
UNIVERSITY of CALIFORNIA

SANTA CRUZ

PROTEIN-CODING GENE STRUCTURE PREDICTION USING
GENERALIZED HIDDEN MARKOV MODELS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

David C. Kulp

March 2003

The Dissertation of David C. Kulp is
approved:

Professor David Haussler, Chair

Professor Manuel Ares

Professor Kevin Karplus

Professor Glenn Langdon

Frank Talamantes
Vice Provost and Dean of Graduate Studies

Copyright c© by

David C. Kulp

2003

Contents

List of Figures v

List of Tables vi

Abstract vii

Dedication ix

Acknowledgements x

1 Introduction 1

2 Background 4
2.1 Basic molecular biology . 4
2.2 Variability . 8
2.3 Gene features . 8

2.3.1 Signals . 9
2.3.2 Contents . 10

3 Gene Models 17
3.1 Gene structure models . 17

3.1.1 Linguistic gene models . 18
3.1.2 Hidden Markov models . 24

3.2 Generalized HMMs . 30
3.2.1 The Genie GHMM . 33

4 Implementation 35
4.1 Data structures and initialization . 35
4.2 Graph traversal . 40

4.2.1 In-frame stop codon short-circuiting 41
4.2.2 Length restrictions . 42
4.2.3 Cumulative scoring . 43

iii

4.2.4 Model topology . 43
4.3 MetaContent: content scoring . 45
4.4 Flexible configuration . 47
4.5 Weakness of graph traversal . 50
4.6 Annotating large sequences . 51

5 Constrained Systems 53
5.1 Protein matches . 53
5.2 Perfect alignments . 55

5.2.1 Interactive graph control . 56
5.2.2 Sensor score constraints . 58

6 Methods and Results 61
6.1 Sensors, signals, length distributions, and transition probabilities 61
6.2 Performance metrics . 65
6.3 Basic ab initio results . 66
6.4 Learning ability . 67
6.5 Feature scoring . 69
6.6 Model extensions . 72
6.7 Constraint results . 73

6.7.1 Protein homology . 73
6.7.2 Fixed sensor score constraints . 74

7 Whole Genome Gene Finding 78
7.1 Whole genome experiments . 78

7.1.1 C. elegans . 79
7.1.2 Chlamydomonas . 79
7.1.3 Drosophila . 80
7.1.4 Homo sapiens . 81
7.1.5 Mus musculus . 85

7.2 Clone bounds and gene counts . 87

8 Closing Remarks 91
8.1 Discussion . 91
8.2 Conclusion . 94

Bibliography 95

iv

List of Figures

2.1 Central dogma of molecular biology in eukaryotes 7
2.2 C. elegans start codon and splice site profiles 11
2.3 Phased Markov chains . 13
2.4 Score distributions for Markov chain models of coding and intronic DNA 14
2.5 G+C dependency on gene density and feature length 15
2.6 Length distributions of exons and introns 16

3.1 Finite state automaton that recognizes gene structures 23
3.2 Generalized hidden Markov model used by the Genie gene finding system 34

4.1 The induced gene graph . 36
4.2 Software object architecture . 38
4.3 Practical running time of depth-first search 45
4.4 Example of content sensor scoring using dynamic programming 46

5.1 Match pair constraints . 55
5.2 Example of perfect alignment mRNA constraints 60

6.1 Effect of training size . 70
6.2 Performance of posterior probability score function 71
6.3 Constraint-based prediction results . 76

7.1 An example mouse gene . 88

v

List of Tables

6.1 Genie Sensors . 62
6.2 Genie Signals . 63
6.3 Ab initio performance for Chlamydomonas 66
6.4 Ab initio performance for the Adh locus in Drosophila 68
6.5 Prediction results on 570 protein-coding genes 73
6.6 Constrained gene prediction performance 77

7.1 Assessment of Genie on the Chlamydomonas genome 80
7.2 Drosophila genome gene predictions . 81
7.3 Human genome gene predictions . 84

vi

Abstract

Protein-coding Gene Structure Prediction Using Generalized Hidden Markov

Models

by

David C. Kulp

This paper describes a computer method for predicting the exon-intron structures and

protein-coding regions of genes in genomic DNA along with its application to several

model organisms. Expanding on earlier work applying linguistics and state machines

to DNA analysis, the problem is introduced here using a novel generalized hidden

Markov model that allows arbitrary length symbols per model state. This model

provides a simple representation of complex grammatical structure and reduces some

of the parameterization and training burden of standard hidden Markov models. A

key characteristic of the method is the abstraction of score-generating feature sensors

from the gene-structure model topology. A computer program called “Genie” embodies

the method described here. Employing mostly standard metrics for feature scoring,

the basic gene-prediction method is shown to work better than other known methods,

identifying as much as 40% of exact coding sequences correctly. An expanded method,

which uses constraints on the set of possible outputs, allows for the incorporation of

messenger RNA or protein sequence homology to boost gene prediction sensitivity and

specificity by approximately 10%. The results of whole genome studies on several

complete genome sequences are presented. Engineering details of the software design

are discussed including flexible run-time configurations and methods to reduce the

running time from cubic to linear in the size of the input sequence.

In memory of my grandmother, Ethel Zimmerman.

ix

Acknowledgements

I extend my thanks to family and friends who provided moral support and collaborators

whose collegial support made this work possible. Specifically, my deepest gratitude is

extended to my wife, Laura, whose patience is unequaled, and to my mother and father,

Ann and Paul, who have remained supportive through the many years of detours and

diversions. Among friends, I thank Cyrus Harmon for his enthusiastic support. Of

note, Martin Reese was a valued collaborator for many years. Martin’s neural network

signal sensors were used in some incarnations of the Genie system described here; he

also produced curated DNA annotations that were critical for evaluation of the Genie

system and he was the catalyst for some interesting experiments and projects. Ewan

Birney’s uncommon goodwill has resulted in publication success that might otherwise

be impossible. Jim Kent wrote “pslayout”, which was key to cDNA constraints, and

he worked with me to re-annotate C. elegans as part of his “intronerator” project.

Ray Wheeler wrote “AltMerge”, which, like “pslayout”, was essential to the success of

the constraint system. Hari Tammana helped me test the software performance. Alan

Williams wrote two versions of batch management software for running whole genome

annotations. Ray and Alan were collaborators in the human genome annotation and

Ray and I worked together on the mouse genome annotation. Robin Matlib produced

the curated set of Chlamydomonas sequences. Peter Brokstein provided 5’/3’ clone

pairs used in the Drosophila annotation.

The following people contributed to early related work not described here:

x

Melissa Cline provided me with sample Matlab code for feed-forward neural networks

used in the content sensor in the first iteration; David Le attempted early studies using

cDNA homology with Genie; and Kevin Karplus generated early alignment models of

splice sites. Naomi Harris performed early gene finder evaluations, developed a meta-

gene-finder that included Genie, developed a visualization system that included Genie

annotations of Drosophila, and maintained a flyGenie web server.

Lastly, I am grateful to my advisor, David Haussler, for his mentorship, in-

sight, inspiration, and friendship over many long years.

xi

Chapter 1

Introduction

The task of separating the wheat from the chaff is a significant problem in DNA

sequence analysis. Faced with billions of nucleotides, much effort has been given to

locating the functional elements along the chromosomes. Most efforts are directed

towards the identification of genes. A gene is classically defined as a region of a

chromosome that is genetically linked with a phenotype. More specifically, a gene is

typically a discrete sequence of nucleotides composed of a subsequence that is physically

transcribed by a polymerase and proximal sequence influential in that transcription;

that is, a gene is a set of regulatory elements and a primary transcript. Of particular

interest are those primary transcripts that are translated by the ribosome into amino

acid chains: the protein-coding genes. Many RNA transcripts in eukaryotes are spliced

into smaller sequences through the excision of introns by the spliceosome, leaving a set

of concatenated exons to be passed to the ribosome. The specific problem addressed

here is the prediction of both the exon-intron structure and the translated peptide

1

sequence of protein-coding genes. I define this limited problem as “gene prediction”

and the exon-intron structure more generally as the “gene structure.”

In Chapter 2, a background of molecular biology and gene prediction method-

ology is presented. In this section I introduce standard terminology, refer to the sig-

nificant and influential work in gene prediction methods, and identify efforts related

to my own. Important discriminating features of genes are explained and the basic

concepts behind the likelihood models used for gene finding are presented.

Chapter 3 is concerned with a principled derivation of the generalized hidden

Markov model from its linguistic roots. I show that all necessary restrictions on the

structure of protein-coding genes can be described in terms of a regular grammar and

that the corresponding probabilistic finite state automaton can be equivalently mapped

to a new generative graph that emits multi-symbol observations along its arcs. The

algorithms necessary for path scoring for this so-called generalized hidden Markov

model are briefly presented and the precise model used by the Genie software is shown.

The focus of Chapter 4 is on the software engineering aspects related to the

configurability, flexibility, expressibility, and efficiency of the system. Technical details

of the implementation are revealed including the software architecture, optimizations

to manage running time and memory constraints, the format for run-time specification,

and the practical problem of making predictions in long DNA contigs.

Chapter 5 includes descriptions of three different mechanisms for constraining

the search space and scoring of parses given external evidence. The first involves the

use of protein similarity in a coding-exon likelihood model; the second is a software

2

method for restricting the search space by traversing only subgraphs of the induced

graph of possible parses; the third is an artificial scoring scheme to force the inclusion

of certain paths in the optimal parse while allowing statistical prediction elsewhere.

For organisms with large expressed-sequence databases, such as human and mouse, the

problem of gene prediction is greatly simplified by incorporating the alignments from

these databases as fixed constraints.

Chapter 6 provides a disclosure of various configurations used in different

experiments and genome annotations. Results are then presented demonstrating the

efficacy of the methods described in the previous chapters. In addition, I present

evidence that the number of training samples necessary for effective gene prediction is

surprisingly low and I show that the posterior probabilities derived from the hidden

Markov model serve as a good score function.

Finally, the general results of several whole genome annotation efforts are

presented in Chapter 7. I give particular attention to the recent generation of a set

of protein-coding genes for the mouse genome and conclude with an assessment of the

number of genes in mouse based on a novel method using EST mate pairs.

3

Chapter 2

Background

2.1 Basic molecular biology

DNA (deoxyribonucleic acid) is the symbolic code of life. In each cell the DNA

is divided into chromosomes, and each chromosome is a helical strand of nucleotides—

adenine (A), guanine (G), cytosine (C), and thymine (T)—the so-called bases. Com-

bined, there are up to billions of bases per cell, collectively containing sufficient in-

formation for the creation and functions of life. The bases are arranged into two

complementary strands such that A-T and G-C are always paired.

Much effort has been given to locating the functional elements along these

genomic sequences and most efforts are directed towards the identification of genes. A

gene is classically defined as a region of a chromosome that is genetically linked with

a phenotype. In molecular biology, a gene is typically defined as a discrete sequence

of nucleotides composed of a subsequence that is transcribed by a polymerase into

4

RNA (ribonucleic acid) and proximal sequence influential in that transcription. Thus,

a gene is a set of regulatory elements and a primary transcript. Of particular interest

are those primary transcripts that are translated by the ribosome into amino acid

chains: the protein-coding genes. In this paper, the term gene is typically used loosely

to refer to a protein-coding primary transcript.

Since one strand is the complement of the other, in DNA analysis only one

strand is stored in the databases. Which strand is represented is generally arbitrary

and unimportant, but in this paper the represented sequence is called the forward

strand and the implicit complement is the reverse. A DNA sequence is always repre-

sented, by convention, in the direction of DNA replication. The left end of the sequence

is also termed upstream or 5’ and the right end is downstream or 3’. Transcription

occurs on single-stranded DNA, either the forward or reverse complement strand. Al-

though transcription has been observed to occur at the same physical genomic position

on both strands, this work assumes that there are no overlapping transcripts. Auto-

matic analysis methods must evaluate both the explicitly represented sequence and

the implicit reverse complement simultaneously.

Transcription is performed by a DNA polymerase molecule that binds to a

DNA molecule. Conserved nucleotide patterns in the region near transcription initia-

tion are called promoters, and the attachment of the DNA polymerase is shepherded

by a set of promoter-binding molecules. Transcription, like replication, occurs in a

downstream direction along the sequence. This copying of the DNA into RNA often

terminates after transcribing a nucleotide pattern called the polyadenylation signal.

5

Once the RNA has been copied, the last transcribed bases are capped with a series of

usually 10 or more adenine bases creating the poly-A tail.

Many transcribed messages (pre-mRNA) in eukaryotes are spliced into smaller

sequences called processed or mature mRNA through the excision of introns by the

spliceosome, leaving a set of concatenated exons to be passed to the ribosome. The

locations in the DNA where the introns are removed are the splice sites, individually

called the 5’ and 3’ splice sites. At least 99% of 5’ splice sites begin with “GT” and 3’

splice sites end with “AG”, called the consensus dinucleotides.

Within the processed mRNA sequence, a subsequence called the coding se-

quence (CDS) is translated into a peptide chain by the ribosome. The coding sequence

is a set of nucleotide triplets called codons and each codon is predictably translated

into one of the 20 amino acids. The coding sequence usually begins with the codon

“ATG” (sometimes “GTG” in some lower organisms) and terminates with one of three

stop codons, “TAA”, “TGA”, or “TAG”. Usually the start codon is the first “ATG”

in the processed mRNA (Kozak’s Rule[1]). The offset positions in a coding sequence

modulo three indicates the frame or phase. Codons, by definition, always begin in

frame zero. If one of the three stop codon nucleotide triplet combinations is observed

in frame zero, this is called an in-frame stop codon. A sequence of DNA with no

in-frame stop codons is called an open reading frame (ORF).

Figure 2.1 graphically depicts this central dogma.

6

Figure 2.1: Central dogma of molecular biology in eukaryotes. A primary transcript region
starting at the promoter is copied into pre-mRNA. The transcript is then spliced to produce
the mature cytoplasmic message. The message is translated into peptides. Note that codons
may span splice boundaries. Although not shown in this diagram, splicing is possible in the
untranslated regions.

7

2.2 Variability

The processes of transcription and splicing, that is, the creation of mature

mRNA is called expression. Unfortunately, the precise details of expression are not

deterministic for any gene. The location of transcription initiation can vary due to

multiple promoter sites. Transcription termination is quite variable, and each alterna-

tive termination site can vary on the order of tens of bases. Splicing can vary as well.

Different or new splice sites can be used by the spliceosome. Thus, alternative tran-

scription and alternative splicing provide a mechanism for expressing many different

species of the same gene. Indeed, alternative splicing can, in theory, lead to the gener-

ation of different mRNAs that is exponential in the number of splice sites. But, while

this expression variability appears to be increasingly common in higher organisms such

as in human, where estimates of alternative splicing frequency range as high as 60%,

in most cases the number of alternative forms is typically only a few. Nevertheless,

alternative mRNAs for the same gene can lead to different CDSs, complicating the

problem of gene prediction and the assessment of the results.

2.3 Gene features

Given the molecular biology processes defined in the previous section, there

are important statistical properties of the corresponding features in a DNA sequence.

Before the advent of systematic gene-structure-prediction methods, researchers were

concerned with measuring the properties of individual features and devising discrim-

8

inants for each. Following Staden[2], the feature types can be divided into two cate-

gories: signals and contents.

2.3.1 Signals

Signal features are fixed patterns in DNA that describe transition points for

transcription, splicing, or translation. Signals loosely correspond to binding sites or

special functional patterns recognized by the polymerase, spliceosome, or ribosome.

The promoter and polyadenylation sites are signal features for transcription, 5’ and

3’ splice sites are signal features for splicing, and translation start and stop sites are

signal features for translation. Each of these signals are somewhat conserved across

different genes and different species. A signal is often a combination of highly conserved

nucleotides flanked by less conserved, weaker signals.

For example, the splice sites have consensus dinucleotides, but are flanked

by regions with less specific nucleotide patterns. Profiles are often used to describe

nucleotide patterns of fixed length[3]. A profile is a simple two-dimensional matrix

P (1 ≤ i ≤ m, 1 ≤ j ≤ 4) such that P (i, j) is the probability of nucleotide j at position

i in a motif of length m. Frequencies can be used to generate these probabilities,

priors can be introduced when data is sparse, or more sophisticated contexts can be

represented such as dinucleotide frequencies (order-2 Markov profile) at each position

resulting in a M × 16 matrix, etc. These profiles have the convenient property of

simply generating a likelihood probability for any test sequence represented as a vector

S(1 ≤ i ≤ m, 1 ≤ j ≤ 4), where Si,j = 1 for the nucleotide j found at position i and

9

0 elsewhere, by
∏

i=1...m

∏
j=1...4 P

Si,j

i,j . Stormo presented thermodynamic, likelihood,

and information theoretic justifications for their use[4]. Figure 2.2 shows examples of

simple frequency profiles for start codon and splice sites in C. elegans.

In contrast to splicing and translation signals, transcription signals are weak,

small, and variably positioned. The polyadenylation site is usually “AATAAA”, but

there are many variants. Moreover, the motif is small, is not located predictably near

other contextual features, and may not even be present. The promoter site is an

elaborate complex of weak binding sites and variably ordered.

Many methods have been advanced for detecting signal features in DNA and

this paper will not attempt to fully summarize. Gelfand offers a fine review[6]. In

my work, I have considered profiles including elaborations proposed by Burge[7], and

the neural network methods of Brunak & colleagues[8] and Reese[9, 10] for splice site

and promoter prediction. Another important approach are the discriminant analysis

methods of Solovyev[11] and Zhang[12], which are not addressed in this work because

of their incompatibility with likelihood models.

2.3.2 Contents

Content features are compositional patterns across a stretch of DNA. Content

features refer to those extents of DNA that are transcribed, spliced, or translated, i.e.,

protein-coding regions, untranslated exonic regions, introns, and untranscribed DNA.

The intron, untranslated exon, and untranscribed DNA regions are are often treated

as a common non-coding class in contrast to the protein-coding regions.

10

Figure 2.2: C. elegans start codon and splice site profiles. Windows of 20 bases upstream of
the start codon (position 0), 20 bases downstream of the 5’ exon junction (“GT” is positions
0 and 1), and 20 bases upstream of the 3’ exon junction (“AG” is positions -1 and -2) were
selected from curated gene sequences[5].

11

Most early research in gene finding focused on coding measures for the dis-

crimination of protein-coding from non-coding regions. All of the coding measures are

based on the observations of periodicity (due to the 3-base non-overlapping codons),

non-uniformity of amino acids (amino acid preference), non-uniformity of codon selec-

tion for a given amino acid (codon preference), and local nucleotide bias. The combina-

tion of amino acid and codon preference was defined by Staden as codon usage[3], and

this measure lies at the heart of most successful coding measures. Fickett and Tung

provide an assessment of many of the proposed coding measures and they found that

phased hexamer counts, first published by Claverie, et. al.[13], is the most effective

measure[14]. An equivalent model of hexamer counts is a set of three phased order-N

Markov chains [15] where N = 5, as shown in Figure 2.3, and this is the method em-

ployed here. Figure 2.4 shows the distribution of negative log likelihood scores using

the three phased 5th-order Markov chains and intronic 5th-order Markov chain for

coding regions of length 99. Extending to 6th order Markov chains when sufficient

training data is available offers no significant improvement, as shown in Figure 2.4.

Guigo and Fickett[16], showed that all content models are highly correlated

with G+C bias, i.e., the local (on the order of 100s or 1000s of bases) frequency of

G and C nucleotides versus A and T. Thus, all measures for coding and non-coding

benefit from incorporating G+C as an additional parameter or by training separate

models for different ranges of G+C.

The lengths of exons and introns are not random (see, e.g. Smith, 1988),

but have distinct distributions. For example, both gene density and intron length are

12

Figure 2.3: Three phased Markov chains are used to detect codon usage and dependencies
among neighboring bases. A 5th-order Markov chain is similar to hexamer counts.

correlated with G+C (Figure 2.5). The length distribution of contents is an important

additional parameter to incorporate into models. For example, internal coding exons

of most organisms have a typical length of about 150 to 200 bases. By contrast,

intron distributions are broad and vary among organisms. In Figure 2.6, a majority of

Drosophila and C. elegans introns are less than 100 bases and quite regularly about

60-70 nucleotides. Human introns are rarely less than 100 bases and show a long

exponential distribution to 106 bases.

One simple and effective coding measure is the identification of ORFs of

minimal length. For genomes with little or no splicing, or when annotating mature

mRNA, the problem of identifying protein-coding regions is a relatively simple problem

of finding large open reading frames. ORF detection can be an effective protein-coding

region identification method even for organisms with frequent splicing. The likelihood

of a 150-base ORF (the length of an average exon) is only 0.11 in random DNA

and even less likely in out-of-phase coding regions. Thus, the typical coding exon is

13

Figure 2.4: Score distributions for Markov chain models of coding and intronic DNA. Three
phased Markov chains were trained on 53,183,460 coding bases and one Markov chain was
trained on 16,149,264 intronic bases from the well-annotated protein-coding exons of C. elegans.
For each of 48,124 exons, a 99-nucleotide in-frame coding region was scored using the coding
model, two out-of-phase coding models, and the intron model. The top left graph shows
the distribution of − ln likelihoods for 5th-order Markov chains. The top right graph is the
distribution of savings per base of the 5th-order coding model versus the intron and out-of-
phase 5th-order models for each coding exon. Pairwise comparisons with likelihoods from
out-of-phase models were only made if there were no in-frame stop codons in the alternative
frame. Note, that although the score distributions in the top left figure are distinct, there
is significant overlap, but the top right graph shows that there is good pairwise separation,
i.e. most differences between model scores are greater than zero. The bottom graph shows
a comparison of the savings per base for 5th- and 6th-order chains. There is a very small,
improvement with higher order models.

14

Figure 2.5: G+C dependency on gene density and feature length. The first graph shows
frequency of G+C for 135,867 non-overlapping windows from human DNA of length 20,000
and 9,315 windows of length at least 20,000 that fully included well-aligned full-length human
mRNAs in finished human DNA contigs. The second graph shows the distribution of exon
and intron lengths with respect to G+C. G+C was calculated according to a window at least
10,000 bases wide that fully included the intron or exon.

statistically significant simply due to the presence of an ORF of that length, regardless

of other nucleotide patterns. The problem of gene finding is thus an “end game”,

to a large degree, in which most of the coding bases are readily identified and the

difficulties lie in the prediction of splice sites, the prediction of small coding exons,

and, importantly, the incorporation of exons into a consistent arrangement of protein-

coding exons. In the ideal, a computer method for predicting genes would be one that

merely excelled at signal predictions, mimicking the biological processes. In practice,

discrimination is often not possible simply due to the density of putative signals. Thus,

the consistent incorporation of predicted features into a unified gene structure is the

important “meta-model” of successful gene finding systems as described in the next

chapter.

15

Figure 2.6: Length distributions of exons and introns. The left graph shows a histogram
distribution of the length of internal exons (those coding exons that do not contain a start or
stop codon) and the right graph shows a cumulative distribution of the lengths of introns plotted
in log scale. Both graphs show lengths for human (Hs), Drosophila melanogaster (Dm), and C.
elegans (Ce). The data was generated by aligning (using Blat[17]) 106,158 exons from 10,428
full-length mRNAs for Hs from Genbank to the Dec 2001 assembly, 47,542 exons from 9,820
full-length mRNAs for Dm from the “DGC v1 & 2” from BDGP to the release 3 assembly, and
24,137 exons from 3,627 complete CDS sequences for Ce from WormBase to the final assembly.
The longest alignment of greater than 90% of the mRNA length was selected. Gaps less than
15 nucleotides in the genomic or mRNA were merged. Exon distributions tend to be similar
among species. The majority of introns are about 70 bases for Dm and Ce; Hs does not have a
peak length and tends to be much longer. All have approximately an exponential distribution
for intron length.

16

Chapter 3

Gene Models

3.1 Gene structure models

In the early 1990s, several new methods were published describing complex

systems that used different metrics to generate an integrated gene structure predic-

tion [18, 19, 20, 21]. Whereas previous programs predicted exons, splice sites, or

other individual features, these new systems combined information to predict a gene

structure—that is, a series of connected coding exons. Earlier work used rules to filter

through possible combinations of features in a way that mimicked that manual anno-

tation process of the day. Snyder and Stormo[22] showed how the optimal combination

of features could be obtained using dynamic programming.

17

3.1.1 Linguistic gene models

Dong and Searls[23, 24] were the first major proponents for describing gene

structure in linguistic terms. Searls showed how gene structure could be modeled in

terms of formal grammar productions. The concept is appealing because it provides an

abstract representation for the biological processes and a means for computation. Gene

structure can be described at the top-level as transcription, splicing, and translation.

Using standard BNF syntax, the structure of genes in DNA can be expressed in terms

of a context-free grammar. For example, a grammar might contain

DNA → Untranscribed Transcribed Untranscribed
Transcribed → 5′UTR Coding 3′UTR

Coding → Exon Intron Exon
Intron → Intron Exon Intron

...

Unlike Searls, who required a context-free grammar in his models, it is pos-

sible to describe gene structure in terms of a regular grammar, which offers signifi-

cant computational advantages. In my derivation, to simplify mapping from regular

grammars to FSAs, I will only use a modified right-regular production such that any

production of the form Z → (a|b)Y is written as the two productions Z → XY and

X → (a|b). This style will map conveniently to hidden Markov model state transition

and arc distributions. Here is the regular grammar derivation:

DNA → IntergenicBase DNA
DNA → IntergenicBase ForwardTranscribed
DNA → IntergenicBase ReverseTranscribed
DNA → null

IntergenicBase → A | G | C | T

The reverse strand is handled analogously to the forward strand, but not

18

explicitly presented here.

ForwardTranscribed → 5′UTR

The 5’ UTR region can be interrupted by one or more introns and the CDS

follows the 5’ UTR.

5′UTR → ExonBase 5′UTR
→ ExonBase Translated
→ ExonBase Intron

Intron → GT Intron′

Intron′ → IntronicBase Intron′

→ AG 5′UTR
ExonBase → A | C | G | T

The translated region is similarly handled, but to ensure frame consistency

the coding regions must maintain phase across introns. Let the naming convention,

Introni mean an intron that is interrupting a coding region in frame i, and Basej refer

to the jth base of a partial codon.

19

Translated → ATG CDS
CDS → Codon CDS

→ Codon Intron0

→ Codon Base0 Intron1

→ Codon Base0 Base1 Intron2

→ Stop 3′UTR
Stop → TAG | TGA | TAA

Intron0 → GT Intron′0
Intron′0 → IntronicBase Intron′0

→ AG CDS

Intron1 → GT Intron′1
Intron′1 → IntronicBase Intron′1

→ AG Base1 Base2 CDS

Intron2 → GT Intron′2
Intron′2 → IntronicBase Intron′2

→ AG Base2 CDS

IntronicBase → A | C | G | T
Base0 → A | C | G | T
Base1 → A | C | G | T
Base2 → A | C | G | T
Codon → AAA | AAC | AAG | AAT | ACA ...

Last, the 3’ UTR is like the 5’ UTR:

3′UTR → ExonBase 3′UTR
→ ExonBase DNA
→ ExonBase Intron

Intron → GT Intron′

Intron′ → IntronicBase Intron′

→ AG 3′UTR
ExonBase → A | C | G | T

One final detail is that the grammar must not allow in-frame stop codons

to span across introns. This can be handled with additional states. Replace the

productions derived from the ”Translated” non-terminal as follows:

20

Translated → ATG CDS
Stop → TAG | TGA | TAA
CDS → Codon CDS

→ Codon Intron0

→ Codon T Intron1-T
→ Codon Not-T Intron1

→ Codon TA Intron2-TA
→ Codon TG Intron2-TG
→ Codon Not-T[AG] Intron2

→ Stop UTR3’

Not-T → A | C | G
Not-T[AG] → AA | AC | AG | AT | CA | CC | CG | CT

→ GA | GC | GG | GT | TC | TT

Intron0 → GT Intron′0
Intron′0 → IntronicBase Intron′0

→ AG CDS

Intron1 → GT Intron′1
Intron′1 → IntronicBase Intron′1

→ AG Base1 Base2 CDS

Intron1-T → GT Intron′1-T
Intron′1-T → IntronicBase Intron′1-T

→ AG Not-[AG|AA|GA] CDS

Intron2 → GT Intron′2
Intron′2 → IntronicBase Intron′2

→ AG Base2 CDS

Intron2-TA → GT Intron′2-TA
Intron′2-TA → IntronicBase Intron′2-TA

→ AG Not-[AG] CDS

Intron2-TG → GT Intron′2-TG
Intron′2-TG → IntronicBase Intron′2-TG

→ AG Not-A CDS

21

Not-[AG|AA|GA] → AC | AT | CA | CC | CG | CT
→ GC | GG | GT | TA | TC | TG | TT

Not-A → C | G | T

IntronicBase → A | C | G | T
Base0 → A | C | G | T
Base1 → A | C | G | T
Base2 → A | C | G | T
Codon → AAA | AAC | AAG | AAT | ACA ...

This grammar is nearly sufficient to recognize only biologically legitimate

gene structures. Only sequences containing zero or more transcribed genes with no in-

frame stop codons, a CDS length being a multiple of three, and splicing occurring only

at “GT” and “AG” junctions are recognized. The complete grammar is also shown

graphically as an FSA in Figure 3.1. The grammar does not quite describe biological

reality. It is possible, although rare, for genes to overlap, but this phenomenon is

not captured in this grammar. It is also possible for the start and stop codons to

span introns, but is specifically prohibited here. Fewer than 1% of splice sites do not

contain consensus dinucleotides. In addition, the model does not include minimum

or maximum length restrictions for loop features. Minimum lengths can obviously be

added to the grammar by increasing the number of states. Maximum length restrictions

cannot be reasonably represented in this framework without an enormous expansion

of states. The problem of length restrictions will be addressed generally in terms of

length distributions in Section 3.2.

22

CDS

Intron

5' UTR

Intergenic

3' UTR

GT

GT

GT

GT

GT

¬(TAA|TAG|TGA)

N

NN N

GT

AG

N N

GT

AG

TGA|TAG|TGA

N

N

N

N

N

¬(TA|TG)

TG

TA

¬T

T GT

AG

AG

AG

AG

AG

N

¬A

¬(A|G)

NN

¬(AA|AG|GA)AG

ATG

Figure 3.1: Finite state automaton that recognizes gene structures. This FSA recognizes all
protein-coding gene structures such that there are no in-frame stop codons, a CDS length of a
multiple of three, “GT”/“AG” splicing, and no intron-spanning stop codons. (Intron-spanning
stop codons are, in fact, legal, but very rare, and so are explicitly excluded.)

23

3.1.2 Hidden Markov models

The FSA described above is a language recognizer for genes in DNA, and the

computational complexity of such a recognizer is only O(NM) where N is the length of

the sequence and M is the number of states. However, the gene finding problem is not

only to determine whether a given query sequence can be accepted by our language—in

fact, all sequences are accepted by the grammar as completely intergenic—but which is

the parse of the data that represents reality. This problem lends itself to a probabilistic

grammar framework in which a likelihood estimate can be attributed to each possible

parse by assigning probabilities to each production in the grammar. Formally, this is

equivalent to a hidden Markov model, as follows:

Given a normalized, right-regular grammar with productions of the form

A → x1 B
A → x2 B

and a corresponding FSA of then a set of probabilities can be de-

rived from the graph where P (A) is the probability of applying one of the productions

for the non-terminal A, P (x,B|A) is the conditional probability of emitting the termi-

nal symbol x and the non-terminal B given the application of A, etc. The probability

of generating symbol x using this production is

24

P (x, AB) = P (A)P (x,B|A)

= P (A)P (x|A)P (B|x,A)

= P (A)P (x|A)P (B|A)

(3.1)

All such productions can be written equivalently, as in the DNA gene gram-

mar above, as

A → X B
X → x1

X → x2

creating a new state machine , where λ emits

no symbol. Applying the same logic, the joint probability is P (x, AXB) = P (A)P (x|X)P (B|A).

It is convenient to collapse all sets of terminal productions and label the arc of the FSA

by the state X: . I introduce a function arc(A,B) that returns the terminal

production state X. We can then rewrite the joint probability as

P (x,AXB) = P (A)P (x|arc(A,B))P (B|A)

In short, this new FSA is equivalent to any normal FSA, but a shorthand

method is employed such that terminal productions are all on the arcs. This then

leads to the following definitions:

25

x = A nucleotide in the set {A,G,C, T}.

S = The sequence of length N , where S[i]
is the ith symbol in S.

Q = The set {j, k, . . .} of M non-terminal
productions according to the con-
vention described in the derivation,
above. Equivalently, the set of states
in the shorthand FSA.

P (x|arc(j, k)) = The probability distribution over ter-
minal productions. Equivalently, the
probability of emitting symbol x dur-
ing the transition from state j to k.

P (k|j) = The probability distribution over each
non-terminal production. Equiva-
lently, the probability of transitioning
into state k conditioned on being in
state j.

Φ = A parse. A sequence of N + 1 states
selected from Q, symbol S[i] is emit-
ted on the arc between states Φi−1 and
Φi. Φ0 = 0, a special start state.

Given these definitions, the joint probability of a sequence and some parse,

Φ, is

P (S, Φ) =
∏

i=1...n

P (S[i]|arc(Φi−1,Φi))P (Φi|Φi−1) (3.2)

While an FSA can report whether a sequence is recognized in a language,

this probabilistic FSA can report the probability that a sequence is generated by the

language, that is,

P (S) =
∑
Φ

P (S, Φ) (3.3)

Moreover, an individual parse that results in a high likelihood of S can be interpreted

as a better or more desirable parse. Thus, the objective is to identify Φ that maximizes

26

the likelihood of S, i.e.

arg max
Φ

P (S, Φ) (3.4)

The best Φ can be deduced easily through an inductive procedure that is

obvious from Equation 3.2. The so-called Viterbi dynamic programming method pro-

vides an efficient solution[25]. Equivalently, a depth-first search can be applied on a

graph G = (V,E) where the vertices, V , are the cells in the dynamic programming

array, i.e. state/position pairs, and there is an edge in E between each pair of vertices

with a non-zero transition probability (i.e. where P (i|j) > 0). Such a sparse matrix

implementation is useful when sequences and state counts are large, not all states are

possible at all positions, and memory is a significant limitation. The running time of

either algorithm is proportional to the length of the input sequence and the number

of states (O(NM)).

In pseudocode, let S[i] be a letter in the input sequence where 1 ≤ i ≤ N ,

and let Vi,j be the vertex corresponding to the state j, 1 ≤ j ≤ M , at position S[i]

in the sequence. score(Vi,j) is the memoized score at that node, and parent(Vi,j) is the

memoized parent node representing the optimal path. Both score() and parent() are

initially undefined. The following recursive function populates the data structure V

with scores and optimal parent paths.

Function F (i, j)
If score(Vi,j) is defined Return score(Vi,j)
If i = 1
Then

Set score(Vi,j) = P (S[i]|j)P (j|0)
Else
For each k, where P (j|k) > 0

27

If F (i− 1, k) · P (S[i]|arc(k, j))P (j|k) > score(Vi,j)
Then

Set score(Vi,j) = F (i− 1, k) · P (S[i]|arc(k, j))P (j|k)
Set parent(Vi,j) = (i− 1, k)

Return score(Vi,j)

F (N,M) returns arg maxΦ P (S, Φ) and, as a side effect, the populated data structure

V now contains the parse, Φ.

Determining P (S) requires a simple modification of F (i, j) to sum (Equa-

tion 3.3), instead of maximize (Equation 3.4), over possible parses:

Function G(i, j)
If score(Vi,j) is defined Return score(Vi,j)
If i = 1
Then

Set score(Vi,j) = P (S[i]|j)P (j|0)
Else
For each state k, where P (j|k) > 0

Set score(Vi,j) = score(Vi,j) + G(i− 1, k) · P (S[i]|arc(k, j))P (j|k)
Return score(Vi,j)

It is often useful to determine the posterior probability P (Φi−1 = k, Φi = j|S).

This value provides the answer to such questions as the probability that the nucleotide

“C” at position 22 is an intronic base, for example. The solution is obtained by

summing only over all parses that contain the specified arc at the specified position.

By creating a reverse summation function, G′, and a second set of vertices, V ′, this

value is easily determined:

Function G′(i, j)
If score(V ′

i,j) is defined Return score(V ′
i,j)

If i = N
Then

28

Set score(V ′
i,j) = 0

Else
For each k, where P (k|j) > 0

Set score(V ′
i,j) = score(V ′

i,j) + G′(i + 1, k)× P (S[i + 1]|arc(j, k))P (k|j)
Return score(V ′

i,j)

Then the posterior can be calculated from functions G and G’ as:

P (Φi−1 = k, Φi = j|S) = P (S,Φi−1=k,Φi=j)
P (S)

= P (S[1...i−1],Φi−1=k)P (j|k)P (S[j...N],Φi=j)
P (S)

= G(i,k)P (S[i]|arc(k,j))P (j|k)G′(i,j)
P (S)

(3.5)

This derivation is a variant of the forward/backward algorithm. Note, that

if Z and Z ′ are fully populated by calling G(N,M) and G′(1, 1), then all subsequent

calls for any values of i and j are precomputed.

To summarize, it is possible to formally describe the processes of transcrip-

tion, splicing, and translation in terms of a finite state automaton representing produc-

tions in a regular grammar. A generalization of the FSA with probabilities assigned

to transitions between nodes expands the power of the model from language recogni-

tion to parse prediction. A modified FSA with all terminal symbol productions placed

on the arcs is equivalent to a probabilistic FSA, but naturally translates to an HMM

framework with probability distributions over state transitions and observed symbols.

A recursive graph traversal, which is equivalent to the dynamic programming used in

29

the standard Viterbi and forward/backward methods, can be used for determining the

HMM solutions. Thus, the HMM framework for gene finding provides a method to

integrate likelihood models for different gene features into a single system, provides

grammatical constraints to ensure the integrated parse is legitimate, and provides a

probabilistic interpretation of the DNA input sequence.

Krogh, Mian, and Haussler[26] first proposed the use of HMMs for non-

splicing gene finding in E. coli, although not in a linguistic-motivated way as I de-

scribe here. Their work also took advantage of automated learning methods for stan-

dard single-symbol emission HMMs, which I do not pursue. My contribution involves

improvements to the HMM framework to increase the expressibility of the model de-

scribed in the next section.

3.2 Generalized HMMs

The primary weakness of the gene finding HMM framework from the previ-

ous chapter is the demand that each state emits a fixed number of symbols—in this

case, one symbol. A regular grammar cannot restrict the number or distribution of

productions used in a loop construct. For example, note that the CDS productions

“CDS → Codon CDS” with a probability p and “CDS → Codon” with a probability

p − 1 allow for the generation of an arbitrary number of consecutive codons. If the

production probability is p, then the probability of CDS segments of length l is geo-

metric in pl−1(1 − p). But as shown in Figure 2.6, the length distribution of exons is

30

not geometric. It would be convenient if length distributions could be specified for an

arbitrary segment of symbols.

In addition, the basic gene finding HMM framework lacks a distinction be-

tween the likelihood models for features and the gene-structure model. In a classic

HMM, the distributions of symbols in a given state are learned from training data

as part of the Expectation Maximization learning procedure, but the incorporation

of likelihood models such as the three phased 5th-order Markov chain would require

a proliferation of states and parameter “tying”. Other likelihood models are simply

not amenable to incorporation into the standard HMM framework. For example, I

used neural networks for measuring coding potential in [27]. Burge describes a set of

profiles selected using a decision tree to characterize the 5’ splice site, which would

require a “lookahead” and modified training methods using a standard HMM[7]. Al-

though Krogh has demonstrated that careful model construction and parameter tying

can produce a high performance gene finding HMM[28], it is certainly convenient to

separate the implementation of the likelihood models from the grammatical constraints

of the state machine.

Thus, there are two goals: to provide length restrictions and to abstract the

likelihood models from the HMM framework. To accomplish this, I expand on the

explicit-state-duration hidden Markov models described by Rabiner[25]. Each state

is now allowed to generate an arbitrary number of symbols and a length distribution

is added to all states in the model. This differs from Rabiner in that it is applied

to all states in a model rather than as a special case. To allow multiple symbols, a

31

subtle addition to notation is used. Previously we use the square brackets to denote

a single symbol in S. Now, in addition, let the set X = S1, S2, . . . , Sr be any set of

non-overlapping segments of S such that the ordered concatenation of the segments

is the original sequence S. Thus, each segment is a subsequence of S where Sp =

S[ip . . . ip+1 − 1]. A new type of parse, Φ′, is the set of states {Φ′
1, . . . ,Φ

′
r} where the

segment Sp is emitted between states Φ′
p−1 and Φ′

p. Finally, an additional length term

per segment is incorporated in the joint probability as follows:

P (S, Φ′, X) =
∏

p=1...r

P (Sp|arc(Φ′
p−1,Φ

′
p))P (Φ′

p|Φ′
p−1)P (len(Sp)|arc(Φ′

p−1,Φ
′
p))

The additional utility in this formulation is that P (Sp|arc(Φ′
p−1,Φ

′
p)) can be

drawn from any desired likelihood model. The combination of the state duration HMM

and the abstraction of likelihood models I define as a generalized HMM (GHMM).

Since the sequence S can be composed of any set of non-overlapping segments, then

the optimal parse is now found by maximizing over all possible parses and all possible

segmentations of S, that is,

arg max
Φ′,X

P (S, Φ′, X)

As currently described, the run-time complexity of the DFS is now O(N2M)

(N is the length of S and M is the number of states), which introduces a serious

computational challenge. In Chapter 4, I will explain how judicious attention to the

graph topology ensures that the running time, in practice, is only O(N).

32

3.2.1 The Genie GHMM

A software program called Genie was written to experiment with the concepts

of a generalized hidden Markov model. Although there are some organism-specific

variations described in later chapters, the GHMM broadly used for many different

organisms is essentially the same.

The Genie model is directly derived from the finite state automaton in Fig-

ure 3.1. The FSA is modified to incorporate multi-symbol likelihood models for coding

and non-coding exons. Fixed-length likelihood models replace the 2-base splice sites.

The length of the coding regions in the initial and final coding exon differs from inter-

nal coding exons because the exon is interrupted by a start or stop codon. In addition,

the length of coding regions in non-spliced mRNA tends to be significantly longer than

spliced coding regions. Therefore, separate likelihood models for initial, internal, final,

and single coding exons are introduced. The detailed model is shown in Figure 3.2.

New arcs are introduced to accommodate the different types of exons. This model

allows for the simultaneous analysis of forward and reverse strand, and produces an

optimal labeling of 0, 1, or more genes on either strand.

33

5'
 S

pl
ice

5'
 S

pl
ice

5'
 S

pl
ice

5'
 S

pl
ice

5'
 S

pl
ice

I

In
te

rg
en

ic

I I I I I

In
te

rg
en

ic

In
itia

l E
xo

n

In
itia

l E
xo

n

In
itia

l E
xo

n
In

itia
l E

xo
n

Ini
tia

l E
xo

n

Fi
na

l E
xo

n
Fi

na
l E

xo
n

Fi
na

l E
xo

n

Fi
na

l E
xo

n

Fin
al

Ex
on

5'
 S

pl
ice

Ini
tia

l E
xo

n

3'
 S

pl
ice

Fin
al

Ex
on

5'
 S

pl
ice

5'
 S

pl
ice

5'
 S

pl
ice

5'
 S

pl
ice

5'
 S

pl
ice

I I I I I I

3'
 S

pl
ice

3'
 S

pl
ice

3'
 S

pl
ice

3'
 S

pl
ice

3'
 S

pl
ice

5'
 S

pl
ice

3'
 S

pl
ice

In
te

rn
al

 E
xo

n

3'
 S

pl
ice

3'
 S

pl
ice

3'
 S

pl
ice

3'
 S

pl
ice

3'
 S

pl
ice

In
te

rn
al

 E
xo

n

G
'

G

Si
ng

le
 E

xo
n

5'
 U

TR

In
te

rg
en

ic

5'
 U

TR
UT

R
In

tro
n

In
te

rg
en

ic

In
te

rg
en

ic

3'
 U

TR UT
R

In
tro

n

3'
 U

TR

Figure 3.2: Generalized hidden Markov model used by the Genie gene finding system. The
grey boxed labels along each arc represent multi-symbol likelihood models and length distribu-
tions over all possible sequences. For clarity, the subgraphs identified on the left and right by
the horizontal bars labeled G and G′ are duplicated in the display, but in the implementation
there is only one set of these nodes and arcs. The six parallel paths in this subgraph maintain
state necessary to ensure both frame consistency and avoid intron-spanning stop codons (as
shown in the grammar and derived FSA in Chapter 3.1.1). Partial genes are accommodated
by adding additional exon coding arcs from the intergenic node directly to the 5’ splice and
translation stop states and from the 3’ splice site and translation start states directly back to
the intergenic node. The reverse strand is not shown, but is the exact mirror image except
for the shared intergenic state. To enforce a single gene prediction, separate begin and end
intergenic states can be substituted for the single intergenic source and sink.

34

Chapter 4

Implementation

4.1 Data structures and initialization

Several implementation details of the gene finding system allow for a flexi-

ble and efficient solution. A motivation of the GHMM framework is the abstraction

of likelihood models of gene regions from the HMM topology. Such an abstraction

provides flexibility in the choice of likelihood models that would be difficult to im-

plement in a classic HMM framework. In addition, this abstraction lends itself to a

modular framework for software development in which the model topology and the

likelihood models associated with states can all be specified at run-time. In the Genie

program, a set of C++ classes define the different parts of the system. The model

topology, that is, the grammatical constraints represented by connections of arcs be-

tween states, is embodied in a “GeneModel.” The set of all possible parses of a specific

sequence given the gene model, also called the induced graph, is a “GeneGraph” ob-

35

ject. Thus, there are two graphs: the GHMM syntactic graph (Figure 3.2) and the

induced graph for a specific sequence (Figure 4.1). A state in the GeneModel is called

a “TransitionType”—for example, the state between the initial exon arc and the 5’

splice site arc—and a “Transition” is a lightweight object corresponding to a node in

the induced graph. A node is a position/state pair. In short, the GeneModel contains

the details of the interconnections of TransitionType states (e.g., 5’ splice site state

follows start translation state), while a GeneGraph contains a collection of Transition

nodes (e.g., a possible position of a start translation node at position 539 and the 5’

splice site nodes that connect to it downstream at positions 985, 1044, etc.)

S

5’UTR

Exon
3’UTR

Intron

Figure 4.1: The induced gene graph. A directed acyclic graph representing all possible
parses given a GHMM and an input sequence. The sequence, S, is the horizontal axis. Each
node represents a state/position pair. The different colored arcs represent different likelihood
models between states. This example graph is different than one that would be derived from
the GHMM in Figure 3.2 and is meant only to give an intuitive grounding for the concept of
the induced graph. The directed acyclic graph for a specific sequence is computed by scanning
the input sequence to identify putative state/position nodes and connecting nodes according
to the GHMM topology.

The GeneModel also contains the specifications for the types of likelihood

models used along each arc leaving each TransitionType and the transition probabilities

to follow each arc. For example, both a single exon arc and an initial exon arc leave

the start translation state and different transition probabilities are assigned to the

two arcs. Objects called “MetaContent” contain the code specific for supplying an

36

appropriate likelihood score for each type of arc.

The graph and class terminology is graphically shown in Figure 4.2 and sum-

marized as follows:

• The GHMM is a GeneModel

• The induced graph is a GeneGraph

• States in the GHMM graph, never called nodes, are TransitionTypes

• Nodes in the induced graph, never called states, are Transitions

• The likelihood models for arcs on the induced graph are MetaContents

As a pre-processing step, code is executed to identify the sites of putative

Transition nodes in a GeneGraph. For example, a start translation node can only

occur at a position in a sequence that begins with an “ATG”. Specific objects called

“Signals” provide the implementation specific to each state. This is an important

detail of the software design because it allows for the creation of sparse GeneGraphs.

By contrast, the typical dynamic programming method for HMM analysis requires the

allocation of memory to accommodate all possible states at all possible positions—

usually a N × M matrix. Many nodes are not possible at any given position and

the graph implementation is essentially an analog for a sparse matrix in a dynamic

programming implementation.

When the program starts, the details of the interconnections of Transition-

Types, the types of MetaContents, and the types of Signals are loaded into a Gen-

37

GeneGraph

`

Configuration

Transitions

TransitionTypes

Signals

MetaContents

Sensors

n
m
i

o
l
j

>DNA
ACGTTGAC
ACGTGGAT

q q'j l m n o

q’q q’ q’

i

Figure 4.2: Software object architecture. The primary data structures used in the implemen-
tation of Genie. A GeneGraph is instantiated per input sequence. It contains a GeneModel
describing the topology and a collection of TransitionTypes and MetaContents for creating and
scoring the GeneGraph, respectively. Signals identify allowable positions for a TransitionType
and one or more Sensors implement the likelihood models for scoring the arcs by the MetaCon-
tents. The induced graph is represented by a set of arrays of Transitions (bottom right) and
each Transition contains a set of pointers to offsets in the arrays representing nearest connected
nodes.

38

eModel from a set of configuration files. When a DNA sequence is loaded, a Gene-

Graph is initialized containing a GeneModel. The induced graph for an input sequence

is determined as follows:

For each position i in the sequence from N down to 1, for each possible

TransitionType q, the Signal object is asked whether the state q is allowed at position

i. If the position is allowable, then i is pushed onto a stack, Tq, of Transition nodes of

type q. The node is the pair (i, q).

Next, the connectivity of node (i, q) with all other nodes is deduced. Since

the GeneGraph is a directed acyclic graph, then (i, q) can only be adjacent to nodes

(j, q′) where j > i and where q′ follows q in the GeneModel. The nearest possible

adjacent node for each state q′ is simply the top member of the each stack Tq′ . Thus,

for each node (i, q), a pointer is stored to the current top of the stack for all Tq′ , where

q′ is adjacent to q in the GeneModel.

Connectivity from node (i, q) to more distant nodes can be determined by

simply tracing through the stack, so only one arc is explicitly stored for each possible

adjacent state q′.

The creation of the GeneGraph requires only O(kNM) in time and space to

build the graph, where k is the maximum number of adjacent TransitionType states—

typically on the order of 1 to 6. This process is repeated in the reverse direction to gen-

erate the upstream links to accommodate the backward part of the forward/backward

summation.

39

4.2 Graph traversal

The GeneGraph fully describes the induced graph specific to the sequence of

interest. The recursive depth-first algorithm is then applied starting with the Transi-

tion object corresponding to the first position of the sequence at the initial start state

of the model and searches for the Transition object at the last position of the sequence

and in the final model state. Each call to the DFS simply takes an identifier of a cur-

rent Transition and the goal Transition. In each call of the DFS routine, all outgoing

arcs are scored for the current transition, if not yet visited, and then each Transition is

recursively called. For the Viterbi, the best score and the adjacent node corresponding

to the best path is stored, requiring O(NM) storage for scores and paths. For the

forward algorithm, the sum of scores is stored and no path information is saved.

This approach presents some running time challenges. In the worst case,

all states at all positions have arcs to all states at all downstream positions. The

additional power of a multi-symbol state brings an additional multiplicative N term

to the running time yielding calls to score functions on the order of O(N2M2). Even

worse, the time to score any putative region between any two points can be, at worst,

on the order of the size of the region to score. Thus, running time could be as bad as

O(N3M2).

In practice, this is not the case. First, the GeneModel is not particularly

dense. The number of types of adjacent states is usually only 1 or 2 and can be

at most 6 for the GHMM in Figure 3.2. Further, the Signal pre-processing stage

40

allows only legal nodes in the GeneGraph, which is a small fraction of all possible

state/position pairs in a fully connected directed acyclic graph. Thus, immediately a N

term and a M term are practically eliminated. Four additional efficiencies are employed

to ensure manageable running time: short-circuiting based on in-frame stop codons,

length restrictions, cumulative scoring, and modifications to the model topology.

4.2.1 In-frame stop codon short-circuiting

The values that are promulgated through the DFS and memoized at each

Transition are real valued probabilities between 0 and 1 that are internally represented

as logarithms. A special math class, “Preal”, is used for all numerical operations and

the standard arithmetic operators are overridden so that user knowledge of the internal

representation of the numeric values is not required. The Preal class contains a special

constant to indicate whether the variable has a valid value. All scores stored in the

memoization data structure are initialized as invalid, allowing the DFS to proceed

without requiring a separate “processed” flag. TransitionTypes hold Preals to describe

the transition probabilities between states and MetaContent functions return Preal

values corresponding to scores of arbitrary regions. The Preal class has the benefits

of fast multiplication and avoidance of overflow or underflow when using very large or

small numbers, a common problem in probabilistic model calculations.

In an obvious implementation of likelihood model scoring, any sequence that

does not meet basic criteria returns a likelihood value of zero. However, it is convenient

to use the special invalid Preal value instead of zero in certain circumstances such as

41

in the presence of an in-frame stop codon in a putative coding region. A special rule is

added to the DFS graph traversal routine such that any likelihood model that returns

an invalid value will cause the function to short-circuit, not scoring any other longer

regions of the same type from the same node. Since stop codons occur randomly in

non-coding DNA, most arcs of sufficient length in the GeneGraph between putative 3’

and 5’ splice site nodes contain stop codons. Once the first arc containing a stop codon

is identified, then all longer arcs are skipped. Thus, the biological requirement of an

open reading frame keeps the scoring of variable-length coding exon features under

control.

The same short-circuit technique is used to enforce Kozak’s Rule in the 5’

UTR likelihood model as described in Section 6.6.

4.2.2 Length restrictions

All multi-symbol likelihood models have a corresponding length distribution

histogram read from an external parameter file. No attempt is made to score regions

greater than the maximum length value stored in the histogram. For the variable-

length UTR likelihood model (where stop codons are not relevant), the maximum

exon length from the histogram caps the number of possible scored arcs, reducing the

overall running time for such sensors to be on the order of the maximum allowed length

instead of the sequence length. Typical input sequences are on the order of 100,000s

of nucleotides and length restrictions are typically 10,000–20,000 nucleotides.

42

4.2.3 Cumulative scoring

With a DFS implementation, each likelihood model function is called in an

unpredictable order inhibiting scoring optimizations that could be achieved by a pre-

dictable call order. But most likelihood models include Sensors that score every pos-

sible base in the region allowing for a simple and well-known tiling optimization by

storing cumulative scores. For example, since a codon is theoretically possible at every

position in the sequence, a preprocessing step is employed such that the likelihood of

every possible codon is computed and the cumulative codon scores are stored in an

array C where Ci = Ci−3codonScore(i). Thus, the codon model score between any

positions i and j (where (j − i)%3 = 0) is simply computed as Cj −Ci. The one com-

plication is that stop codons disrupt the computation, since their score is zero. The

solution is to reset the cumulative scores after each stop codon and create an additional

array that reports the nearest upstream in-frame stop codon at each position i. These

pre-processed cumulative scores along with the stop codon information is generated in

O(N) in time and space and reduces the time to compute a score for a region to O(1).

4.2.4 Model topology

A careful review of the graph in Figure 3.2 shows that the intron and in-

tergenic states are loops, yet the GHMM approach allows for multi-symbol states.

Observe, however, in Figure 2.6 that the length distribution of introns is roughly ge-

ometric. Thus, an appropriate transition probability for a single symbol state can

adequately approximate the intron length distribution. Similarly, intergenic regions

43

have no real length distribution, and so a large self-loop probability very close to 1

is sufficient. Since the large number of possible introns and intergenic regions dom-

inates the search space, the significant advantage to this choice of model is that the

time to score intron and intergenic arcs is reduced to constant time. By contrast, for

a multi-symbol intron likelihood model, the arcs are essentially unbounded in length,

and the number of candidate 5’ and 3’ splice node pairs is enormous. The running time

improvement by creating single-symbol arcs for introns and intergenic states is offset

by an increase in space to maintain additional state: six intron nodes (for frame and

stop codon state management) and an intergenic node, composed of score and path

variables, must be stored for every position in the sequence. While the space and time

upper-bounds do not change, the practical result is a significant speed improvement

at the expense of additional RAM.

These four optimizations reduce the running time by reducing the number

of nodes, reducing the number of arcs to score, and reducing the time to score an

arc. If the number of arcs to score is relatively small, the number of adjacent states is

constant, and the time to score arcs is constant, then the overall running time should

be about O(NM). In Figure 4.3, the running time is, indeed, linear in the size of the

input, requiring about 1 second per 10,000 input bases during the DFS.

44

Input Sequence Length vs Running Time

1

10

100

1000 10000 100000 1e+06

T
im

e
(S

ec
)

Input Sequence Length (nt)

0.1

Figure 4.3: Practical running time of depth-first search. The running time of only the depth-
first search was measured. Input sequence pre-processing was not included. To generate a broad
selection of lengths, five sequences of lengths approximately 5, 7, 15, 16, and 19 thousand bases
were chosen and each DNA sequence was concatenated with itself 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
15, 20, and 25 times. Tests were performed on a 1Ghz Pentium running the GNU/Linux OS
with 1GB RAM.

4.3 MetaContent: content scoring

In the software implementation, the class providing abstraction of the content

likelihood model is called “MetaContent”. Each likelihood model can be implemented

in an arbitrary way as long as it can return a score for any requested region. Typically

a likelihood model integrates evidence contributed from multiple sources and estimates

a likelihood of a subsequence from the combined information. To accomplish this, the

MetaContent class uses a simple dynamic program to combine the independent scores

of multiple sub-components called Sensors. For example, it is convenient to use a single

coding exon MetaContent function to score a candidate region, but its implementation

might use a combination of a codon model, a start codon model, a repeat model, a

protein homology model, and a cDNA constraint model. Figure 4.4 shows a simple

45

example. Each one of these separate Sensors, like the rest of the system parameters,

are specified at run-time.

Figure 4.4: Example of content sensor scoring using dynamic programming. The best scoring
set of tiled values is chosen as the likelihood for a region.

The MetaContent class provides a means of combining multiple sources of

information—but only a subset of the data is relevant for any sub-sequence in ques-

tion. For example, a protein homology Sensor may provide scores for a region with

Blastx similarity, but have no data for other regions. In general, each individual Sensor

provides incomplete scoring information for an entire region, and the MetaContent sen-

sor must efficiently obtain the relevant pieces for the region of interest. To accomplish

this, a modification of a red/back interval tree is used [29]. In this implementation,

both minimum and maximum values are stored at each node in the tree to allow itera-

46

tion over all overlapping regions in O(ln(N)+k), where k is the number of overlapping

regions in the query interval.

4.4 Flexible configuration

The configuration parameters, including the GeneModel topology and transi-

tion parameters, Signal types, MetaContent types and their Sensors, are all stored in a

common configuration file format. The format is a simple name/value dictionary for-

mat that allows for nested values. The C pre-processor is used at program initiation

to filter the configuration allowing for simple selection of alternative configurations.

For example, a user can choose a single-gene versus a multiple-gene configuration or

a forward versus both strand analysis by specifying run-time options that correspond

to pre-processor macros to modify the model topology. A simple excerpt from the

configuration file shows how the GHMM model topology is specified at run-time:

/********** START (’ATG’) **********/
Start_Node : {

Signal : { \Start }
Nodes : { \Donor_Node \End_Node \PartialR_Node }
Arcs : { \Initial_Exon \Single_Exon \Initial_Exon }
Prob : [ONE_LESS_SP_PP SINGLE_P PARTIAL_P]
FrameMatch : 0

}

/********** DONOR (-3 from ’GT’) **********/
/* FAN OUT TO 6 DIFFERENT STATES ACROSS INTRON TO ACCOUNT FOR INTRON

SPANNING STOP CODONS AND STATE. */

Donor_Node : {
Signal : { \Donor }
Nodes : { \IntronL_Node_0

\IntronL_Node_1_x \IntronL_Node_1_T

47

\IntronL_Node_2_x \IntronL_Node_2_TA
\IntronL_Node_2_TG }

Arcs : { \Donor_Site \Donor_Site \Donor_Site
\Donor_Site \Donor_Site \Donor_Site }

Prob : [0.167 0.167 0.167 0.167 0.167 0.167]
}

In this example, the major grouping is a TransitionType (state) showing two

such states: Start Node and Donor Node. The Signal object used in the pre-processing

step is named, and the graph connectivity is described. For example, the Start Node

connects to the Donor Node, the arc between the two nodes is the MetaContent named

Initial Exon, and the probability of traversing that arc is ONE LESS SP PP (a pre-

processor macro defined elsewhere).

A convenient feature of the object-oriented class design and the nested config-

uration is that implementations of sensors need not worry about the reverse strand—a

consistent source of programming errors in DNA sequence analysis. Instead, a simple

Sensor called RevComp provides a reverse complemented sequence to a Sensor that

it contains and performs the coordinate transformations. Similarly a special Signal

called RevSig can contain any other Signal. For example, one type of Sensor used for

start and stop codons is the TripletMatch subclass. It matches one or more 3-symbol

sequences and returns a fixed probability. In this case, the MetaContent is a 3-symbol

fixed-length state that only contains the stop codon Sensor. While I emphasize that

this example is overly complex for just Stop codon scoring, it succinctly demonstrates

the flexibility of the run-time configuration for more elaborate modeling requirements.

48

Here is an excerpt from the standard configuration file:

Stop : {
Class : TripletMatch
Triplets : ["TAA" "TAG" "TGA"]
Probs : [0.57 0.18 0.25]

}
RStop : {

Class : RevComp
Contains : {

\Stop
}

}
RStopContent : {

Components : {
\RStop

}
MinLength : 3
MaxLength : 3
Frame : None

}

In this case, reading the configuration from bottom to top, the MetaContent

“RStopContent” contains one Sensor component “RStop”. That component is imple-

mented by the C++ class “RevComp” (loaded via dynamic library linking), which

in turn contains the Sensor “Stop”. The “Stop” class is implemented by the C++

class “TripletMatch” (again, dynamically loaded by name). The parameters associ-

ated with each class are completely dynamic. In this case, the Sensor expects two

parameters named “Triplets” and “Probs”, which are automatically provided to it via

the bootstrapping loader from this configuration.

In addition to flexible run-time configuration and dynamic loading, perhaps

the greatest flexibility is provided through the mechanism for triggering external pro-

gram actions. Any Sensor can specify in its configuration that a system call be per-

49

formed. Special environment variables are provided to the program that specify the

location of the input sequence and any other files provided to the Genie program at

run-time. As a result, rapid prototyping of stand-alone Sensors are made possible.

Often sensors are just Perl scripts that might perform a simple data transformation

such as converting a RepeatMasker or Blastx result file into likelihood model scores.

To make the process even simpler, external scripts can output results in the standard

GFF format and a Sensor subclass called “GFFSensor” can process this format. Thus,

adding additional sensors is a relatively simple process of writing an external script

that takes as input a DNA sequence and outputs a GFF file. The rest of the integration

is handled by the Genie software system.

4.5 Weakness of graph traversal

One weakness of the DFS graph traversal is that the recursive algorithm is

limited by the maximum stack size provided by the operating system. Typically the

operating system’s stack size is about 65000 and the stack will be exceeded during a

recursive traversal along a series of single-base arcs, i.e. a long intergenic or intronic

region. To work around this limitation, the DFS routine is repeatedly called at in-

tervals of, arbitrarily, 10000 bases, e.g. from bases N − 10000 . . . N , N − 20000 . . . N ,

. . . , 1 . . . N . Because of the model topology, it is impossible to exceed the stack size as

windows grow larger because of memoized results stored in previous calls for smaller

windows. However, the final Viterbi path can no longer be reported recursively. In-

50

stead, the tail recursion is replaced by a loop.

4.6 Annotating large sequences

When this research began in 1995, only a few annotated DNA contigs existed

in the database and most sequences were less than 50,000 nucleotides long. Unan-

notated BAC sequences on the order of 150,000 bases were just appearing. Today,

the genome projects have released gapless contigs on the order of tens of megabases.

The Genie program requires about 1000 bytes per base of input sequence, depending

on complexity of model, size of floating point numbers, and the algorithm (Viterbi or

forward/backward). Sequences of up to 200,000 bases can be comfortably annotated

using memory capacities typical of current workstations, but larger sequences require

a windowed approach. For large sequences, the input is first fragmented into smaller

overlapping pieces (110,000 bases with 10,000 bases of overlap is typical). The Ge-

nie software processes each piece and a post-processing program combines the results.

For conflicting predictions in the overlapping regions, the software first determines a

gene region based on the conflicting, overlapping predictions, extending the region by

1000 bases or halfway to the next adjacent prediction, whichever is shorter. The new

DNA region is extracted and a new set of predictions are generated by recalling the

Genie software for the conflict region. Generally, this method is satisfactory for large

sequence annotation efforts. The only serious risk is that an intron will completely

include the overlapping region. If this occurs, then it is likely that the software will

51

produce two disjoint gene predictions in adjacent fragments and no conflict will be

identified.

52

Chapter 5

Constrained Systems

5.1 Protein matches

The system so far described is based purely on simple frequency-derived

statistics of gene features. Homology to other known protein-coding regions is another

method for finding genes in DNA[30]. In this work, protein alignments are treated

simply as an additional likelihood sensor for coding-exon arcs.

Database homology raises the problem of assigning a “fair score” for a match

relative to other scoring Sensors such as the codon Sensor. My solution is to generate

a likelihood score from a theoretical encoding bit-cost of the DNA subsequence match

given the protein database match. Let the estimated encoding cost of the homologous

DNA be the sum of the encoding cost to represent the offset into the database and the

translation cost.

The offset is described as the encoding cost for uniquely specifying where the

53

match in the database is located. If the number of starting positions for matches in

the database is D and assuming that all positions are uniformly likely, then the cost

of encoding the offset of the subject in the database is − log(1/D) = log(D). The

translation cost of the target is determined using a substitution matrix to translate

from the subject to the target.

This method was prototyped using both the BLOCKS database[31] and Blastx

queries against protein databases. The BLOCKS database is a collection of over 2000

highly conserved protein motifs without insertions or deletions. I derived a profile for

each motif using a nine-component Dirichlet mixture[32]. The translation cost of a tar-

get nucleotide sequence given a BLOCKS homology is the combined cost of encoding

the target protein product using the BLOCKS motif profile and the cost of translating

the target protein product from an amino acid sequence into a nucleotide sequence.

The profile cost is simply the product of the probability of each residue in each col-

umn. The protein-to-nucleotide cost is computed using the three phased fifth order

Markov chains, but the probability of a codon is normalized to sum to one over those

codons that translate to the same amino acid. For Blastx matches, the translation cost

is similar to that used for the BLOCKS database, but the BLOSUM-62 substitution

matrix is used instead of the motif profile. A Blastx threshold of E = 1 was used in

the searches, allowing very weak matches in favorable contexts to contribute to coding

exon prediction. Results are shown in Section 6.7.1.

54

5.2 Perfect alignments

Perfect or near-perfect alignments can provide the true “answer” to the gene

finding problem. If two Blastx homology matches are found from a single protein

sequence and the two peptide subsequences are adjacent, then one can conclude that

the “match pair” implies an insertion of protein-coding or non-coding nucleotides. If

the insertion is of non-coding nucleotides, then a pair of splice sites can be inferred

from a pair of homology matches. To reduce the chance that a match pair is the result

of an insertion of coding nucleotides, I only consider those match pairs with suitable

splice site patterns at the match boundaries. This constraint was achieved in the

Genie system by forcing all intron region scores to zero that did not meet the match

pair constraint[33]. Similar logic can be applied to mRNA alignments from full-length

cDNAs or single read ESTs. If the mRNA aligns perfectly and flanks a putative pair

of splice sites, then the intron is obviously revealed.

Figure 5.1: Match pair constraints. A match pair, M1 and M2, imply a pair of splice sites,
D2 and A2. The DFS is constrained such that D2 is used in the final parse if and only if A2

is used.

The simplicity of this constraint system is due to the multi-symbol intron

states; any intron that is flanked by one but not both match pair splice sites was not

55

scored. However, with the current model topology (Figure 3.2), intron states emit only

a single symbol to allow for efficient running time (Section 4.2.4). As a result, it is

not possible to consider jointly the flanking splice sites for a candidate intron. A more

general method is needed for constraining parses using perfect alignment information.

Two approaches were implemented: an interactive graph control method and a sensor

scoring method.

5.2.1 Interactive graph control

One means of constraining the system is to modify the graph traversal such

that only those parts of the induced graph with unknown labeling are considered. For

example, if a cDNA alignment irrefutably shows a forward strand intron located in

positions i . . . j, then an obvious solution is to partition the analysis into two segments

flanking the constraint. For the right side, a DFS is performed from position j in the

3’ splice site state to the final node and similarly a second DFS is performed from

position i in the 5’ splice site state in reverse to the start node. The Viterbi results

and constraint information are concatenated for a final sequence annotation.

This approach has the additional benefit that the likelihood of any region can

be easily returned to the user via the forward/backward algorithm. In the example

above, it is possible to both determine the best parse including an intron from i . . . j and

to report the likelihood of the intron. One can imagine a graphical interactive program

in which a user could experiment with different exon structures and receive information

from the gene finding system regarding the likelihood of the current configuration.

56

A simple scripting language was implemented for the Genie software to achieve

interactive control of the GeneGraph. The script language allows a user to specify the

sequence, build the GeneGraph, perform the Viterbi, forward, and backward on the

entire sequence and report the results for fragments of the graph. For example:

initialize
M=MODEL ModelName
DATA M SEQUENCE
>DNA
ctgcgtactaagacccgtgtgcagcagcggcggcggcggtagaggcggcggcggcggcgg
...
.
G=GRAPH M
BUILD G 0 4862

perform viterbi and forward in both directions
VITERBI G Begin_Node 0 0 Donor_Node 2045 0
SUM G Begin_Node 0 0 Final_Node 4862 0

VITERBI G Final_Node 4862 0 Begin_Node 0 0
SUM G Final_Node 4862 0 Begin_Node 0 0

get best parse that includes intron from i..j
REPORT G Donor_Node i 0 Begin_Node 0 0
REPORT G Acceptor_Node j 0 Final_Node 4862 0

try shifting the donor site to k
REPORT G Donor_Node k 0 Begin_Node 0 0
QUIT

While such a system provides maximum flexibility, no automated front-end

driver for the system has been developed. There is only limited utility in practical

applications because it becomes very difficult to provide multiple constraints manually

in different segments of the query sequence and then merge the results. Separate

induced gene graphs must be generated for each segment and manual bookkeeping

57

becomes too difficult. The user needs to recognize that sometimes multiple parses

must be considered; for example, if the parse begins or ends in an intron state, the

user must consider all six possible intron states. Tying this scripting system to an

automated graphical genome annotation tool would be an interesting extension to this

work, but it would be a complicated challenge because the front-end requires specific

knowledge of the underlying GeneModel.

5.2.2 Sensor score constraints

A simple-minded alternative to the graph control method is to provide the

program with artificial false scores for regions of interest. The key feature to exploit is

the convention in the Genie system to prohibit a prediction of any region that includes

an invalid score generated by any of the Sensors in the corresponding MetaContent

likelihood model.

A program was written to convert constraints specified in terms of commonly

understood feature names into sensor scores acceptable by the Genie system.

For example, to force an intron between position 100 . . . 200, a user simply

creates a GFF file of the form:

GFF
MYSEQ 99 100 splice5 0 + .
MYSEQ 100 200 intron 0 + .
MYSEQ 200 201 splice3 0 + .

These constraint lines are translated into a set of Sensor scores. For example,

the Sensor scores for the intron base model will be set to one for the region from i . . . j,

58

and the codon model scores will be set to invalid for the same region, inhibiting any

prediction of coding region in the intron. Similarly, the system will make the intron

score at i− 1 and j + 1 invalid to ensure the designated splice sites are chosen.

It is relatively straightforward to generate false sensor scores automatically

from a set of user-specified constraints. More than one non-overlapping constraint can

be specified and the constraints can be scattered throughout the sequence. The end

result is a gene structure prediction that includes the desired constraints and augments

the annotations using the standard gene finding methods in the flanking regions.

The weakness of this approach is as obvious as it is simple. It is not possible

to obtain scores for the constrained regions, if desired, and it is not possible to create

more subtle weighting systems based on less than perfect alignments. Despite these

weaknesses, this approach proves to be quite useful in whole genome annotation. Typ-

ically a user is not interested in the academic question of the efficacy of gene finding

systems, but rather wishes that all “known” genes, i.e. those with cDNA evidence, be

reported exactly as it is known and the remainder of the genome be annotated as best

as possible.

59

11
86

45
00

0
11

86
50

00
0

11
86

55
00

0
11

86
60

00
0

11
86

65
00

0
11

86
70

00
0

11
86

75
00

0
11

86
80

00
0

C
lo

ne
 P

ai
re

d
R

ea
ds

G
en

ie
 G

en
e

P
re

di
ct

io
ns

 fr
om

 A
ffy

m
et

rix

E
ns

em
bl

 G
en

e
P

re
di

ct
io

ns

M
ou

se
 E

S
T

s
In

cl
ud

in
g

U
ns

pl
ic

ed

N
on

m
ou

se
 m

R
N

A
s

fr
om

 G
en

ba
nk

A
lig

nm
en

t o
f T

IG
R

 G
en

e
In

de
x

T
C

s
A

ga
in

st
 th

e
M

ou
se

 G
en

om
e

T
et

ra
od

on
 n

ig
riv

iri
di

s
T

ra
ns

la
te

d
B

la
t A

lig
nm

en
ts

T
ak

ifu
gu

 r
ub

rip
es

 T
ra

ns
la

te
d

B
la

t A
lig

nm
en

ts

M
ou

se
/H

um
an

 E
vo

lu
tio

na
ry

 C
on

se
rv

at
io

n
S

co
re

H
um

an
(D

ec
01

)
T

ra
ns

la
te

d
B

la
t A

lig
nm

en
ts

Figure 5.2: Example of perfect alignment mRNA constraints. This region is taken from
chromosome 7 of the mouse genome at http://genome.ucsc.edu/. Note, that the majority of
the gene structure is determined by spliced EST alignments. The top-most set of bars represent
clone bounds, i.e. extents along the genome delineating a region between the aligned 5’ and
3’ read pairs from a common clone. The gene prediction (second track, in purple), uses the
sensor score constraint system to ensure that a single gene is predicted along the clone bounds
and that the exon-intron structures implied by the EST alignments are respected.

60

Chapter 6

Methods and Results

6.1 Sensors, signals, length distributions, and transition

probabilities

Each MetaContent in the Genie system scores an arc between two states and

a MetaContent contains one or more Sensors for scoring a region. Signals pre-process

the input sequence to identify potential state/position nodes in the GeneGraph (see

Chapter 4). Each Sensor is trained as a separate likelihood model, using frequency

counts to estimate probabilities. Parameters for Sensors from older versions using neu-

ral networks were estimated using training sets in which each nucleotide position was

encoded as 4 binary inputs. Some Sensors are shared among multiple MetaContents,

analogous to parameter tying used in other HMM applications. Neural net Signals were

trained on example sites with nearby decoy sites used as negative training examples.

The Sensors and Signals in Table 6.1 and 6.2 are used in the Genie system.

61

Different Sensors and Signals are used in different implementations of the system and

for different organisms. Subsequent results will refer to these version numbers to

indicate the configuration used. Version 3 and 5 include all components from version

2. Version 4 includes all components from version 3.

Component Description Arc Version

Non-coding Base A single Nth order Markov
chain.

Intergenic,
3’UTR, 5’UTR

2,3,4,5

Codon Three-phased Nth order
Markov chain.

Initial, Inter-
nal, Final, and
Single Coding
Exon

2,3,4,5

Intron Base A single Nth order Markov
chain.

Intron 2,3,4,5

Start Codon A fixed likelihood of 1 when
matching ATG.

Initial, Single
Coding Exon

2,3,4,5

Donor Tract An order-1 Markov profile cov-
ering the last 3 coding bases
and the first 5 intronic bases

5’ Splice Site 2,3,4,5

Pyrimidine Tract An order-1 Markov profile cov-
ering the last 20 intronic bases
and the first 3 coding bases

3’ Splice Site 2,3,4,5

Branch Tract An order-2 Markov profile
with average frequencies from
neighboring bases at + and -1,
as in Burge[7]

3’ Splice Site 2,3,4,5

Stop Codon A fixed likelihood based on fre-
quencies of 3 stop codons

Single, Final
Coding Exon

2,3,4,5

Constraints Externally provided likeli-
hoods (1 or invalid)

All Sensors 2,3,4,5

Start Profile An order-0 Markov profile cov-
ering the last 7 bases of the
5’ UTR and covering the start
codon

5’ UTR 5

Table 6.1: Genie sensors

62

Component Description Arc Version

Stop Profile An order-0 Markov profile cov-
ering the stop codon and sub-
sequent 7 bases into the 3’
UTR

3’ UTR 5

Promoter Tract Promoter Site neural network
converted to likelihood using
Bayes rule.

5’ UTR 4

No-Start-Codon Scores a special invalid for
any ATG. Enforces Kozak’s
Rule([1]).

5’ UTR 4

Non-coding Base 300nt windowed frequency Intergenic,
3’UTR, 5’UTR

1

Codon Two-layer neural network with
17 hidden units. Inputs of
G+C (300 nt window) and
previous codon.

Initial, Inter-
nal, Final, and
Single Coding
Exon

1

Intron 300nt windowed frequency Intron 1

Donor Tract Donor site neural network
converted to likelihood using
Bayes rule. (see [27])

5’ Splice Site 1

Acceptor Tract Acceptor site neural network
converted to likelihood using
Bayes rule. (see [27])

3’ Splice Site 1

Codon Coding likelihood from protein
homology

Initial, Inter-
nal, Final, and
Single Coding
Exon

1

Table 6.1: Genie sensors

Signal Description Version
Any base All positions 2,3,4,5

Donor Site GT 2,3,4,5
Acceptor Site AG 2,3,4,5
Start Site All ATG 2,3,4,5
Start Site Beginning of ORF > 20nt 2,3,4,5

Table 6.2: Genie signals

63

Signal Description Version
Stop Site TAG,TGA,TAA 1,2,3,4,5
Donor Site Two-layer neural network with

50 hidden units. Inputs of
−7 . . . + 8 bases around site.

1

Acceptor Site Two-layer neural network with
40 hidden units. Inputs of
−21 . . .+20 bases around site.

1

Start Site Neural network. Inputs of
−10 . . .− 1 bases before site.

1,2

Promoter Site Time-delay neural network.
(See [10])

4

Polyadenylation Site 3’ aligned end of 3’ EST or
mRNA

3,4

Promoter Site 5’ aligned end of 5’ EST or
mRNA

3,4

Donor Site Site of EST or mRNA spliced
alignment

3,4

Acceptor Site Site of EST or mRNA spliced
alignment

3,4

Table 6.2: Genie signals

Smoothed histograms are used to represent the length distributions for exons.

Length frequencies are tallied from annotated exons and smoothed by averaging over

a sliding window of 150 nt for the single coding exon and 100 nt for other coding

exon. Most state transitions are measured from the training data according to the

frequencies of features. For example, transition probabilities from an intron into the

internal versus the final exon state are based on the counts of internal exons in the

training data; intron-intron transition probabilities are estimated according to the

average intron size.

64

While the model accommodates 5’ and 3’ UTR, it is important to note that

these sections of the model are essentially inactive during the standard ab initio pre-

diction. That is, unless there is additional evidence provided for transcription outside

of the translated area or evidence of a promoter or polyadenylation site, then no UTR

will be predicted.

6.2 Performance metrics

Performance metrics are those used by Burset and Guigo[34] with the addition

of exact CDS structure identification (sometimes erroneously referred to as an exact

gene prediction metric). Sensitivity or Recall (Sn) refers to the fraction of correctly

predicted coding bases out of the total set of annotated coding bases. Specificity or

Precision (Sp) refers to the fraction of correctly predicted coding bases out of the total

set of predicted coding bases. 1 − Sp is the false positive rate. Exact exon measures

refer to the prediction of a coding exon with the correct flanking splice sites or start

and stop codons. Thus, Sn and Sp are the fractions of correctly predicted exons out

of the set of annotated and predicted exons, respectively. A “wrong” exon is identified

as an exon that does not overlap any annotated exon. The “wrong exon” metric is

the fraction of wrong exons out of the total set of predicted exons. A “missing” exon

is an annotated exon that does not overlap any predicted exon. The “missing exon”

metric is the fraction of missing exons out of the total set of wrong exons. Exon Sn

is inversely correlated with missing exons, and exon Sp is inversely correlated with

65

Method: Genie
Per Base Sn 0.91

Sp 0.98
Exact Exon Sn 0.78

Sp 0.84
Missing 0.12
Wrong 0.05

Exact CDS Sn 0.40
Sp 0.39
Missing 0.07
Wrong 0.06

Table 6.3: Ab initio performance for Chlamydomonas. (Genie version 2.)

wrong exons. Finally, a set of exact CDS metrics are used in the same manner as the

exact exon metrics. CDS refers to the entire coding region from start to stop codon,

inclusive.

6.3 Basic ab initio results

To assess the simple gene finder performance, a set of 60 curated protein-

coding genes for Chlamydomonas reinhardtii in 59 DNA sequences were selected from

Genbank DNA records. All sequences were pairwise aligned using Blastn and those

sequences with greater than 50% similarity were eliminated. Only sequences with

consistent gene structure accepted by the Genie grammar were allowed in a manner

similar to other reference data sets previously generated (see, e.g.,[27]). An additional

set of coding regions from 51 unrelated mRNAs from Genbank were used for training

only. Using a hold-one-out cross validation on the 59 sequences resulted in performance

metrics shown in Table 6.3.

66

A 2.9Mb region of the Drosophila genome containing the Adh locus was man-

ually curated using unpublished cDNA sequences. Reese, et. al. collected gene predic-

tions from five different ab initio gene finding systems and performed an independent

assessment[35]. The assessors published a training set of 416 DNA sequences with

annotated protein-coding exon structures. An additional set of coding regions from

Drosophila mRNAs augmented the training set. For the published assessment, two

data sets were used, called “std1” and “std3”, where “std1” represented only full-

length mRNAs and “std3” was a larger set based, circularly, on gene finder results and

other automated, predictive evidence. “std1” was used to measure Sn-related metrics

and “std3” for Sp-related metrics. For more discussion, see Reese [35].

Results are show in Figure 6.4. Detailed discussion of the successes and

failures of the Genie method are documented by Reese [36]. In this test case, it is

noteworthy that 40% of CDS were predicted correctly because no better performance

is known to have been published for higher eukaryotes.

6.4 Learning ability

The likelihood models used in this gene finder depend on a data set of suf-

ficient size to properly estimate true probabilities from frequencies. Each training

sample—a DNA sequence with a single gene—typically provides about 1000 examples

for each of the three phased coding Markov chains, several thousand intronic base

examples, and 100s to 10s of thousands of intergenic base examples. With 1024 pa-

67

Method: Fgenes1 Fgenes2 Fgenes3 GeneID1 GeneID2

Per Base Sn(1) 0.89 0.49 0.93 0.48 0.86
Sp(3) 0.77 0.86 0.60 0.84 0.83

Exact Exon Sn(1) 0.65 0.44 0.75 0.27 0.58
Sp(3) 0.49 0.68 0.24 0.29 0.34
Missing(1) 0.11 0.46 0.06 0.54 0.21
Wrong(3) 0.32 0.17 0.53 0.48 0.47

Exact CDS Sn(1) 0.30 0.09 0.37 0.02 0.26
Sp(3) 0.27 0.18 0.10 0.05 0.10
Missing(1) 0.09 0.35 0.09 0.44 0.14
Wrong(3) 0.24 0.25 0.52 0.22 0.31

Method: Genie HMMGene Grail
Per Base Sn(1) 0.96 0.97 0.81

Sp(3) 0.92 0.91 0.86
Exact Exon Sn(1) 0.70 0.68 0.42

Sp(3) 0.57 0.53 0.41
Missing(1) 0.08 0.05 0.24
Wrong(3) 0.17 0.20 0.29

Exact CDS Sn(1) 0.40 0.35 0.14
Sp(3) 0.29 0.30 0.12
Missing(1) 0.05 0.07 0.16
Wrong(3) 0.11 0.15 0.24

Table 6.4: Ab initio performance for the Adh locus in Drosophila. “1” refers to the test set
“std1” and “3” refers to “std3”. The division into two tables is arbitrary to fit onto the page.
(Genie version 2.)

68

rameters per 5th-order Markov chain, one would expect that several sequences would

be required to begin to estimate the Markov chain parameters accurately. By con-

trast, only a few splice site examples are observed per training sequence, so those

likelihood models, although having fewer parameters, are expected to be more difficult

to estimate.

To understand the learning rate of the system, the 59 sequences from the

Chlamydomonas data set (Section 6.3) were used to create training sets of varying

sizes. For each test sequence, a training set was created by randomly sampling from the

available training samples, testing the performance, and then repeating the sampling,

growing the training set by one sample sequence. Thus, for each training set size there

were 59 separate tests, one for each test sequence.

Figure 6.1 shows the results of the tests in terms of base level Sn and Sp. As

the number of training samples increases, the performance rises steeply and plateaus.

If the splice site recognition played a significant role, then one might expect to see

continued improvement at the exon level, but this is not the case. The result suggests

that the majority of signal necessary for gene finding is found in the coding potential

and syntactic restrictions of a valid parse.

6.5 Feature scoring

The forward/backward algorithm reports the likelihood for all labels as the

sum of the likelihoods of all parses of the sequence that contain that label. If the

69

Performance Effect of Training Size

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Sp
Sn

Training Samples

0.3

Figure 6.1: Effect of training size. Each point represents the cumulative base-level perfor-
mance statistic for 59 separate sequences with the given number of training examples. (Genie
version 2)

70

GHMM is truly a good model then the forward/backward likelihood scores reflect the

true probabilities of each feature. To study this question, the coding exons predicted

for all sequences in a hold-one-out cross-validated test using the Chlamydomonas data

were ranked by score and compared to the known annotations. If the HMM feature

scores are correlated with the true likelihoods, then a ranking of those values with

respect to performance metrics should be monotonic and much better than chance.

Figure 6.2 shows that the forward/backward likelihood is indeed a legitimate metric

of prediction quality.

Random
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450

E
xo

n
Sp

ec
if

ic
ity

Rank

Exon Specificity as a Function of Exon Posterior Probability

Ranked By Score
Random
Random

0.5

Figure 6.2: Performance of posterior probability score function. The left-most rank represents
the one best scoring exon of 443 from 59 Chlamydomonas DNA sequences, the second rank
is the two highest scoring, etc., and the rightmost rank represents all predicted coding exons
(ties are arbitrarily ordered). Each point is the exon specificity among the set at that rank.
The ranking by score is monotonically decreasing and very different from random.

71

6.6 Model extensions

Section 4.4 describes mechanisms for simple modifications of the gene models.

One example of this is the incorporation of a promoter prediction method. Reese[10]

describes a method for predicting transcription start sites using time-delay neural

networks. Using this method independently to scan an input sequence results in a

high false positive rate of about 1:1000 as shown in [37]. The false positive rate can

be regulated by requiring the transcription start site to be proximal to a protein-

coding gene. To control the distance between a putative transcription start site and

the translation start site, Kozak’s Rule can be employed. This rule states that the

translation start site is the first “ATG” codon following the transcription start site.

Such a rule can be easily implemented by modifying the likelihood model for the 5’ UTR

such that any putative region containing an “ATG” is assigned a probability of zero.

Using the short-circuit method described in Section 4.2.1, this is simply implemented

in the Genie system by creating a Sensor that returns an invalid value for “ATG”.

This Sensor is added to the 5’ UTR MetaContent model to enforce Kozak’s Rule.

The short-circuit mechanism automatically ensures that no more distal promoter sites

be considered if a closer site fails the rule. To test this configuration, Reese’s neural

network was added as a Signal for the transition between intergenic and 5’ UTR and

the Kozak’s Rule Sensor was added to the 5’ UTR MetaContent model (version 4).

In [35], this model was tested against the same Drosophila Adh region as above and

we found that the false positive rate was reduced to 1:14710, while maintaining a

72

Method: ab initio w/ protein GeneID+ GeneParser3
Per Base Sn 0.87 0.95 0.91 0.86

Sp 0.88 0.91 0.90 0.91
Exact Exon Sn 0.69 0.77 0.73 0.56

Sp 0.70 0.74 0.70 0.58
Missing 0.10 0.04 0.07 0.14
Wrong 0.15 0.13 0.13 0.09

Table 6.5: Prediction results on 570 protein-coding genes. The NCBI non-redundant protein
database (nr) and BLOCKS protein database were used to generate likelihood model scores
for homologous coding regions. For fair comparison, only sequences of length less than 8000
nucleotides were considered due to limitations of other gene finders. (Genie version 1)

sensitivity comparable to the best competing promoter-prediction methods. Thus, the

context and grammatical constraints improved the accuracy of a component of the

model over its independent performance. Moreover, this was achieved through some

relatively simple modifications to the run-time configuration.

6.7 Constraint results

6.7.1 Protein homology

Burset and Guigo[34] published a set of vertebrate protein-coding genes. DNA

segments with protein homology are scored as described in Section 5.1 and incorporated

into the content sensors as described in Section 4.3. Table 6.5 shows the results of ab

initio Genie, the addition of protein homology matches, and comparisons with two

other gene finders that also integrated protein homology.

73

6.7.2 Fixed sensor score constraints

A set of RefSeq mouse mRNAs was aligned to the draft mouse genome using

the BLAT alignment tool[17] (greater than 90% of the query sequence was required

to align with at least 90% identity). The CDS regions of the mRNAs were required

to fully align, splicing was required to conform to consensus splice sites (including

the most common degenerate dinucleotides), and splicing must be strand consistent

(i.e. all splice sites must indicate that the mRNA is sense oriented). No gaps were

allowed in the CDS alignment that would have caused frame shifts and no sequence

errors were allowed that would have caused in-frame stop codons. The resulting exon

structure and coding regions were extracted from the mRNA alignments and the DNA

sequence including the full-length mRNA plus 1000 flanking bases was extracted into

a set of 4414 sequence files. The minimum DNA sequence length was 2339 bases, the

maximum was 1.3 million bases, and the median was 14897.

A random 9/10ths of the set of sequences was set aside for training and the

remaining was used for testing. To test the performance of a constrained gene finding

system, all available ESTs were used, but all mRNAs were excluded since mRNAs

were used to create the reference annotations. For each test sequence, all mouse ESTs

were aligned and merged into partial transcripts based on common overlapping regions

using the AltMerge program[38]. The longest AltMerge transcript of an overlapping set

of alternatively spliced transcripts was selected and the largest open reading frame

in each AltMerge transcript was annotated as the putative CDS. In addition to the

74

AltMerge transcript constraints, primary transcript regions were inferred from 5’/3’

ESTs pairs sequenced from the same clone. An ab initio annotation was performed

using the Genie software. (All parameters were derived from the training sets.) A

second constrained prediction was performed using the AltMerge transcripts and clone

bounds as constraints to Genie. The AltMerge transcript constrains Genie by creating

scores of invalid or 1 for sensors corresponding to splice sites, introns, and exonic

regions. Similarly, the clone bounds generate invalid scores for the intergenic sensors,

effectively forcing a prediction of a primary transcript in that region. Thus, four gene

predictions are compared:

1. Reference CDS from high quality mRNA alignment

2. Longest ORF within AltMerge transcripts

3. ab initio Genie

4. AltMerge and clone-bound constrained Genie

Sample results are shown in Figure 6.3 and summary statistics in Table 6.6.

Due to the large number of mouse ESTs, the ORF method alone is sufficient to identify

a significant portion of the coding regions. Using the Genie constraint system improves

on the ORF method and sometimes bridges partial transcripts.

It is not surprising that constraints from perfect alignments and clone bounds

improves gene prediction performance over ab initio predictions. It is, however, surpris-

ing, that the ORF method is, in some ways, better than the constrained predictions.

75

Figure 6.3: Constraint-based prediction results. The reference sequence is a full-length RefSeq
mRNA. Ab initio predictions are labeled Genie. A set of non-redundant transcripts inferred
from the EST alignments are labeled AltMerge. Clone bounds represent extents between 5’
and 3’ reads from the same clone. The ORF track is the largest open reading frame from the
AltMerge transcripts. The track labeled AltGenie is derived from ab initio plus fixed constraints
from clone bounds and AltMerge.

76

Method: ab initio constrained ORF
Per Base Sn 0.86 0.77 0.77

Sp 0.77 0.91 0.89
Exact Exon Sn 0.66 0.71 0.70

Sp 0.63 0.80 0.82
Missing 0.20 0.21 0.19
Wrong 0.24 0.11 0.05

Exact CDS Sn 0.14 0.36 0.39
Sp 0.14 0.37 0.31
Missing 0.03 0.13 0.10
Wrong 0.03 0.10 0.14

Table 6.6: Constrained gene prediction performance. (Genie version 3)

Almost 40% of exact protein-coding CDS structures can be determined using nothing

more complicated than an ORF finder on aligned ESTs. Also, when looking at these

individual loci, the vast majority have one or more clone bounds describing some or

all of the primary transcript region. Since a large number of true genes are covered by

clone bounds, one can surmise that many unknown gene regions can be identified by

the clone bounds, too.

It is possible that for novel mRNAs, the constrained Genie system would not

perform as well because the full-length sequences used for testing tend to be those

genes that are heavily expressed. Thus, there are likely to be many ESTs for those

genes that are known.

It is interesting that the ab initio gene prediction method and the EST assem-

bly method produce such similar results when using completely different information.

This suggests that ab initio gene predictors can play an important role in annotation

when carefully monitored for false positive rates such as in this experiment.

77

Chapter 7

Whole Genome Gene Finding

7.1 Whole genome experiments

In this chapter I briefly discuss the application of the Genie system to whole

genome analysis. In most cases, it is difficult to definitively assess performance, and

in some cases, I simply note the availability of the results for completeness. For the

fruit fly, human, and mouse whole genome annotations, gene prediction sets were

generated by the Genie system but the detailed functional analyses and assessments

were performed by collaborators as referenced in each section. Thus, this chapter

serves to summarize findings using Genie in whole genome analysis and to describe any

implementation details not published elsewhere.

78

7.1.1 C. elegans

A set of genes for the Caenorhabditis elegans genome was generated. These

genes were predicted using constraints from Jim Kent’s Intronerator system for pre-

dicting introns from cDNA alignments. The 16,423 gene predictions are available

in the on-line C. elegans genome browser described by Kent[39] where they can be

visually compared with the the manual curations from the C. elegans Sequencing

Consortium[5]. (Genie version 5.)

7.1.2 Chlamydomonas

The complete genome sequence of the green algae, Chlamydomonas rein-

hardtii, is currently being sequenced. In collaboration with Gary Stormo’s lab at

Washington University St Louis, I trained a version of the software called GreenGenie

and cross-validated performance metrics as shown in Section 6.3. A recent independent

assessment of the GreenGenie predictions was compared to other ab initio predictions

and cDNA alignments[40, 41], and based on that assessment, the total number of

genes in green algae is estimated to be between 12,000 and 16,400. As a result of that

study, the software is now actively being used for further contig annotation. A web

server is available for single contig predictions and the software is available for other

Chlamydomonas researchers upon request.

79

Method: Genie GeneMark Genescan
Exact Exon Sn 0.75 0.54 0.75

Sp 0.84 0.58 0.78
TAP-predicted Exact Exon Sn 0.70 0.56 0.64

Sp 0.81 0.67 0.53

Table 7.1: Assessment of Genie on the Chlamydomonas genome as reported in[41]. TAP-
predicted exons refer to exons deduced by the TAP software[40] from EST alignments. (Genie
version 2.)

7.1.3 Drosophila

To annotate the complete assembly of the fruit fly genome, a cadre of bioin-

formaticists pored through thousands of gene predictions from Genie and Genscan along

with cDNA alignments and protein homology. Most of the final gene predictions are

based on—if not derived exactly from—predictions from the Genie software. 13,189

gene predictions were produced using the Genie system. About 10,000 genes with

database homology were reviewed manually. Based on the Genie predictions among

that set, the curators chose to include approximately 3000 additional unreviewed Genie

predictions yielding a final complement of 13,601 genes. A detailed assessment of the

gene annotations was performed by Adams, et. al.[42]. All of these gene structures

were deposited in Genbank and are available from the Flybase web site. A revised ver-

sion of the Genie software is planned to be hosted by the Berkeley Drosophila Genome

Project to assist in continued curation.

Drosophila was the first whole genome annotation effort in which I used clone

bounds. Peter Brokstein from the Berkeley Drosophila Genome Project supplied a col-

lection of 5’/3’ mate paired ESTs. Martin Reese provided a curated set of annotated

80

Both
Genie
only

Genscan
only

No Pre-
diction

Total

EST + protein match 4,708 223 229 57 5,217
EST match only 3,192 261 212 51 3,716
Protein match only 1,462 82 112 54 1,710
No matches 2,551 338 69 0 2,958
Total 11,913 904 622 162 13,601

Table 7.2: Drosophila genome gene predictions[42]. Gene prediction programs were used in
combination with searches of protein and EST databases to create a putative set of protein-
coding genes. The first column are those selected genes with overlapping predictions by both
Genie and Genscan. For Genscan only predictions with no homology support, only 69 out of
more than 4,000 predictions were included, whereas all Genie only predictions were included.
(Genie version 3.)

DNA sequences from Genbank from which the frequency counts for gene features were

derived. cDNA constraints were implemented crudely as Blastn hits in the same man-

ner as the protein homology models using all available public cDNA data along with

unreleased (at that time) cDNAs from the BDGP. Precise splice site constraints could

not be obtained. Since multiple exons in the 3’ UTR are uncommon in Drosophila,

the GHMM model topology was modified to disallow introns in the 3’ UTR. Of note,

the length of the majority of introns in Drosophila are peaked at about 70 nucleotides,

making the gene predictions much more compact and reliable than for higher organ-

isms.

7.1.4 Homo sapiens

The effort to annotate the draft assembly of the human genome was far more

challenging than generating the gene set for the Drosophila genome. A consortium

effort generated gene predictions and the authors devised an automated system for

selecting a gene set. The task was particularly onerous because the exon-intron struc-

81

ture predictions generated on the genomic contigs were expected to be used by protein

bioinformaticists to assess the functional content of the protein-coding genes. It is

well known that gene prediction in human is an imposing challenge even given high

quality small contigs[34] and worse in large random genomic contigs[43]. False positive

rates of ab initio prediction programs in random genomic contigs (versus the gene-rich

contigs from which the programs are trained) tend to be quite high[44]. To control

the false positive rate in a whole genome analysis and attempt to optimize for correct

exon bounds, colleagues Ray Wheeler, Alan Williams, Cyrus Harmon, and I decided

to only include gene predictions with some evidence of splicing from aligned cDNAs.

In human genes, the 3’ UTR is considerably longer than the rest of the exons and

the majority of ESTs are derived from the 3’ end of polyadenylated mRNAs. Thus,

some of the Genie predictions were undoubtedly derived from completely untranslated

regions.

Unlike the relatively clean set of Drosophila cDNAs, the EST data for hu-

man tended to be of lower quality as a result of genomic contaminants, immature

mRNAs, and non-genic transcription (for example from transposon promoters), and

often did not include protein-coding regions. Thus, the human genome annotation

was subject to lower quality genomic and EST sequences. Sequencing errors result in

situations where a legal parse cannot be generated from the EST/mRNA constraints

because of insertions, deletions, and in-frame stop codons. Given sequencing errors,

the constrained Genie system may predict a truncated or erroneous, out-of-frame CDS

in order to accommodate the constraints. To ensure that downstream protein anno-

82

tation efforts were not negatively impacted by sequencing errors and erroneous gene

predictions, our final gene set replaced Genie predictions with annotated CDSs from

known RefSeqs and full-length mRNAs when the experimental and predicted methods

overlapped.

Nevertheless, some of the Genie predictions were novel protein-coding regions

that had no similarity to known proteins, even though the gene structure may have been

nearly correct due to EST alignments. As a result, the consortium chose to discard any

predictions with no overlap to the Ensembl prediction set, which was largely influenced

by protein homology. On the other hand, because we used clone bounds for gene region

detection, our method tended to generate longer gene predictions where the Ensembl

method produced highly fragmented results. In such conflicting cases, the longer Genie

predictions were chosen as the representative gene structure. In summary, of the 10083

Genie predicted genes and 6315 full-length gene annotations submitted by myself and

colleagues, only 4057 of the predicted genes were used in the published integrated gene

index.

Several methods were employed to evaluate the sensitivity, specificity, and

fragmentation of the human gene index. The gene set was compared to a small set of

newly sequenced cDNAs generated after the genome annotation effort to assess sensi-

tivity and fragmentation, compared to a large set of mouse cDNAs to assess sensitivity

and an estimate of potential novel genes with no known protein, and compared to

manual curation of the human chromosome 22. All of these analyses suggested that

the total number of protein-coding genes was roughly in agreement with other inde-

83

Knowns Ensembl-Genie Ensembl Total
Number 14,882 4,057 12,839 31,778
Average length (amino acids) 469 443 187 352
Matches to non-human pro-
teins

85% 74% 63% 75%

Matches to RIKEN mouse
cDNA set

78% 74% 57% 69%

Matches to RIKEN mouse
cDNA set but not to non-
human proteins

36% 47% 31% 34%

Table 7.3: Human genome gene predictions. “Knowns” are a combination of SwissProt and
peptide translations from RefSeq and TrEMBL. Note that the average peptide length of the
Ensembl-Genie set is more than twice the length of the Ensembl-only predictions. This is
partly due to the clone bounds and EST data serving to extend the gene predictions beyond
the peptide homologies identified by the Ensembl method.

pendent estimates, that sensitivity (coverage of the total protein-coding gene set) was

70-85%, about 10-20% of predicted genes were false or pseudogenes, and that the set

was significantly fragmented. Unfortunately, it is nearly impossible to relate those

results to the Genie subset in any meaningful way except to suggest that the frag-

mentation of the total gene set would have been greater without it, as shown by the

average peptide length in Figure 7.3. The detailed data generated by co-authors at

that time was not made available and is since lost. Moreover, due to the magnitude of

the analyses, no direct consideration of splice site prediction and exon-intron structure

was given—rather analysis was largely based on protein similarity. For more details,

see [45].

84

7.1.5 Mus musculus

More recently, a near-complete whole genome shotgun assembly of the mouse

genome was published along with gene annotations using the Ensembl and Genie sys-

tems. Ray Wheeler and I worked together to generate the Genie results. To annotate

the entire genome, the chromosome contigs were partitioned into smaller pieces with an

average size of 7MB. Partitioning occurred at long repetitive regions when possible.

For each segment, putative gene bounds were identified from clone bounds inferred

from paired EST reads, ab initio mammalian Genie trained from human samples, and

all best-in-genome cDNA alignment (at least 90% identity along 90% of the cDNA re-

quired). Maximal overlapping gene regions are inferred from these three methods. The

ab initio gene finder serves to connect adjacent regions that may not have connecting

cDNA evidence. Regions containing only an ab initio prediction or of length less than

500 bases are discarded. Each remaining region is processed independently per strand

by creating a set of Genie constraints composed of a set of non-overlapping AltMerge

transcripts and clone bounds for the region. One or more genes are predicted from the

region and those with a coding region less than 100 bases are discarded.

While the approach was very similar to that employed for the human genome,

it would seem that the results were more favorably received by our colleagues—

probably for a number of different reasons. First, anecdotally, it seems that the EST

data as a whole tended to be of higher quality in terms of rate of contamination and

low quality reads. Second, only the highest quality cDNA alignments were included in

85

our analysis (requiring 90% identity along 90% of the cDNA). Third, the EST cover-

age for many mouse genes appears to be denser and more complete than for human.

Although the total number of mouse and human ESTs (about 2,400,000) and the 3’/5’

ratio (about 1.4:1) was about the same, visual inspection of known gene structures

along with EST alignments typically show more favorable EST coverage and quality

per gene than for human. In particular, although a detailed analysis is lacking, it

would appear that alternative messages, particularly alternative polyadenylation and

partially processed mRNA, are more prevalent in human than in mouse. The mouse

cDNA evidence tends to be more consistent among the overlapping aligned cDNAs.

Fourth, my treatment of clone bounds was much more rigorous, excluding many false

bounds as described below. Fifth, a detailed comparison of gene predictors at the

exon-level was performed by the authors in which seven gene-prediction systems were

compared: 23,026 genes from Ensembl[46], 37,793 genes from Fgenes++, 46,158 genes

from the NCBI pipeline using the GenomeScan[47] program, 46,646 genes from an al-

ternative Ensembl system that used only EST data, 48,451 genes from SGP[48], 48,548

genes from Twinscan[49], and 14,006 genes from SLAM[50], and 18,548 gene predic-

tions using the Genie system. A 7-way Venn diagram of exon prediction overlap was

generated along with a lengthy subjective evaluation. The authors decided to take as

the primary set of gene predictions the union of the Ensembl and Genie predictions be-

cause those methods were most confirmed by other methods, while the other methods

each tended to add additional predictions that were unique only to that method—

suggesting mostly false positives. The fact that the Ensembl gene predictions were

86

dominated by protein homology and the Genie predictions were dominated by EST

evidence, yet the two methods agreed substantially provided additional confidence of

the specificity of both methods. Last, predictions from other methods were used to

extend gene predictions from Ensembl or Genie if more than 80% of the length of the

transcript from the alternative prediction was shared by Ensembl or Genie. The to-

tal number of mouse protein-coding genes was extrapolated from the final set of gene

predictions in a manner similar to the human gene count estimates in [45] yielding an

estimate of 27, 000− 30, 500. For full details, see [51].

Because of the high quality of the cDNA and genomic data, a large fraction

of exon-intron structures are fully described by the cDNA alignments. Using the

AltMerge program[38] to generate putative transcripts merged from ESTs was sufficient

to delineate gene structure, and the Genie software served mostly to “stitch” fragmented

transcripts together and to predict the open reading frame in the AltMerge constraints.

An example of the complexities, pitfalls, and advantages of the Genie system

is shown for an unsequenced gene in Figure 7.1.

7.2 Clone bounds and gene counts

How significant are the clone bounds in gene finding annotations? Considering

the mouse genome, there are 197,289 clones with multiple EST reads (as many as 4).

Of these, 207,239 3’/5’ pairs are from the same clone, and of these, both ESTs align to

the genome with marginal specificity for 188,197 pairs based on the alignment methods

87

122450000 122460000 122470000 122480000 122490000 122500000
G630026L22

H3004H08
IMAGE:3969743

mouse_TC550367
mouse_TC554014

mouse_TC606111
mouse_TC644552

rat_TC322260

122455000 122460000 122465000

BB633257
AA098401
AI787700

AA107288
BG976938

AW320853
BI685025

mouse_TC554014

Base Position

Nonmouse mRNA

Tetraodon Blat
Fugu Blat

Human Blat

mouse_TC550367
rat_TC322260

Base Position

Nonmouse mRNA

Tetraodon Blat
Fugu Blat

Human Blat

BB871072

Twinscan
Slam

AltGenie
Ensembl

Genscan

SGP
Fgenesh++

G630026L22

Exon 5 Exon 6

AltGenie

Exon 33

Genscan
Fgenes++

SGP
Twinscan
Ensembl

Figure 7.1: An example mouse gene. From top to bottom are shown clone bounds from EST
mate pairs, 7 automated gene predictions, alignment of mouse ESTs, non-mouse mRNAs, assembled
cDNA transcripts from TIGR, and sequence similarity with the tetraodon, fugu, and human genomes.
Although no full-length cDNAs are present, virtually the entire gene structure is delineated by EST
data except for a single small gap. A few conflicts exist among the aligned ESTs suggesting minor
alternative splicing variations, truncated messages, or low quality tails that are incorrectly aligned. The
one gap in EST evidence includes the Genie predictions for exon 5 and 6, predicted solely from statistical
sequence information (shown in the top, magnified panel). Note, that the grey ESTs (AA107288 and
BG976938) were not used as constraints because the alignments were not of sufficiently high quality,
although in this case one of these two ESTs lends support to exon 5 as does homology with rat
and human. Both ab initio and comparative genome gene finders (Fgenesh++ and SGP) and rat
cDNA alignments lend credibility to exon 6. The final exon 33, while clearly justified by the cDNA
evidence, contains only 4 codons, so it is understandably missed by the other gene finders, which do
not use cDNA evidence. There are three pairs of 3’/5’ reads that align to this gene region (top grey
track) and the 5’ read from clone G630026L22 is probably aligned to the beginning of the primary
transcript since there are no other upstream ESTs in the vicinity. It is unlikely that the ab initio
and comparative genome gene finders (SGP, Fgenesh++, GeneID, and Genscan) are correct in their
upstream and downstream extensions. This example and others showing overextension argue that the
statistical gene finders tend to overextend, and that the merge rule used in generating the mouse gene
set was probably unwise. There are four separate TIGR “TC” transcripts for mouse for this one gene,
suggesting that EST clustering is inferior to EST-genomic alignment when deducing transcripts.

88

described above. About 8.4% (15,864) of these aligned pairs match to different contigs,

and 7.6% (14,371) aligned to different chromosomes (suggesting that partitioning at

7MB was not a serious problem, but that the alignment criteria could be stricter). For

the remaining 91.6% (172,333) that aligned well to the same contig, 132,151 (76.7%)

aligned with at least 90% identity.

I define a pair of reads as agreeing on genomic strand when the 5’ EST

aligns in the forward orientation and the 3’ EST aligns in the reverse, or vice-versa.

A pair agrees in order if the 5’ EST is upstream of the 3’ EST along the inferred

genomic strand. 117,078 pairs (67.9% of the well aligned pairs) agree in strand and

order, but only 72,882 (42.3%) have strong evidence of orientation based on splicing

or polyadenylation.

Many of the pairs of reads overlap with other pairs from different clones.

Since a majority of pairs had weak orientation evidence, I created sets of gene bounds

in an iterative process. Starting with the pair with the strongest orientation evidence,

new pairs were merged with overlapping pairs. A new gene bound was not created

unless the orientation score was above a threshold and no gene bound already existed

on the opposite strand. Without this rule, clone reversal would cause the prediction

of gene regions in the same position on complementary strands. This merging process

created 23, 116 gene regions with a minimum, maximum, mean, and median primary

transcript length of 168, 5.1× 106, 26120, and 5699, respectively—lengths comparable

to primary transcripts for known full-length mRNAs.

This analysis suggests that clone pairs aligned to the mouse genome with high

89

specificity provide significant support for gene regions for a large number of distinct

loci—indeed on the order of the total number of predicted genes. Visual inspection

shows that these clone bounds are consistently in agreement with known genes. This

suggests that such bounds are important anchors for the prediction of more detailed

gene structure and can help reduce the false positive rate of ab initio gene prediction

by reducing the input sequences to those with gene bounds defined by clone read pairs.

Because EST sequencing is limited in its tissue diversity, a lower bound on

the total number of genes can be extrapolated by considering the fraction of clone

bounds that overlap the 7979 RefSeq mRNA that align to the mouse genome with

high specificity. 6608 (82.8%) of these mRNAs overlap with clone bounds. Some of

the clone bounds may be contaminants, and others may represent non-protein-coding

genes. Nevertheless, this suggests that there are at least 27, 900 (23, 116/.828) genes

in the mouse genome. This number is within the range of 27, 000− 30, 000 genes that

we estimated in [51] based on a very different analysis of sensitivity of the integrated

gene set with respect to known gene collections.

90

Chapter 8

Closing Remarks

8.1 Discussion

The GHMM framework described here still lacks a few important features that

I have not addressed. As mentioned in the previous chapter, overlapping genes cannot

be generally accommodated, although this is not a serious weakness. In practice,

a pre-processing step can identify putative overlapping genes and then analyze the

sequences independently, if necessary. In addition to overlapping genes, some rare

gene structures also cannot be represented. It is obviously possible for true start and

stop codons to span introns, although from experience it is much rarer than decoy

stop codons. This model specifically inhibits intron-spanning stop codons and cannot

detect intron-spanning start codons. Also, while it is estimated that less than 1% of

splice sites do not include the consensus dinucleotides, this model requires consensus

sites unless cDNA evidence implies otherwise. It is possible to relax the model to

91

allow splicing at additional positions, but preliminary experiments suggest that doing

so decreases overall accuracy and significantly increases running time.

Cardinality constraints in the number of exons, or, equivalently, in the total

size of the predicted message, cannot be modeled well. I described in [27] how the

exon-intron-exon loop can be ”unspooled” so that the distribution of the first k exons

can be modeled separately, although this was never implemented due to the complexity

of such models.

An important weakness is in the hidden Markov model itself. A generative

HMM requires that the parameters over the transitions and observations either be

learned through an EM method or that the scoring methods provided through other

means conform to likelihood distributions to ensure a balanced system. But there are

many methods for discriminating features that simply produce a score that is optimally

thresholded to obtain the desired balance of sensitivity and specificity. Sometimes

these scores can be treated as posteriors and converted into likelihoods given some

assumptions about the training procedure and using Bayes rule, but my attempts,

for example, to convert neural network outputs into likelihoods were not satisfactory.

Probably the most effective internal exon prediction schemes are based on discriminant

analysis[11, 12], yet these methods are not amenable to incorporation into likelihood

models.

The cDNA constraint system that I describe should be generalized to allow

more subtle weighting schemes. Such a system could include consideration for the

number or strength of homologous sequence alignments or incorporate other types of

92

data such as readouts from micro-arrays. In the extreme, the problems of orthologous

sequence alignment between genomes and gene prediction can be unified into a single

modeling problem, as has been done with the HMMs developed by Pachter, et. al.[50],

in their comparative genome gene finder and aligner. I believe that this is the natural

extension of HMM-based gene finding in future research.

As shown in Section 6.7.2, it is remarkable that the number of ESTs in the

public databases today are sufficient to describe as much as 40% of gene structures

and protein-coding regions, despite the high noise rate in these expressed sequences.

Thus, it would seem that for some genomes, a sophisticated gene prediction system

is less important than a careful management of cDNA sequences. Nevertheless, there

will continue to be a need for gene prediction methods that provide a complement to

the cDNA data when quality or quantity is lacking, and that role is played well by

Genie.

One topic of future research that is particularly interesting is the relationship

of gene features to expression level. With several completed genomes, large collections

of ESTs, and whole genome micro-array expression assays, it would be interesting to

consider the correlation of expression to gene features in the same way that G+C

content has been found to correlate with coding metrics and intron length.

93

8.2 Conclusion

In this paper I showed the efficacy of a gene-prediction system based on a

state-duration hidden Markov model (GHMM) allowing multiple symbols per state

and imposing length distributions over the observations. The grammatical structure

of genes in DNA, including frame consistency and intron-spanning stop codons, can be

modeled using such an HMM and this leads to a consistent, complete gene prediction.

In addition, such a model lends itself to a modular implementation that provides for the

integration of independent feature sensors into a unified system. While the theoretical

running time is cubic in the length of the input sequence, I describe an implementation

that, in practice, is linear.

To accommodate external information, I propose different methods for either

constraining the search space or modifying the likelihood model scoring system. I

show that this has the practical value of improving gene prediction by using cDNA or

protein alignments to genomic sequence to delineate exonic and protein-coding regions,

respectively.

Finally, I present results of the application of the Genie software system to the

annotation of several model organisms and describe how those results led to predictions

of the total number of protein-coding genes in those organisms. In addition, I argue

that the use of clone bounds is an effective means of identifying gene loci, estimating

gene counts, and minimizing false positive rates from ab initio gene predictions.

94

Bibliography

[1] M. Kozak. Structural features in eukaryotic mRNAs that modulate the initiation
of translation. J Biol Chem, 266(30):19867–70, 1991.

[2] R. Staden. Finding protein coding regions in genomic sequences. Methods Enzy-
mol, 183:163–80, 1990.

[3] R. Staden. Computer methods to locate signals in nucleic acid sequences. Nucleic
Acids Res, 12(1 Pt 2):505–19, 1984.

[4] G. D. Stormo. Consensus patterns in DNA. Methods Enzymol, 183:211–21, 1990.

[5] The C. elegans Sequencing Consortium. Genome sequence of the nematode C.
elegans: a platform for investigating biology. Science, 282(5396):2012–8, 1998.

[6] M. S. Gelfand. Prediction of function in DNA sequence analysis. J Comput Biol,
2(1):87–115, 1995.

[7] C. Burge and S. Karlin. Prediction of complete gene structures in human genomic
DNA. J Mol Biol, 268(1):78–94, 1997.

[8] S. Brunak, J. Engelbrecht, and S. Knudsen. Prediction of human mRNA donor
and acceptor sites from the dna sequence. J Mol Biol, 220(1):49–65, 1991.

[9] M. G. Reese, F. H. Eeckman, D. Kulp, and D. Haussler. Improved splice site
detection in Genie. J Comput Biol, 4(3):311–23, 1997.

[10] M. G. Reese. Application of a time-delay neural network to promoter annotation
in the Drosophila melanogaster genome. Comput Chem, 26(1):51–6, 2001.

[11] V. V. Solovyev, A. A. Salamov, and C. B. Lawrence. Predicting internal exons by
oligonucleotide composition and discriminant analysis of spliceable open reading
frames. Nucleic Acids Res, 22(24):5156–63, 1994.

95

[12] M. Q. Zhang. Identification of protein coding regions in the human genome by
quadratic discriminant analysis. Proc Natl Acad Sci U S A, 94(2):565–8, 1997.

[13] J. M. Claverie, I. Sauvaget, and L. Bougueleret. Computer generation and sta-
tistical analysis of a data bank of protein sequences translated from GenBank.
Biochimie, 67(5):437–43, 1985.

[14] J. W. Fickett and C. S. Tung. Assessment of protein coding measures. Nucleic
Acids Res, 20(24):6441–50, 1992.

[15] M. Borodovsky and J. McIninch. Recognition of genes in DNA sequence with
ambiguities. Biosystems, 30(1-3):161–71, 1993.

[16] R. Guigo and J. W. Fickett. Distinctive sequence features in protein coding genic
non-coding, and intergenic human DNA. J Mol Biol, 253(1):51–60, 1995.

[17] W. J. Kent. BLAT–the BLAST-like alignment tool. Genome Res, 12(4):656–64,
2002.

[18] C. A. Fields and C. A. Soderlund. gm: a practical tool for automating DNA
sequence analysis. Comput Appl Biosci, 6(3):263–70, 1990.

[19] R. Guigo, S. Knudsen, N. Drake, and T. Smith. Prediction of gene structure. J
Mol Biol, 226(1):141–57, 1992.

[20] G. B. Hutchinson and M. R. Hayden. The prediction of exons through an analysis
of spliceable open reading frames. Nucleic Acids Res, 20(13):3453–62, 1992.

[21] E. C. Uberbacher and R. J. Mural. Locating protein-coding regions in human
DNA sequences by a multiple sensor-neural network approach. Proc Natl Acad
Sci U S A, 88(24):11261–5, 1991.

[22] E. E. Snyder and G. D. Stormo. Identification of coding regions in genomic DNA
sequences: an application of dynamic programming and neural networks. Nucleic
Acids Res, 21(3):607–13, 1993.

[23] D. B. Searls. The linguistics of DNA. American Scientist, 80:579–591, 1992.

[24] S. Dong and D. B. Searls. Gene structure prediction by linguistic methods. Ge-
nomics, 23(3):540–51, 1994.

[25] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proc IEEE, 77(2):257–286, 1989.

[26] A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and D. Haussler. Hidden Markov
models in computational biology. applications to protein modeling. J Mol Biol,
235(5):1501–31, 1994.

96

[27] D. Kulp, D. Haussler, M. G. Reese, and F. H. Eeckman. A generalized hidden
Markov model for the recognition of human genes in DNA. Proc Int Conf Intell
Syst Mol Biol, 4:134–42, 1996.

[28] A. Krogh. Two methods for improving performance of an HMM and their appli-
cation for gene finding. Proc Int Conf Intell Syst Mol Biol, 5:179–86, 1997.

[29] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Interval trees. In Introduction
to Algorithms, pages 290–294. MIT Press, 1990.

[30] W. R. Gish and D. J. States. Identification of protein coding regions by database
similarity search. Nature Genetics, 3, 1993.

[31] S. Henikoff and J. Henikoff. Automated assembly of protein blocks for database
searching. Nucleic Acids Res, 19(23):6565–6572, 1991.

[32] K. Sjolander, K. Karplus, M. Brown, R. Hughey, A. Krogh, I. S. Mian, and
D. Haussler. Dirichlet mixtures: a method for improved detection of weak but
significant protein sequence homology. Comput Appl Biosci, 12(4):327–45, 1996.

[33] D. Kulp, D. Haussler, M. G. Reese, and F. H. Eeckman. Integrating database
homology in a probabilistic gene structure model. Pac Symp Biocomput, pages
232–44, 1997.

[34] M. Burset and R. Guigo. Evaluation of gene structure prediction programs. Ge-
nomics, 34(3):353–67, 1996.

[35] M. G. Reese, G. Hartzell, N. L. Harris, U. Ohler, J. F. Abril, and S. E.
Lewis. Genome annotation assessment in Drosophila melanogaster. Genome Res,
10(4):483–501, 2000.

[36] M. G. Reese, D. Kulp, H. Tammana, and D. Haussler. Genie–gene finding in
Drosophila melanogaster. Genome Res, 10(4):529–38, 2000.

[37] J. W. Fickett and A. G. Hatzigeorgiou. Eukaryotic promoter recognition. Genome
Res, 7(9):861–78, 1997.

[38] R. Wheeler. A method of consolidating and combining EST and mRNA align-
ments to a genome to enumerate supported splice variants. In R. Guigo and
D. Gusfield, editors, Algorithms in Bioinformatics : Second International Work-
shop, WABI, Rome, 2002.

[39] W. J. Kent and A. M. Zahler. The intronerator: exploring introns and alternative
splicing in Caenorhabditis elegans. Nucleic Acids Res, 28(1):91–3, 2000.

97

[40] Z. Kan, E. C. Rouchka, W. R. Gish, and D. J. States. Gene structure prediction
and alternative splicing analysis using genomically aligned ESTs. Genome Res,
11(5):889–900, 2001.

[41] J. Li, S. Lin, H. Jia, H. Wu, B. A. Roe, D. Kulp, G. D. Stormo, and S. K.
Dutcher. Analysis of Chlamydomonas reinhardtii genome structure using large-
scale sequencing of regions on linkage groups iii and vi. submitted, 2003.

[42] M. D. Adams, S. E. Celniker, R. A. Holt, C. A. Evans, J. D. Gocayne, P. G. Ama-
natides, S. E. Scherer, P. W. Li, R. A. Hoskins, R. F. Galle, R. A. George, S. E.
Lewis, S. Richards, M. Ashburner, S. N. Henderson, G. G. Sutton, J. R. Wort-
man, M. D. Yandell, Q. Zhang, L. X. Chen, R. C. Brandon, Y. H. Rogers, R. G.
Blazej, M. Champe, B. D. Pfeiffer, K. H. Wan, C. Doyle, E. G. Baxter, G. Helt,
C. R. Nelson, G. L. Gabor, J. F. Abril, A. Agbayani, H. J. An, C. Andrews-
Pfannkoch, D. Baldwin, R. M. Ballew, A. Basu, J. Baxendale, L. Bayraktaroglu,
E. M. Beasley, K. Y. Beeson, P. V. Benos, B. P. Berman, D. Bhandari, S. Bol-
shakov, D. Borkova, M. R. Botchan, J. Bouck, P. Brokstein, P. Brottier, K. C.
Burtis, D. A. Busam, H. Butler, E. Cadieu, A. Center, I. Chandra, J. M. Cherry,
S. Cawley, C. Dahlke, L. B. Davenport, P. Davies, B. de Pablos, A. Delcher,
Z. Deng, A. D. Mays, I. Dew, S. M. Dietz, K. Dodson, L. E. Doup, M. Downes,
S. Dugan-Rocha, B. C. Dunkov, P. Dunn, K. J. Durbin, C. C. Evangelista, C. Fer-
raz, S. Ferriera, W. Fleischmann, C. Fosler, A. E. Gabrielian, N. S. Garg, W. M.
Gelbart, K. Glasser, A. Glodek, F. Gong, J. H. Gorrell, Z. Gu, P. Guan, M. Har-
ris, N. L. Harris, D. Harvey, T. J. Heiman, J. R. Hernandez, J. Houck, D. Hostin,
K. A. Houston, T. J. Howland, M. H. Wei, C. Ibegwam, et al. The genome
sequence of Drosophila melanogaster. Science, 287(5461):2185–95, 2000.

[43] R. Guigo, P. Agarwal, J. F. Abril, M. Burset, and J. W. Fickett. An assessment of
gene prediction accuracy in large DNA sequences. Genome Res, 10(10):1631–42,
2000.

[44] I. Dunham, N. Shimizu, B. A. Roe, S. Chissoe, A. R. Hunt, J. E. Collins,
R. Bruskiewich, D. M. Beare, M. Clamp, L. J. Smink, R. Ainscough, J. P. Almeida,
A. Babbage, C. Bagguley, J. Bailey, K. Barlow, K. N. Bates, O. Beasley, C. P. Bird,
S. Blakey, A. M. Bridgeman, D. Buck, J. Burgess, W. D. Burrill, K. P. O’Brien,
and et al. The DNA sequence of human chromosome 22. Nature, 402(6761):489–
95, 1999.

[45] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin,
K. Devon, K. Dewar, M. Doyle, W. FitzHugh, R. Funke, D. Gage, K. Harris,
A. Heaford, J. Howland, L. Kann, J. Lehoczky, R. LeVine, P. McEwan, K. McK-
ernan, J. Meldrim, J. P. Mesirov, C. Miranda, W. Morris, J. Naylor, C. Ray-
mond, M. Rosetti, R. Santos, A. Sheridan, C. Sougnez, N. Stange-Thomann,
N. Stojanovic, A. Subramanian, D. Wyman, J. Rogers, J. Sulston, R. Ainscough,

98

S. Beck, D. Bentley, J. Burton, C. Clee, N. Carter, A. Coulson, R. Deadman,
P. Deloukas, A. Dunham, I. Dunham, R. Durbin, L. French, D. Grafham, S. Gre-
gory, T. Hubbard, S. Humphray, A. Hunt, M. Jones, C. Lloyd, A. McMurray,
L. Matthews, S. Mercer, S. Milne, J. C. Mullikin, A. Mungall, R. Plumb, M. Ross,
R. Shownkeen, S. Sims, R. H. Waterston, R. K. Wilson, L. W. Hillier, J. D.
McPherson, M. A. Marra, E. R. Mardis, L. A. Fulton, A. T. Chinwalla, K. H.
Pepin, W. R. Gish, S. L. Chissoe, M. C. Wendl, K. D. Delehaunty, T. L. Miner,
A. Delehaunty, J. B. Kramer, L. L. Cook, R. S. Fulton, D. L. Johnson, P. J. Minx,
S. W. Clifton, T. Hawkins, E. Branscomb, P. Predki, P. Richardson, S. Wenning,
T. Slezak, N. Doggett, J. F. Cheng, A. Olsen, S. Lucas, C. Elkin, E. Uberbacher,
M. Frazier, et al. Initial sequencing and analysis of the human genome. Nature,
409(6822):860–921, 2001.

[46] T. Hubbard, D. Barker, E. Birney, G. Cameron, Y. Chen, L. Clark, T. Cox,
J. Cuff, V. Curwen, T. Down, R. Durbin, E. Eyras, J. Gilbert, M. Hammond,
L. Huminiecki, A. Kasprzyk, H. Lehvaslaiho, P. Lijnzaad, C. Melsopp, E. Mon-
gin, R. Pettett, M. Pocock, S. Potter, A. Rust, E. Schmidt, S. Searle, G. Slater,
J. Smith, W. Spooner, A. Stabenau, J. Stalker, E. Stupka, A. Ureta-Vidal, I. Vas-
trik, and M. Clamp. The Ensembl genome database project. Nucleic Acids Res,
30(1):38–41, 2002.

[47] R. F. Yeh, L. P. Lim, and C. B. Burge. Computational inference of homologous
gene structures in the human genome. Genome Res, 11(5):803–16, 2001.

[48] G. Parra, P. Agarwal, J. F. Abril, T. Wiehe, J. W. Fickett, and R. Guigo. Com-
parative gene prediction in human and mouse. Genome Res, 13(1):108–17, 2003.

[49] I. Korf, P. Flicek, D. Duan, and M. R. Brent. Integrating genomic homology into
gene structure prediction. Bioinformatics, 17 Suppl 1:S140–8, 2001.

[50] L. Pachter, M. Alexandersson, and S. Cawley. Applications of generalized pair
hidden Markov models to alignment and gene finding problems. J Comput Biol,
9(2):389–99, 2002.

[51] R. H. Waterston, K. Lindblad-Toh, E. Birney, J. Rogers, J. F. Abril, P. Agar-
wal, R. Agarwala, R. Ainscough, M. Alexandersson, P. An, S. E. Antonarakis,
J. Attwood, R. Baertsch, J. Bailey, K. Barlow, S. Beck, E. Berry, B. Birren,
T. Bloom, P. Bork, M. Botcherby, N. Bray, M. R. Brent, D. G. Brown, S. D.
Brown, C. Bult, J. Burton, J. Butler, R. D. Campbell, P. Carninci, S. Cawley,
F. Chiaromonte, A. T. Chinwalla, D. M. Church, M. Clamp, C. Clee, F. S. Collins,
L. L. Cook, R. R. Copley, A. Coulson, O. Couronne, J. Cuff, V. Curwen, T. Cutts,
M. Daly, R. David, J. Davies, K. D. Delehaunty, J. Deri, E. T. Dermitzakis,
C. Dewey, N. J. Dickens, M. Diekhans, S. Dodge, I. Dubchak, D. M. Dunn, S. R.
Eddy, L. Elnitski, R. D. Emes, P. Eswara, E. Eyras, A. Felsenfeld, G. A. Fewell,

99

P. Flicek, K. Foley, W. N. Frankel, L. A. Fulton, R. S. Fulton, T. S. Furey, D. Gage,
R. A. Gibbs, G. Glusman, S. Gnerre, N. Goldman, L. Goodstadt, D. Grafham,
T. A. Graves, E. D. Green, S. Gregory, R. Guigo, M. Guyer, R. C. Hardison,
D. Haussler, Y. Hayashizaki, L. W. Hillier, A. Hinrichs, W. Hlavina, T. Holzer,
F. Hsu, A. Hua, T. Hubbard, A. Hunt, I. Jackson, D. B. Jaffe, L. S. Johnson,
M. Jones, T. A. Jones, A. Joy, M. Kamal, E. K. Karlsson, et al. Initial sequencing
and comparative analysis of the mouse genome. Nature, 420(6915):520–62, 2002.

100

