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ABSTRACT
Thanks to advances in mobile sensing technologies, it has
recently become practical to deploy wireless electrocardio-
graph sensors for continuous recording of ECG signals. This
capability has diverse applications in the study of human
health and behavior, but to realize its full potential, new
computational tools are required to effectively deal with
the uncertainty that results from the noisy and highly non-
stationary signals collected using these devices. In this work,
we present a novel approach to the problem of extracting the
morphological structure of ECG signals based on the use
of dynamically structured conditional random field (CRF)
models. We apply this framework to the problem of ex-
tracting morphological structure from wireless ECG sen-
sor data collected in a lab-based study of habituated co-
caine users. Our results show that the proposed CRF-based
approach significantly out-performs independent prediction
models using the same features, as well as a widely cited
open source toolkit.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence—
Machine Learning ; J.3 [Computer Applications]: Life
and Medical Science—health
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Figure 1: ECG trace of a single normal cardiac cycle with
associated peak labels.

1. INTRODUCTION
An electrocardiograph is an instrument that measures changes

in the electrical potential on the surface of the skin caused
by the polarization and depolarization of the muscles of the
heart [9, 11]. A typical normal heartbeat produces a se-
quence of five deflections away from the baseline potential
that are referred to as the P wave, Q wave, R wave, S wave,
and T wave, as illustrated in Figure 1 [9, 11]. The Q, R
and S waves taken together are referred to as the QRS com-
plex. The shapes of the individual waves, the locations of
their peaks, and the intervals between pairs of waves carry
detailed information about heart function. A classical prob-
lem in ECG analysis is the use of these morphological fea-
tures to classify individual heartbeats as being normal or as
expressing one of a set of arrhythmias [5].

Recent advances in mobile systems technology have made
it possible to continuously record ECG data outside of labo-
ratory and clinical settings using unobtrusive wearable sen-
sors such as the AutoSense sensor suite [10] and the Zephyr
BioHarness chest band [35]. This capability has diverse ap-
plications in the study of human health and behavior. How-
ever, to realize the full potential of these mobile ECG sen-
sors, new computational tools are required to reliably ex-
tract detailed morphological information from ECG traces
while effectively dealing with the uncertainty that results
from the noisy and highly non-stationary signals.

In this work, we present a new approach to the problem
of extracting the morphological structure of ECG signals
based on the use of dynamically structured conditional ran-
dom field (CRF) models [22]. We view the morphology ex-
traction problem as the problem of identifying and labeling



the peaks of each P, Q, R, S, and T wave in a given ECG
trace. Our approach begins by over-generating candidate
peak locations using a peak detection algorithm. Next, we
use the output of the peak detector to dynamically instan-
tiate a CRF graph where each label variable corresponds to
a candidate peak location. Edges are created in the CRF
between successive peak locations. Feature vectors are ex-
tracted from a local window around each candidate peak lo-
cation and are associated with the corresponding label vari-
able. Finally, exact probabilistic inference is used to jointly
infer the most likely labeling of the complete sequence. We
introduce an additional label N to represent candidate peak
locations that do not correspond to valid waves. Since the
model is chain-structured, exact inference is computation-
ally efficient, scaling linearly with the number of candidate
peaks in a sequence.

A drawback of a model-based framework is that before the
model can be applied, it’s parameters must be learned from
data. Learning in chain-structured CRFs is also computa-
tionally efficient, but it requires labeled training sequences.
To generate training sequences, we run the peak detection
algorithm to extract candidate peaks, and then manually
supply labels for those locations only. For the proposed ap-
proach to be useful in practice, it must generalize to new sub-
jects given no or very limited training data. To this end, we
evaluate our proposed framework in several learning settings
including learning across-subject models, learning subject-
specific models independently, and learning subject-specific
models using transfer learning.

To evaluate our approach, we focus on the challenging do-
main of morphology extraction from wireless ECG data in
the presence of cocaine use [28, 16]. The electrophysiology
of the heart is directly affected by the presence of drugs like
cocaine and atropine. These drugs have a well-understood
large-scale impact on the cardiovascular system, causing an
overall increase in heart rate [32]. They are also reported to
induce a variety of specific morphological changes detectable
in ECG traces including prolongation or shortening of the
QT interval and flattening of the T wave [13, 24, 25, 34].
There is thus significant interest in the use of ECG mor-
phological features to identify drug use events both for the
purpose of monitoring individuals and for furthering the un-
derstanding of addiction [28, 16]. To support the evaluation
of our proposed approach, we manually labeled over 20,000
candidate ECG peaks from six wireless ECG traces of habit-
uated cocaine users who participated in a NIDA-approved
clinical study of cocaine use. We use this data to assess the
performance of our proposed approach compared to logistic
regression and the well known ECGPUWave toolbox [30].
Our results show that our CRF framework out-performs
both alternative approaches across a wide range of settings.

2. BACKGROUND AND RELATED WORK
In this section we briefly review ECG data analysis, the

use of ECG data in mHealth, and the the CRF and sparse
coding models that our proposed framework is based on.

2.1 ECG Data Analysis
While the computational analysis of ECG signals has been

investigated since the 1960s [33], the vast majority of past
work has focused on two specific data analysis problems:
identification of QRS complexes and heartbeat classification.
Pan and Tompkins developed a widely used and widely cited

QRS complex detection algorithm based on simple features
of the ECG trace. Their approach achieves a QRS detection
accuracy rate of 99.325% on the well-known MIT-BIH data
set [31]. However, systematic errors were noted in cases
where the ECG signals contained stretches of noise, base-
line shifts, unusual morphology and other artifacts. More
recent work on QRS complex detection has focused on meth-
ods based on various transforms including the curve length
transform [36] and the wavelet transform [27]. Both of these
approaches give QRS complex identification precision and
recall rates above 99.5% on standard databases.

The problem of interest in this work is morphological la-
beling of the ECG trace including the identification of each
P, Q, R, S and T wave, when present. The most common
approach to this problem is to first identify QRS complexes
using one of the methods described above. A set of rules
and a local search procedure are then used to identify the
individual waves [19, 27]. A downside of these approaches is
that a large number of threshold parameters are involved in
the local search procedure. The method of Martinez et al.
[27], for instance, depends on fifteen threshold parameters
that are set by hand. More recent work has used super-
vised learning to select the set of scales used in the wavelet
decomposition [6].

The work of Hughes et al [18] and de Lannoy et al [8]
has addressed the ECG segmentation problem using hidden
Markov models (HMMs). However, Hughes et al. specify
the HMM directly over raw ECG samples and partially spec-
ify the transition structure by hand. De Lannoy et al. spec-
ify the HMM over coefficients of multiple mother wavelets
and additionally make an assumption that all windows of
ECG data start with a P wave. Both approaches are forced
to introduce self transition constraints into the model to
counter the natural geometric distribution of self transition
times inherent in an HMM. Our approach deals with this
issue more elegantly by defining the CRF graph over can-
didate peak locations instead on raw ECG sample values.
Our approach also has the natural advantages inherent in
the use of a discriminative model over a generative model
when applied to a discriminative task [22]. Finally, we note
that CRFs have been applied to ECG data previously, but
for the problem of heartbeat classification, not peak labeling
or segmentation [7]. In the work of de Lannoy et al, the CRF
labels correspond to the beat type of each complete cardiac
cycle. In fact, their work uses the method of Martinez et al.
to extract morphological features [7].

2.2 ECG in Mobile Health
A substantial body of work has explored the use of mo-

bile ECG sensors for applications in health and behavioral
science, primarily in the context of understanding physio-
logical stress [1, 14], assessing cognitive load [12], detection
of arrhythmias caused specifically by atrial fibrillation [3,
4, 17], and detection of drug use including cocaine use [28,
16]. Nearly all of these studies have been based on fea-
tures derived from R-R intervals only (heart rate, heart rate
variability). In the cocaine use context, cocaine causes a
gross increase in heart rate, however, similar increases can
be caused by a variety of physical activities. Hossain et al.
address this issue by combining ECG data with actigraphy
data (accelerometer readings) [16]. Our focus is on making
the extraction of nuanced morphological features maximally
reliable in an offline data analysis context with the hope that
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Figure 2: Linear Chain CRF

they will find wide application across a variety of domains,
including the study of addiction to drugs like cocaine.

2.3 Conditional Random Fields
Our approach to ECG peak labeling is based on exact

probabilistic inference in chain-structured conditional ran-
dom fields [22]. CRFs are a sub-class of probabilistic graph-
ical models [20] that generalize independent probabilistic
classifiers like logistic regression [15] to the case of struc-
tured prediction. CRF models contain feature variables and
label variables connected in a graph that captures problem-
specific probabilistic dependencies between the variables.

Figure 2 shows a linear chain CRF. The shaded nodes
X1 to XL represent the feature variables, and the unshaded
nodes Y1 to YL are the corresponding label variables. We
assume the label variables take values in the set V. The
feature variables Xi typically represents a D-dimensional
vector of feature values Xid. Each feature variable Xid and
label value v are associated with a feature potential φFdv
that captures the dependence between the features and the
associated labels. Each pair of adjacent labels are associated
with a transition potential φTvv′ to capture the structure of
the transitions between adjacent label values.

In a CRF model, the probability of a sequence of labels
y = [y1, ..., yL] conditioned on the observed feature variables
x = [x1, ...,xL] is given by,

PW(y|x) =
exp(−EW(y,x))

ZW(x)
(1)

where E is the energy function of the model and Z is the
partition function. The feature and transition potentials
that define a CRF model are parametrized by a set of weights
W = [WF ,WT ]. The energy function is given by,

EW(y,x) = −
( L∑
i=1

D∑
d=1

∑
v∈V

WF
dv[yi = v]xid

+

L−1∑
i=1

∑
v∈V

∑
v′∈V

WT
vv′ [yi = v][yi+1 = v′]

)
(2)

The partition function is given by,

ZW(x) =
∑

y∈VL

exp(EW(y,x)) (3)

The unknown parameters W = [WF ,WT ] must be learned
from training data before the model can be applied. They
can be estimated by maximizing the `2 regularized condi-
tional log likelihood

L(W|D) =

N∑
n=1

logPW(yn|xn)− λ||W −WR||22 (4)

given a data set D = {(yn,xn)}n=1:N of fully labeled train-
ing sequences. In standard CRF learning, the regularization
target parameters WR = 0, which yields a standard ridge

regression estimator. However, the regularization target pa-
rameters WR can also be set to model parameter estimates
derived from an alternative data set, effecting a simple, but
powerful form of transfer learning. In either the ridge or
transfer case, this objective function is strongly convex so
gradient-based methods are guaranteed to find the unique
optimal solution. Computing the gradients requires all sin-
gle label variable marginal probabilities as well as pairwise
marginal probabilities for all pairs of adjacent label variables
[20]. All of these marginal distributions can be found in time
linear in the length of the chain (as can the partition func-
tion) using the well-known sum-product belief propagation
algorithm [20]. Once a CRF model is learned, belief propa-
gation (max-product or sum-product) can be used to infer
labels for an entire sequence in time linear in the length of
that sequence [20]. In this work, we employ a max marginal
labeling approach.

Finally, we note that multinomial logistic regression (MLR)
is a special case of a CRF were the edges between the label
variables have been removed. The probability that a sin-
gle label variable Yi takes value v given feature vector xi is
given below. We note that this model can also be learned
using regularized maximum likelihood, including the use of
a transfer-based regularizer.

PW(Yi = v|xi) =
exp(

∑D
d=1

∑
v∈VW

F
dv[yi = v]xid)∑

v∈V exp(
∑D
d=1

∑
v∈VW

F
dv[yi = v]xid)

(5)

2.4 Sparse Coding
Sparse coding is a method for re-representing aD-dimensional

data vector x in terms of sparse linear combinations
∑K
k=1 αkBk

of a set of K basis vectors Bk [29]. Given a set of basis vec-
tors Bk, the sparse coefficient vector α is computed as the
solution to the following `1 regularized optimization prob-
lem:

arg min
α

∣∣∣∣∣
∣∣∣∣∣xn −

K∑
k=1

αkBk

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ||α||1 (6)

Given a data setD = {xn}n=1:N , the basis itself is learned to
minimize the sum of the errors between each data case and
it’s reconstruction under the constraint of sparse coefficient
vectors, as seen below. The typical approach to solving this
problem is an alternating minimization strategy. We used
the SPAMS toolbox [26] to perform sparse coding.

min
α1:N ,B

N∑
n=1

∣∣∣∣∣
∣∣∣∣∣xn −

K∑
k=1

αnkBk

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ||αn||1

 (7)

The advantage of sparse coding over methods like princi-
pal components analysis (PCA) is that it produces sparse
feature vectors, which can help to reduce over-fitting when
these features are used for classification. Unlike PCA, sparse
coding can also be used to learn an over-complete basis
(K > D). This can help to make classification problems
easier by making the feature vectors more linearly separa-
ble than the original data in the higher-dimensional feature
space.

combination

3. DYNAMIC CRFS FOR ECG
MORPHOLOGY EXTRACTION
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Figure 3: (a) illustrates the ECG morphology extraction pipeline. (b) illustrates the ground truth data labeling pipeline.

In this section, we describe our CRF framework for ECG
morphology extraction. We view the morphology extraction
problem as the problem of identifying and labeling the peaks
of each P, Q, R, S, and T wave in a given ECG trace. We first
describe our morphology extraction framework. We then
turn to the problems of data labeling and model learning.

3.1 Morphology Extraction Pipeline
Our approach to peak labeling consists of four primary

steps: candidate peak generation, feature extraction, CRF
graph generation and CRF inference. These steps are illus-
trated in Figure 3. Before applying these steps, we perform
a small amount of pre-processing on the raw ECG data.
• Pre-processing: Raw ECG data is measured in mil-

livolts and is typically recorded at hundreds of samples per
second. Over the extended time periods, typically encoun-
tered in mHealth settings, ECG data from wireless on-body
sensors exhibits significant baseline drift. We apply a stan-
dard low-pass Gaussian filter with a standard deviation of
600ms to estimate the baseline drift. We subtract the es-
timated drift from the raw data to yield baseline corrected
data. All of our subsequent processing is based on baseline
corrected ECG data.
• Candidate Peak Generation: The core of our ap-

proach is based on the idea of over-generating a set of can-
didate peak locations that will subsequently be labeled. Our
aim is for this set to include the locations of all valid P, Q,
R, S and T peaks, as well as a minimal number of additional
peaks caused by noise and other artifacts in the ECG trace.
Candidate peak generation is illustrated in Step 1 of Fig-
ure 3a. In this work, we apply Billauer’s PeakDet method
as we have found it be simple, fast and robust to noise [2].
However, we note that any peak detection algorithm that
is robust to noise can be used for this component of the
framework.
• Feature Extraction: Given a set of candidate peak lo-

cations, we next extract features from the ECG data in the
local neighborhood of each candidate peak. Specifically, we
define a window of width 204ms (±25 samples) centered at
each peak location and extract features from the ECG data
contained in that window. In this work, we use sparse cod-

ing [29] to learn an over-complete basis from ECG data in
a fully unsupervised manner. Sparse coding is an attractive
choice for this application as it aims to describe each 204ms
waveform as resulting from a sparse linear combination of
basis vectors. The sparse coefficient vectors of these linear
combinations are the sparse coding feature vectors. Sparse
coding feature extraction is illustrated in Step 2 of Figure
3a. We combine the sparse coding feature vectors with ad-
ditional features representing the height of each candidate
peak. However, we note that any set of feature extraction
methods could be used for this component of the framework,
including a fixed wavelet basis or other adaptive models such
as PCA.
• Dynamic CRF Construction: Given a set of can-

didate peak locations and their corresponding features, we
construct a dynamic CRF model. We instantiate one label
variable Yi and one feature variable Xi for each candidate
peak location i. Importantly, we augment the label set with
an additional label N to indicate candidate peaks that do
not correspond to the extrema of valid waves. We set the fea-
ture vector xi to the feature vector extracted for candidate
peak i in the previous step. Finally, we connect adjacent
label variables to form chain-structured graph. This process
is illustrated in Step 3 of Figure 3a. Compared to the de-
fault approach of associating one label variable with each
ECG sample, our approach constructs a CRF with nearly
50 times fewer label variables on average.
• Inference for Peak Labels: Once a CRF has been dy-

namically instantiated given the candidate peak locations,
standard probabilistic inference methods can use used to
infer the most likely values for the labels of the candidate
peaks taking into account all of the information contained
in the CRF model. The restriction to a chain-structured
graph permits the application of linear-time exact inference
methods. Compared to an independent classification model
like logistic regression, the CRF model is able to leverage
the high degree of regularity in the ECG peak label transi-
tions to aid in determining labels in regions of high noise.
Compared to a method for morphological extraction based
on QRS complex detection followed by local search for other
peaks, the CRF model has the advantage that it determines
all peak labels jointly. This makes it more robust in cases



where the local evidence for identifying QRS complexes is
weak due to transient noise, but other peaks like P or T
are clearly discernible. Inference for an ECG trace with six
peaks is illustrated in Step 4 of Figure 3a.

3.2 Data Labeling and Model Learning
The primary disadvantage of a model-based approach to

ECG morphology extraction is that it requires labeled data
to estimate the model parameters. An advantage of our ap-
proach is that it is not necessary to fully label the raw ECG
data to indicate which wave each individual sample belongs
to. Instead, we first run the peak detection method to gen-
erate a set of candidate peak locations and then manually
specify labels for the candidate peak locations only. This
makes the entry of label information much faster. This ap-
proach is illustrated in Steps 1 and 2 in Figure 3b.

We also note that it is not necessary to fully label each se-
quence of candidate peak locations. For a chain-structured
CRF, the learning algorithm only needs access to labels for
pairs of adjacent label variables to estimate the transition
parameters WT . For each available ECG trace, we fully
labeled all candidate peaks in multiple short segments con-
sisting of one to three cardiac cycles. We refer to these
segments as clusters. We designed a simple GUI to imple-
ment this labeling approach. Once a set of labeled clusters
is available, standard CRF learning can be applied to esti-
mate both the feature parameters WF and the transition
parameters WT .

4. EMPIRICAL PROTOCOLS
In this section we describe the details of our data set,

training protocols, feature extraction pipelines, morphology
extraction methods, and evaluation metrics.

4.1 Data Set
Wireless ECG data was collected from six habituated co-

caine users in a NIDA-approved clinical study. The subjects
wore a wireless single-channel ECG chest band . The wire-
less sensor on these chest bands samples ECG data at 250Hz
and transmits the data to a smartphone via bluetooth. Data
was collected from subjects in both in the presence and ab-
sence of cocaine use. We manually labeled over 20,000 can-
didate peak locations in nearly 1,500 clusters across the six
subjects. The details of the data set are listed in Table 1.
Importantly, the use of the candidate peak generation step
reduces the number of locations considered by the CRF dur-
ing inference by more than 27 times over all the subjects.

4.2 Train, Validation and Test Splits
We randomly partition the available data for each sub-

ject into a training set consisting of 10% of labeled clusters,
a validation set consisting of 45% of labeled clusters and a
test set consisting of 45% of labeled clusters, up to a to-
tal of 135 clusters, which is the minimum number across all
subjects. These splits remain fixed for each subject through-
out all experiments. The training sets are used to train the
CRF model. The validation sets are used to select the CRF
regularization parameter as well as to select between differ-
ent feature sets. The test sets are used to evaluate model
performance.

4.3 Learning and Evaluation Protocols

Our evaluation uses three different learning protocols: within-
subjects, across-subjects, and transfer learning. In the within-
subjects protocol, we use the training and validation set for
each subject s to learn a subject-specific model and evalu-
ate the model on the test data for subject s. In the across-
subjects evaluation, for a given subject s, we pool the train-
ing set and the validation set for the subjects other than s
and use this pooled data to learn a model. We evaluate this
model on the data for subject s. In the transfer learning
evaluation, for a given subject s, we begin by learning the
across subjects model. We then use the learned weights from
the across subjects model to define a data-dependent regu-
larizer when learning the within-subjects model for subject
s.

4.4 Feature Extraction and Normalization
We set the size of the sparse coding basis to K = 100 and

the sparsity parameter to λ = 0.01. The basis vectors Bk

were learned on ECG data extracted from a window of size
51 samples (204ms) centered at each candidate peak loca-
tion. These values were found to yield good performance in
preliminary testing. For within-subjects training, we learn
a separate set of sparse coding basis vectors from all of the
data windows available for each subject s. In across subjects
training and transfer learning, we learn the sparse coding
basis for subject s using all of the available data windows
for each subject other than subject s. Thus, in across sub-
jects training we are assessing both the generlizability of
the sparse coding basis and the CRF model to a new sub-
ject. We also make the height and the height squared of each
candidate peak location available as additional features. We
consider three different feature sets when learning a model:
sparse coding only (SC), sparse coding with peak height
(SCH), and sparse coding with height and height squared
(SCHH2).

We also consider several different ways of normalizing the
data within each window prior to extracting the features.
We consider subtractive normalization (SN) where we shift
the data to have zero mean within each window; subtractive
and divisive normalization where we shift the data to have
zero mean within each window and re-scale it to have unit
standard deviation within each local window (SDNL); and
subtractive and divisive normalization where we shift the
data to have zero mean within each window and and jointly
re-scale all of the windows to have unit standard deviation
globally (SDNG).

In each of our experiments, we consider nine possible fea-
ture extraction pipelines given by the cross product of a
choice of feature set from {SC, SCH,SCHH2} and a choice
of data normalization framework from {SN, SDNL, SDNG}.
For each model, we select one of the nine possible feature
extraction pipelines using the validation set in each experi-
ment.

4.5 Morphology Extraction Methods
In each of our experiments, we consider three different

methods for extracting ECG peak locations and labels in-
cluding our dynamic CRF approach, an independent multi-
nomial logistic regression model (MLR) and the open-source
ECGPUWave toolbox (PUW) [30, 23]. The only difference
between our CRF framework and the MLR model is that the
CRF model includes edges between adjacent candidate peak
locations while the MLR model makes independent predic-



Subject Session Length # Samples # Candidate Peaks # Labeled Peaks # Clusters

1 6h36m 5,624,954 217,941 3145 175
2 7h01m 5,649,203 214,563 4558 462
3 7h42m 6,537,902 301,317 3231 141
4 11h01m 9,492,152 333,165 4104 219
5 11h55m 6,736,003 245,995 2341 135
6 15h45m 13,565,502 450,256 3966 332

Total 60h 47,605,716 1,763,237 21,345 1464

Table 1: Data set details including the total data set sizes and the number of labeled peaks per subject.

tions. The MLR and CRF models otherwise have access to
identical candidate peak locations, feature sets, and labels
during training, validation and testing.

The ECGPUWave toolbox follows a traditional two-stage
approach based on first identifying QRS complex locations
and then performing a local search to identify the the peak
locations within each cardiac cycle. The ECGPUWave tool-
box can operate in conjunction with a number of different
QRS complex detectors. The classical detector used with
ECGPUWave is the Pan-Tompkins detector [31]. We found
that the more recent open-source WQRS detector of Zong et
al. performed significantly better on our data. The WQRS
detector is based on the curve length transform and has
been shown to be very robust, achieving a QRS sensitivity
of 99.65% and a gross QRS positive predictive accuracy of
99.77% on the MIT-BIH Arrhythmia Database [36].

Since our data is labeled in terms of candidate peak loca-
tions and the CRF and MLR models are restricted to making
predictions only at these locations, it is straightforward to
assess their prediction performance. ECGPUWave can pre-
dict peaks at arbitrary locations so evaluating its accuracy
requires some care. We apply a minimum weighted bipartite
matching algorithm to the ground truth and ECGPUWave
label locations to establish a correspondence between the
true and predicted labels based on the distance between their
time points [21]. We allow the ECGPUWave predictions to
match ground truth labels within a window of plus or minus
four samples (16ms). We define an ECGPUWave prediction
as being correct if it is matched to a ground-truth label of
the correct type. As a result of the matching window con-
straint, all correct peak labels must be within plus or minus
four samples of a ground truth label of the correct type.
Also due to the matching window constraint, some ECG-
PUWave predictions may not match any ground truth label
locations. These predictions are considered as matching a
ground truth label of N (not a valid peak location), which
counts as a labeling error. We performed a preliminary anal-
yses of the effect of window size on the number of matched
ECGPUWave predictions and determined that the number
of matches remains nearly constant as the window size is
increased to nearly the average width of a full cycle. This
indicates that the lack of a match for ECGPUWave typically
means it did not identify a given wave type within a com-
plex at all. Failure to identify a given ground truth wave
is assessed as a prediction of N (not a valid peak) for that
ground truth label. By contrast, the CRF and MLR meth-
ods are required to match the ground truth label locations
exactly for their predictions to be considered correct.

4.6 Evaluation Metrics
We evaluate the three morphology extraction methods de-

scribed above using several different metrics. All of the re-

sults that we report are averaged over the test set perfor-
mance of our six subjects and the standard error of the mean
is also reported. The first metric we employ is average label-
ing accuracy over all six label types (P,Q,R,S,T,N). We also
report confusion matrices where we list the fraction of each
ground truth label that is predicted to be of each label type.
This allows for a detailed analysis of the types of prediction
errors that each method tends to make.

We are also interested in assessing the impact of mor-
phology extraction accuracy on the computation of ECG
morphological feature values. We use the distance between
the Q and T peaks as an example feature related to cocaine
use. We assess the recall and precision of QT distances as
well as the error in the distance for recalled QT pairs. The
recall is the number of complexes where the ground truth
contained a QT pair and both Q and T peaks were pre-
dicted to be present, divided by the number of complexes
where the ground truth contained a QT pair. The precision
is the number of complexes where the ground truth con-
tained a QT pair and both Q and T peaks were predicted to
be present, divided by the number of complexes that were
predicted to contain a QT pair. The error in the QT dis-
tance is defined to be the absolute difference between the
predicted QT distance (the distance between the predicted
peaks) and the ground truth QT distance.1

5. RESULTS
In this section we describe the results of our empirical

evaluation including within-subjects evaluation, across sub-
jects evaluation, transfer learning evaluation and QT feature
extraction evaluation. Throughout this section, PUW refers
to ECGPUWave using the WQRS detector, MLR refers to
multinomial logistic regression, and CRF refers to our dy-
namic CRF framework.

5.1 Within-Subjects Evaluation
The results of the within-subjects evaluation as shown in

Figure 4. Figure 4a shows the average prediction accuracy
results for each of the three methods. We can see that the
CRF and MLR methods both achieve the same average ac-
curacy above 0.95, while PUW performs substantially worse
with an average accuracy of about 0.87. The confusion ma-
trices shown in Figures 4b-4d provide a more detailed look

1Note that the clinical definition of the QT interval is the
difference between the onset of the Q wave and the end
of the T wave. We use the QT peak-to-peak distance as
a more convenient surrogate in this work. The recall and
precision numbers would be identical for the standard QT
interval as opposed to the peak-to-peak distance. The QT
error of the proper interval would depend on the accuracy of
an additional wave delineation step, but note that the same
delineation method can be used with any set of peak labels.



PUW MLR CRF
0.5 

0.55

0.6 

0.65

0.7 

0.75

0.8 

0.85

0.9 

0.95

1   
A

cc
ur

ac
y

(a) Labeling Accuracy (b) PUW (c) MLR (d) CRF

Figure 4: (a) Show the average labeling accuracy for within-subject training. (b)-(d) show the corresponding confusion
matrices for PUW, MLR and CRF.

at the performance of the methods on a per-peak type basis.
We can see that the prediction profiles for both the CRF and
MLR models are nearly identical. We can also see that the
distribution of errors for PUW is highly non-uniform. Con-
sistent with past results for the WQRS detector, the PUW’s
identification of R peaks is highly accurate (99%). However,
performance for all of the other peak types is much worse.
In essentially all cases, this poor performance is caused by
PUW failing to identify valid peaks, resulting in a prediction
of N (not a valid peak).

The fact that MLR and CRF have similar performance in
the within-subjects case indicates that the feature represen-
tation provided by sparse coding, as described in Section 2.4,
is rich enough and the amount of data is large enough that
there is no marginal benefit to structured prediction. How-
ever, the full within-subjects training protocol is based on
hundreds of peak labels per subject. The need to label this
much data for each individual subject is highly prohibitive.
To assess the performance of the MLR and CRF methods
given less data, we repeated the within-subjects evaluation
while varying the number of labeled clusters available during
training between 1 and 14 (each cluster contains 15 labeled
peaks on average). The results of this assessment are given
in Figure 5a. We can see that performance of MLR and
CRF are strongly differentiated in the more realistic low
data limit. With only one cluster of labels, the CRF still
out-performs PUW on average, while MLR does not. We
can also see that as more data becomes available, the CRF
is able to improve it’s performance significantly faster than
MLR.

5.2 Across-Subjects Evaluation
A natural alternative to learning models for each individ-

ual subject is to learn models from an existing database of
and apply that model to new subjects. The across-subjects
evaluation assesses the performance of this approach when a
model is learned using data from 5 subjects and then evalu-
ated on the 6th held-out subject. We report results averaged
over holding out each subject. Figure 6 gives the results of
this assessment. We can see that both MLR and CRF suffer
a decrease in performance relative to the full-data within
subjects case. However, the CRF still out-performs PUW
in the across subjects setting while MLR performs worse on
average. The confusion matrices show that MLR confuses a
variety of similar wave types in this setting (P for T, R for P
and T, T for P). The CRF makes similar types of errors, but
to a much lesser extent. This discrepancy can be explained

by the fact that the CRF’s transition parameters are able
to exploit the regularity in the ordering of the waves within
a complex to compensate for feature parameters tuned for
other subjects. By contrast, MLR only has access to features
values. When there is a poor match between the shapes of
the waves across subjects, it’s performance thus degrades
much more quickly.

5.3 Transfer Learning Evaluation
The drop in performance of MLR and CRF in the across

subjects setting motivates the evaluation of a third train-
ing protocol: transfer learning. Under the transfer learning
approach we employ, as outlined in Section 4.3, data from
other subjects is used to create a prior distribution over the
model parameters. In the absence of any data for a given
subject, the learned model falls back to the across-subjects
model. As more data becomes available for an individual
subject, transfer learning can smoothly interpolate between
the across subjects model and the within-subjects model.
Figure 5b shows the results of this analysis. We can see that
transfer learning is able to dramatically improve the perfor-
mance of both MLR and the CRF in the low data limit.
With just one cluster of labels observed (approximately 16
labels), both MLR and CRF out-perform PUW and their
corresponding across-subjects results.

5.4 QT Feature Extraction Evaluation
From the perspective of mHealth research, an important

question is how differential accuracy in ECG peak labeling
relates to the accuracy of ECG feature extraction. As a case
study, we consider the problem of extracting QT distances
from ECG data. The standard approach to this problem is
to first identify the individual peak locations, and then com-
pute QT distances using the identified waves. The potential
problem with this approach is that failure to predict either
the Q or T peak results in the absence of a QT feature.
Complexes for which feature values could not be extracted
are typically discarded from subsequent analysis. However,
this can lead to a systematic bias in the subsequent analysis
if there is a relationship between the true value of a feature
and the ability of a feature extraction method to extract it
reliably.

To assess the extent of this issue in our data, we used the
MLR and CRF models trained using transfer learning with
four clusters of labeled data to give a more realistic scenario
for comparing subject-specific models to ECGPUWave. The
results are summarized in Table 2. We can see that the
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Figure 5: (a) shows average labeling accuracy as a function of number of training label clusters for within-subjects training.
(b) shows the same results using transfer learning-based training.
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Figure 6: (a) Show the average labeling accuracy for across-subject training. (b)-(d) show the corresponding confusion
matrices for PUW, MLR and CRF.

Model Error Recall Precision
PUW 8.5914±12.8231 0.8733 0.9689
MLR 0.8469±13.5030 0.9549 0.9912
CRF 1.9085±17.4729 0.9854 0.9830

Table 2: QT interval evaluation for PUW, MLR and CRF.

lower accuracy of PUW results in significantly lower recall
and precision of QT distances, as expected. We can also see
that PUW has much higher mean error for the QT intervals
that are retrieved than either MLR or PUW. Details of how
we compute QT errors, precision and recall are explained in
Section 4.6.

However, the interesting question is whether the recall
rate for QT distances is uniform across all ground-truth QT
distance values. Figure 7a shows the ground truth distri-
bution of QT distances for our test data, pooled over all
subjects. Figures 7b to 7d show the recall rate as a function
of the ground truth QT distance (in bins of 5 samples). We
can see that both PUW and MLR exhibit a strong differen-
tial recall rate as the ground truth QT distance increases.
Only the CRF method achieves a nearly flat recall rate as a
function of ground truth QT.

The final component of this case study looks at the dis-
tribution of QT values as a function of the study condition
(cocaine vs no cocaine). Figure 8a presents the distribution
of ground truth QT distances for both conditions pooled
over all subjects. Figures 8b to 8d show the distribution of
predicted QT distances for the complexes where both Q and
T waves were identified. We can see that the CRF matches
the ground truth distribution of QT distances quite closely
for both the cocaine and no cocaine conditions as a result
of its flat recall profile. On the other hand, PUW fails to
identify any of the QT distances in bins 65, 80, 85 under no

cocaine and significantly skews the QT distribution in the
presence of cocaine. MLR also misses a large number of
cases in bins 75, 80, 85 under no cocaine, but performs well
in the cocaine setting.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a novel dynamic CRF

framework for the extraction of morphological structure from
ECG data that is designed to be robust to the type of
noise and artifacts encountered using wireless sensors in the
mHealth setting. We have evaluated our model relative to
multinomial logistic regression and the open-source ECG-
PUWave toolbox in three distinct learning settings: within
subjects, across subjects and transfer learning. Our results
show that the CRF out-performs ECGPUWave in all set-
tings. Further, the CRF substantially out-performs multi-
nomial logistic regression in the more realistic low data limit.
Finally, our case study of ECG feature extraction in the co-
caine use setting highlights the propagation and compound-
ing of errors across the morphological structure identifica-
tion and feature extraction pipelines, which can significantly
alter feature distributions, misleading downstream analysis
and prediction tasks. Given these results, we believe that in
specialized mHealth studies where a large amount of data
is collected from a relatively small number of subjects at a
substantial cost (as in the cocaine study setting), the effort
required to build highly accurate subject-specific models is
justified. Our proposed combination of CRFs and transfer
learning can substantially reduce this effort by minimizing
the amount of labeled data required to learn robust subject-
specific models.

There are many opportunities for future work in this area.
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Figure 7: (a) shows the ground truth distribution of QT distances over all data. (b)-(d) show recall rates as a function
of ground truth QT distance for each method. These results show that PUW exhibits a strong differential recall rate as a
function of the ground truth QT interval, while the CRF does not.
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Figure 8: Distribution of QT distances for cocaine vs no cocaine. (a) shows ground truth QT distance distribution. (b)-(d)
shows distributions of predicted QT intervals for PUW, MLR, and CRF.

Both the candidate peak generation and feature extraction
pipelines are completely modular. It may be possible to re-
duce the number of candidate peaks arising from noise and
artifacts using more sophisticated approaches. Investigating
the use of other feature sets in the CRF is also of interest. In
this work, we have used unsupervised representation learn-
ing methods, but the investigation of fixed wavelet bases is
also of interest. There are also a number of possible exten-
sions to the CRF model itself including the incorporation of
edge features.
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