nodes in the walk is then reversed again to provide a random walk on G whose
transition probabilities are proportional to the in-degrees of nodes rather than
their out-degrees. This guarantees that there are sample pairs containing each
node with at least one incoming edge as the second node.

We use negative sampling to approximate the softmax function. Nodes are
randomly sampled from the graph and used as negative samples as in (2). Com-
bining the positive and negative sampling methods with the asymmetric simi-
larity function produces our method given in Algorithm 2. We split the negative
sampling into randomly sampling either the first or second nodes in the negative
pairs, line 7 and line 9 respectively.
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Algorithm 2: Asymmetric Node Similarity Embedding

input : graph: G(V,E)
embedding dimesnion: d
walks per vertex: γ
walk length: k

output: embeddings matrix: ΦΦΦ
similarity matrix: A

1 Initialize ΦΦΦ ∈ R|V |×d, A ∈ Rd×d
2 for All nodes vi ∈ V do
3 for w = 1 to γ do
4 Wvi = RandomWalk(G, vi, k)
5 W rev

vi = ReverseRandomWalk(G∗, vi, k)
6 J1(ΦΦΦ) = −

∑
vj∈Wvi

log(σ 〈φφφi,φφφj〉A)

7 J2(ΦΦΦ) = −
∑N
n=1 Evn∼P (v) log(σ 〈−φφφi,φφφn〉A)

8 J3(ΦΦΦ) = −
∑
vj∈Wrev

vi

log(σ 〈φφφj ,φφφi〉A)

9 J4(ΦΦΦ) = −
∑N
n=1 Evn∼P (v) log(σ 〈−φφφn,φφφi〉A)

10 J(ΦΦΦ) =
∑4
n=1 Jn(ΦΦΦ)

11 ΦΦΦ = ΦΦΦ− α ∗ ∂J
∂ΦΦΦ

12 end

13 end

4.1 Hypersphere Embedding

The embedding architecture can be adapted to embed nodes of a (di)graph onto
the unit hypersphere. To do so we constrain the node embedding vectors to have
unit length: ||φφφi||22 = 1. This is accomplished by renormalizing the length of the
vector following each backpropagation update.

Matrix A should also be constrained such that ∀vi, vj ∈ V : −1 ≤ kA(vi, vj) ≤
1. This constraint allows the similarity function to match the range of a stan-
dard inner product between two points on the unit hypersphere. If A is a unitary
matrix, the product φφφTi A will also have unit length and thus −1 ≤ φφφTi Aφφφj ≤ 1
guaranteeing the constraint will hold.

We can project A onto the set of unitary matrices whenever it diverges dur-
ing learning similar to renormalizing the embedding vectors. Unfortunately, this
projection is computationally costly, requiring a singular value decomposition of
the matrix. Alternatively, we compose A as the product of a set of elementary

reflector matrices of the form A(m) = I− 2 ∗ vmvT
m

vT
mvm

where vm is any vector and

I is the identity matrix. Any unitary matrix can be decomposed into a prod-
uct of elementary reflectors. We use this decomposition to efficiently construct
a unitary matrix A =

∏M
m=1 A

(m) where M can chosen from 1 to the embed-
ding dimension d. Smaller values of M restrict the the space of possible unitary
matrices but also reduces both the computational cost to calculate A and the
number of parameters for the model to learn. The vectors vk are learned by
backpropagating the loss through A.
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5 Experiments

In this section we conduct multiple experiments to demonstrate both quantita-
tively and qualitatively the effectiveness of our approach.

5.1 Lattice Example

We use a 2D lattice graph to provide a visual representation of our embedding
scheme. The lattice is composed of 10 rows and 12 columns of vertices. All lateral
edges in the graph are oriented to point right and all vertical edges to point up.
Eight walks of length three are sampled from every node in the graph. The lattice
is shown in Figure 1a and the learned embedding of the vertices in shown in 1b.
Additionally the effect of the matrix A in the similarity function is drawn as a
vector field in the background such that a source node is most similar to target
nodes that lie in the direction of the local arrows. The embedded nodes form a
spiral pattern with the bottom-left-most node of the original lattice innermost
in the spiral and the top-right-most one outermost. Diagonal sets of nodes in
the original lattice representation are structurally similar in the graph and are
roughly clustered together along the spiral. Edges are also oriented along the
direction of the field induced by A.

(a) Original Lattice Graph (b) Embedded Lattice Graph

Fig. 1. The original lattice (a) and vector embeddings (b). The direction and magnitude
of the vector field illustrates the bias of the similarity measure across the space.

5.2 Link Prediction

Node embeddings can be used to predict missing or future edges in a graph by
measuring pairwise similarities. Node pairs with a high similarity score are more
likely to form an edge. We evaluate the area under the receiver-operator curve
(AUC) for several real world networks to evaluate our method and compare to
several other skip-gram algorithms.

Arxiv [5] is a co-authorship network consisting of 5242 nodes representing
authors and 28980 edges linking authors who have co-authored a paper together.
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Arxiv is the only undirected network in this set of experiments. Cora [12] is a
citation network where the 23166 nodes in the graph are papers and the 91500
edges points from one paper to another if the first paper cites the second. Epin-
ions [11] is a social network dataset with 75879 users (nodes) and 508837 edges
indicating trust placed by one user in another.

The reciprocity of a graph is the ratio of the number of bidirectional edges
to the total number of edges. The three datasets we evaluate on vary wildly in
reciprocity from Arxiv whose reciprocity as an undirected graph is 1.00 to Cora
with nearly 0 bidirectional edges and a reciprocity of 0.05. Epinions sits in the
middle at 0.40. Together, the three graphs provide a range of node-pair relations
from bidirectional, to one-directional, to unrelated.

We use the same hyper-parameters for asymmetric node similarity embed-
dings (ANSE) and the hypersphere variant (ANSE-H) across all three exper-
iments. Nodes are embedded into a 32-dimensional space and 16 total walks
(8 forward, 8 backward) are collected at each node. Each walk continues for 3
steps. For ANSE, we also clip the length of the embedding vectors to be less
than 1. In ANSE-H, we use a single elementary reflector matrix for A. We eval-
uate our method against several modern skip-gram style embedding methods.
Deepwalk [10] and Node2Vec [3] are methods developed for undirected graphs.
Line [13] and asymmetric proximity preserving embeddings (APP) [16] are meth-
ods for embedding nodes of either undirected or directed graphs. We compare
ANSE against the scores for the other methods reported in [16]. We also compare
against HOPE [9] a recent spectral method for directed graphs that learns both
a source and target embedding for each node. We also using a 32 dimensional
embedding for HOPE.

The embedding methods are trained using 70% of the edges of the graph while
the remaining 30% appear as positive examples in the test set along with an equal
number of random node pairs without edges to form the negative examples. The
pairwise node score is used to predict the existence of an edge or not between each
pair of nodes in the test set. The AUC for each method is given in Table 1. On
two of the three graph domains ANSE and ANSE-H demonstrates a significant
improvement over all the other methods tested. On Cora, APP joins ANSE and
ANSE-H in outperforming the other methods tested. Despite Arxiv being an
undirected graph our method learns the asymmetric random walk similarities
between pairs of nodes resulting in the high AUC.

6 Related Work

Several node embedding methods for digraphs embed the nodes twice, once into
a source space and a second time into a target space [4, 9, 16]. APP [16] is a
skip-gram model that learns dual embeddings for each node in the graph. Node
pair samples are collected from the endpoints of (directed) random walks. These
pairs are ordered so that the similarity score between nodes is calculated using
the source embedding of the first node and the target embedding of the second.
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Table 1. Link Prediction Area Under Curve (AUC)

Network Arxiv Cora Epinions

DeepWalk 0.887 0.936 0.823

Node2Vec 0.810 0.734 0.865

Line 0.750 0.694 0.867

APP 0.887 0.944 0.926

HOPE 0.596 0.874 0.629

ANSE 0.902 0.941 0.948

ANSE-H 0.920 0.942 0.924

Our embedding technique can also be viewed as learning a dual embedding
where the source embedding for node vi is φφφi and the target embedding is Aφφφi.
Compared to learning two embeddings, our approach reduces the number of em-
bedding parameters from 2|V |d to |V |d+ d2, as typically d� |V |. Additionally,
tying the source and target embeddings together in our approach overcomes a
potential issue in [16] in which the source or target embeddings of a node in a
digraph may have no positive samples if the node has no outgoing or incoming
edges respectively.

A related asymmetric bilinear product is used in [14] for text retrieval. The
asymmetric Hermitian inner product is used to score co-attention between com-
plex valued word vectors. The bilinear product sij = Re(aTi Mbj) is also studied.
Unlike our work, however, the matrix M was tuned as a hyperparameter rather
than allowed to change during learning.

7 Conclusion

In this paper, we proposed ANSE, a scalable method to embed a digraph into
a vector space, and ANSE-H, a variant of ANSE that embeds the graph onto a
hypersphere. ANSE simultaneously learns a vector representations of nodes and
an asymmetric similarity function for embedding directed networks. Learning
both the embedding and the similarity function offers the ability to recover
the direction of edges from the embedded nodes. Additionally we proposed a
random walk sampling method to improve learning for nodes without either
incoming or outgoing edges. On multiple real world datasets, ANSE and ANSE-
H outperforms other skip-gram embedding schemes for link prediction.
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