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ABSTRACT
Acoustic sensing on smartphones has gained extensive at-
tention from both industry and research communities. Prior
studies suffer from one fundamental limit, i.e., audio sam-
pling rates on smartphones are constrained at 48 𝑘𝐻𝑧. In
this work, we present PowerPhone, a software reconfigura-
tion to support higher sampling rates on both microphones
and speakers of smartphones. We reverse-engineered more
than 100 smartphones and found that their sampling rates
can be reconfigured to 192 𝑘𝐻𝑧. We conducted benchmark
experiments and showcased field studies to demonstrate the
unleashed sensing capability using our reconfigured smart-
phones. First, we improve the sensing resolution from 7 𝑐𝑚
to 1 𝑐𝑚 and enable multi-finger gesture recognition on smart-
phones. Second, we push the sensing granularity of subtle
movements to 2 `𝑚 and show the feasibility of turning the
smartphone into a micrometer-level machine vibration me-
ter. Third, we increase the sensing range to 6𝑚 and showcase
room-scale human presence detection using a smartphone.
Finally, we demonstrate that PowerPhone can enable new
applications that were previously infeasible. Specifically, we
can detect the home appliance status by analyzing ultra-
sonic leakages above 24 𝑘𝐻𝑧 from the wireless charger while
charging a smartphone. Our open-source artifacts can be
found at: https://powerphone.github.io.
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1 INTRODUCTION
Smartphones have become the most popular device world-
wide over the past decade. Statistics show that the number
of smartphone subscriptions has reached 6.65 billion in 2022,
which equals to around 84% of the global population [66].
Besides the traditional use for communication and enter-
tainment, research communities and manufacturers have
devoted a tremendous amount of efforts to bringing more
intelligence to smartphones to enrich people’s daily lives.

Wireless sensing technologies have been at the forefront
of such research and development efforts [40, 67, 70, 79, 89].
Wireless sensing offers unique advantages to sense humans
and environments in a contact-free manner, which makes it
attractive for many real-life applications, such as vital sign
monitoring [40, 57, 65, 83], in-air gesture control [34, 76],
material sensing [11, 29], passive localization[1, 32, 72], etc.

Various types of wireless signals have been investigated
for sensing on smartphones, including UWB signals [86],
Wi-Fi signals [40, 83], and acoustic signals [33, 35, 45, 67].
Among these, acoustic signals are the most extensively stud-
ied sensing modality, owning to the ubiquitousness of speak-
ers and microphones in smartphones. On the other hand,
other modalities require dedicated modules, such as special-
ized Wi-Fi chips [64], which are not readily available in most
smartphones. Another notable advantage of acoustic sensing
includes that acoustic signals have a much lower propaga-
tion speed in the air (i.e., 340 𝑚/𝑠) compared to electromag-
netic signals (i.e., 3 × 108 𝑚/𝑠), which therefore supports
superior sensing granularity. For example, prior studies have
demonstrated a sub-millimeter granularity, enabling acoustic
sensing to support applications like fine-grained heartbeat
monitoring [57, 87] and eye blink motion detection [38].

https://powerphone.github.io
https://doi.org/10.1145/3570361.3613270
https://doi.org/10.1145/3570361.3613270
https://doi.org/10.1145/3570361.3613270


ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Shirui Cao∗, Dong Li∗, Sunghoon Ivan Lee†, Jie Xiong†

However, although promising, there is a fundamental lim-
itation associated with acoustic sensing on smartphones,
which is imposed by the sampling rates of the built-in analog-
to-digital converter (ADC) of microphones and digital-to-
analog converter (DAC) of speakers. The sampling rate of
audio recording in most commodity smartphones is 48 𝑘𝐻𝑧,
whereas that of playing often varies between 44.1𝑘𝐻𝑧 and
48𝑘𝐻𝑧. While these sampling rates are sufficient for phone
calls and music playing—because the human hearing range
is below 20 𝑘𝐻𝑧—they become the major barrier hamper-
ing the performance of acoustics sensing in almost every
aspect, including sensing resolution, granularity, range, and
applicability. In the following, we provide technical details
on the limitations of the current sampling rates and poten-
tial opportunities for sensing if the sample rates could be
increased.

• Sensing resolution. Sensing resolution is the mini-
mum distance between two objects where they can be
separated, i.e., sensed as two objects rather than one. It
is a function of signal bandwidth [34]. Since acoustic
sensing adopts inaudible signals (i.e., ≥ 18 𝑘𝐻𝑧) to
avoid audible sound pollution and the recording sam-
pling rate is limited to 48 𝑘𝐻𝑧, only a narrow 4 𝑘𝐻𝑧 fre-
quency band between 18 𝑘𝐻𝑧 and 22 𝑘𝐻𝑧1 is available
for sensing in accordance with the Nyquist theorem.
This small bandwidth limits the distance resolution
and, accordingly, the capability of multi-target sens-
ing. For example, a 4 𝑘𝐻𝑧 bandwidth cannot separate
two close-by objects such as two fingers. Therefore,
a higher sampling rate can yield a larger signal band-
width, and thus, improve sensing resolution.

• Sensing granularity. Sensing granularity represents
the minimum distance change of a target the device
is capable of detecting. Phase change is the most com-
monly utilized information to calculate fine-grained
target displacement and therefore the minimum de-
tectable phase change determines the sensing gran-
ularity. Signals of a smaller wavelength, or equiva-
lently, a higher central frequency, lead to a larger phase
change for the same target displacement. Limited by
the current recording and playing sampling rates on
smartphones, the widely adopted central frequency is
around 20 𝑘𝐻𝑧. A higher sampling rate could support a
higher central frequency, and thus, a finer granularity.

• Sensing range. Sensing range represents the maxi-
mum distance at which the smartphone can detect the
target objects with acceptable accuracy (i.e., application-
dependent accuracy). The range of acoustic sensing,
in general, is known to be much smaller than other
sensing modalities, such as WiFi [85] and LoRa [80].

1Note that 22 𝑘𝐻𝑧−24 𝑘𝐻𝑧 is avoided due to low-frequency responses [70].

For a small target that reflects weaker signals, this is-
sue becomes even more severe. The sensing range is
positively proportional to the number of signal sam-
ples within a unit time interval [35]. Hence, a higher
sampling rate can increase the sensing range.

• Applicability. Ultrasound above 24 𝑘𝐻𝑧 is ubiquitous
in real life [4, 28, 50, 63]. For example, our daily ac-
tivities can generate not only audible sound but also
ultrasound [28]. Furthermore, some animals can pro-
duce ultrasound for communication [50]. A 48 𝑘𝐻𝑧
sampling rate only allows us to record sound below
24 𝑘𝐻𝑧. Increasing the sampling rate can make the
smartphone hear the vast amount of ultrasound in the
surrounding environment, which significantly extends
the applicability of acoustic sensing on smartphones.

In this paper, we ask the following question: Can we break
the acoustic sampling rate limits of a smartphone, so as to
unleash its hidden acoustic sensing capability? To answer this
question, we performed an in-depth analysis of the audio
hardware in commodity smartphones to study the feasibility
of increasing the sampling rates. We found that the key hard-
ware component determining the sampling rate capability—
i.e., the audio codec chip [84]—is actually capable of support-
ing higher sampling rates. The mainstream audio codec chips,
such as Cirrus Logic CS47L90 [20], HiSilicon Hi6405 [44],
and Qualcomm WCD9375 [24], can all support a record-
ing sampling rate of 192 𝑘𝐻𝑧. Meanwhile, the mainstream
speaker amplifiers, such as Cirrus Logic CS35L41 [19], Texas
Instrument TAS2562 [27], and Qualcomm WSA8815 [23], can
all support a playing sampling rate of 96 𝑘𝐻𝑧 or 192 𝑘𝐻𝑧.
However, as human voices are below 8 𝑘𝐻𝑧 and human ears
cannot perceive the difference between sampling rates be-
yond 48 𝑘𝐻𝑧 [58], the smartphone manufacturers choose
to deliberately limit the audio sampling rate at 48 𝑘𝐻𝑧 to
reduce the computational and storage costs, which buries
the true sensing capability of smartphones.

Unfortunately, the revitalization of hidden high sampling
rates on smartphones is challenging. The first challenge is
that the electronic schematics of a smartphone are propri-
etary, and thus, the detailed hardware implementation is a
“black box”. Although the audio codec chip can sample at a
higher rate, the chip alone cannot enable high sampling rates.
Multiple hardware components, including the codec, speaker
amplifier, Inter-Integrated Circuit (I2C) bus, System on Chip
(SoC), and Direct Memory Access (DMA) controller, need to
be configured collectively to enable high sampling rates. It is
difficult to make such configurations without knowing the
internal hardware structure of a smartphone.

To address it, we reverse-engineered more than 100 smart-
phones by investigating the Device Tree (DT) [30], a descrip-
tion of hardware that is readable by Linux-based operation
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systems (e.g., Android), to infer the general structure of the
audio hardware components in commodity smartphones.
Then, in the kernel driver, we configured the codec’s regis-
ters through the I2C bus. We also tuned the clock generator
inside the smartphone’s SoC to supply the correct leader
clocks to the codec chip. We further modified the transfer
size of the SoC’s DMA controller to have more room allo-
cated for receiving 192 𝑘𝐻𝑧 audio data.

However, even with the correct configuration of the hard-
ware drivers, the sampling rate at the user-level APIs [51]
remained at 48 𝑘𝐻𝑧. This indicates that the sampling rates
are not only determined by hardware drivers but also affected
by the operation system, which seemingly down-samples the
audio data to predetermined rates. We need to further under-
stand the architecture of the operating system to make sure
that the high sample rates supported by the hardware com-
ponents can be successfully transferred to user-level APIs.
Here the second challenge comes in. The operating system
on smartphones involves multiple layers, including the Linux
kernel layer, hardware abstraction layer (HAL), system ser-
vice layer, and user layer. To figure out the root cause of the
problem, we need to attain access to the intermediate output
of each layer. To achieve this, we performed layer-by-layer
analysis by replacing the stock OS with open-sourced op-
erating systems on smartphones, which grants us access to
different layers. Specifically, we first re-flashed the system
to Ubuntu Touch OS [16] to access output from the kernel
layer and the hardware abstraction layer. We then built and
installed the Lineage Android OS [41] to access the output of
the system service layers. Through layer-based analysis, we
were able to identify that the system service layer was the
source of the problem that down-samples the audio stream
from the hardware abstraction layer. We, therefore, modified
the corresponding parameters in the configuration files for
the system service layer to disable the down-sampling.

Through a deep understanding of the interconnections
between hardware components, drivers, and the operating
system, we successfully increased both the recording and
playing sampling rate of the smartphone from the conven-
tional 48 𝑘𝐻𝑧 to the unprecedented 192 𝑘𝐻𝑧. To demonstrate
the unleashed sensing capabilities, we show that (i) the sens-
ing performance (i.e., resolution, granularity, and range) can
be significantly improved compared to the state-of-the-arts
and (ii) new applications, which would be otherwise impos-
sible with the current sample rates, can be realized. More
specifically, we demonstrate (i) the improved performance
based on three representative acoustic sensing applications,
i.e., multi-figure gesture recognition, machine vibration sens-
ing, and human presence detection; and (ii) the feasibility of
realizing new sensing applications, i.e., detecting the home
appliance status by analyzing ultrasound leakages higher

𝒓

Ground truth ranges

(a) 𝐵 = 4 𝑘𝐻𝑧
𝑟 = 8 𝑐𝑚.

𝒓

Ground truth ranges

(b) 𝐵 = 4 𝑘𝐻𝑧
𝑟 = 2 𝑐𝑚.

Ground truth ranges

𝒓

(c) 𝐵 = 78 𝑘𝐻𝑧
𝑟 = 2 𝑐𝑚.

Figure 1: When the bandwidth 𝐵 equals to 4 𝑘𝐻𝑧, (a) two
objects are resolvable if the range difference between
them 𝐷 is large than the range resolution 4.25 𝑐𝑚. (b)
They become unresolvable if the range difference is
reduced. (c) Increasing the bandwidth can decrease the
range resolution, making two objects resolvable.
than 24 𝑘𝐻𝑧. To summarize, this paper makes the following
contributions:

• We successfully increase the sampling rates of the
played and recorded acoustic signals on smartphones
to 192 𝑘𝐻𝑧. To the best of our knowledge, we are the
first team to enable both 192 𝑘𝐻𝑧 playing and record-
ing sampling rates on smartphones. We believe our
findings could revolutionize acoustic sensing research
by not only significantly improving the performance
of existing acoustic sensing applications but also open-
ing up new research directions and realizing novel
sensing applications that were previously infeasible.

• We analyze more than 100 smartphones from 10 dif-
ferent manufacturers and find that they could be re-
configured to record at 192 𝑘𝐻𝑧. We use four different
smartphones to show the generalizability of our re-
configuration process. Our detailed implementation,
source codes, and compiled system images have been
released to the public on GitHub.

• We employ representative sensing applications to show
performance improvements. In terms of sensing res-
olution, we successfully realized multi-finger gesture
recognition on smartphones, which was a very hard
task previously. In terms of sensing granularity, we
were capable of accurately measuring micrometer-
level machine vibration on smartphones. In terms of
sensing range, we increased the sensing range of hu-
man presence detection from 2𝑚 to 6𝑚 using smart-
phones.2 We further show that a higher sampling rate
provides us the unprecedented opportunity to enable
new sensing applications on smartphones such as in-
ferring the home appliance status leveraging the high-
frequency ultrasound leakages.

2Note that the sensing range for smartphones is smaller than that for stan-
dalone speakers due to the lower transmission power. For example, heartbeat
monitoring using a smartphone can achieve a 0.3 𝑚 sensing range [57]
while a 1.2𝑚 sensing range can be achieved using a 6𝑊 speaker [87].

https://github.com/PowerPhone
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Ground truthEstimation

(a) 𝑓𝑐 = 20 𝑘𝐻𝑧
Δ𝑑 = 1𝑚𝑚.

Ground truthEstimation

(b) 𝑓𝑐 = 20 𝑘𝐻𝑧
Δ𝑑 = 0.1𝑚𝑚.

Ground truthEstimation

(c) 𝑓𝑐 = 60 𝑘𝐻𝑧
Δ𝑑 = 0.1𝑚𝑚.

Figure 2: When the central frequency 𝑓𝑐 is 20 𝑘𝐻𝑧, (a)
we can accurately estimate a displacement of 1 mm. (b)
The estimate becomes erroneous when the displace-
ment decreases to 0.1 𝑚𝑚. (c) Increasing the central
frequency improves the sensing accuracy.

2 PRELIMINARIES
This section presents the theoretical foundation of acoustic
sensing to understand why increasing sampling rates can
unleash the sensing capability on commodity smartphones.

2.1 Sensing Resolution
Sensing resolution is an important metric in distinguishing
and sensing multiple objects [34, 81]. Sensing resolution rep-
resents the minimum distance between two nearby targets
the smartphone can distinguish. A finer sensing resolution
can also improve the smartphone’s capability to distinguish a
target from a nearby interferer. Fundamentally, sensing reso-
lution Δ𝑟𝑚𝑖𝑛 is inversely proportional to the signal frequency
bandwidth 𝐵 [34, 46, 87]:

Δ𝑟𝑚𝑖𝑛 =
𝑐

2𝐵 , (1)

where 𝑐 is the sound propagation speed in the air. Studies on
smartphones to date have only adopted a narrow 4 𝑘𝐻𝑧 band
between 18 𝑘𝐻𝑧 and 22 𝑘𝐻𝑧 for sensing, which provides us
a limited sensing resolution of 4.25 𝑐𝑚 [34, 70, 87].

Consider an example where two objects are separated with
a distance of 𝑟 . As shown in Figure 1a, when the distance
between two objects (i.e., 𝑟 = 8 𝑐𝑚) is larger than the sensing
resolution (i.e., Δ𝑟𝑚𝑖𝑛 = 4.25 𝑐𝑚) supported by 𝐵 = 4 𝑘𝐻𝑧,
we can clearly identify two peaks, indicating that the two
objects are resolvable. However, as shown in Figure 1b, when
𝑟 is set to 2 𝑐𝑚, which is smaller than the resolution, two
peaks are merged into one, and thus, the two objects become
unresolvable. If the smartphone can support a sampling rate
of 192 𝑘𝐻𝑧, in theory, this bandwidth (i.e., from 18 𝑘𝐻𝑧
to 96 𝑘𝐻𝑧) yields a finer sensing resolution of 0.22 𝑐𝑚. As
shown in Figure 1c, the two objects can be easily resolved
with the increased sampling rate. This example shows that
an increased sampling rate supports an improved ability to
distinguish multiple objects and also an improved accuracy.

Ground truth range

(a) 𝐹𝑠 = 48 𝑘𝐻𝑧
𝑅 = 1𝑚.

Ground truth range

(b) 𝐹𝑠 = 48 𝑘𝐻𝑧
𝑅 = 5𝑚.

Ground truth range

(c) 𝐹𝑠 = 192 𝑘𝐻𝑧
𝑅 = 5𝑚.

Figure 3: When the sampling rate 𝐹𝑠 is 48 𝑘𝐻𝑧, (a) we
can accurately estimate the range for a target 1 m away.
(b) The range estimate is inaccurate if the distance is
increased to 5𝑚. (c) Increasing the sampling rate can
improve the sensing accuracy for far-away target.

2.2 Sensing Granularity
Sensing granularity indicates a minimal change in the dis-
tance of a moving object that the smartphone can detect,
an important functionality for fine-grained activity sens-
ing [38, 76]. With a finer sensing granularity, the smartphone
can capture smaller target displacements. Fundamentally,
sensing granularity Δ𝑑 is inversely proportional to the cen-
tral frequency 𝑓𝑐 [76]:

Δ𝑑𝑚𝑖𝑛 ∝ 𝑐Δ𝜑

4𝜋 𝑓𝑐
, (2)

where 𝑐 is the sound propagation speed in the air, and Δ𝜑
represents the phase change caused by the movement. Given
that Δ𝜑 is proportional to the amount of target displacement,
Equation (2) shows that, for the same amount of movements
(i.e., phase change Δ𝜑), the granularity is inversely propor-
tional to 𝑓𝑐 . A higher sampling rate could support a higher
𝑓𝑐 and thus, a finer granularity.

Consider an example where a target moves towards and
away from the smartphone with a displacement of Δ𝑑 . As
shown in Figure 2a and Figure 2b, if we adopt a sensing
signal with a central frequency of 20 𝑘𝐻𝑧, the estimated dis-
placement is accurate when the displacement is Δ𝑑 = 1𝑚𝑚
but erroneous when the displacement is Δ𝑑 = 0.1 𝑚𝑚. If the
smartphone is able to support a sampling rate of 192 𝑘𝐻𝑧,
which allows us to adopt a higher central frequency (e.g.,
𝑓𝑐 = 60 𝑘𝐻𝑧) for sensing, as shown in Figure 2c, the small
displacement of Δ𝑑 = 0.1 𝑚𝑚 can be accurately estimated.
This example demonstrates that the increased sampling rate
can boost the sensing granularity of acoustic signals on com-
modity smartphones.

2.3 Sensing Range
Sensing range represents the maximum distance at which the
smartphone can still sense a target at an acceptable accuracy.
Basically, the sensing range 𝑅𝑚𝑎𝑥 is determined by:

𝑅𝑚𝑎𝑥 ∝ [ · 𝐹𝑠 , (3)
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where [ and 𝐹𝑠 are the SNR and sampling rate of the received
signal, respectively [3, 35]. Thus, for a given SNR, a higher
sampling rate can result in an increased sensing range.

Consider an example where the distance between the tar-
get and the smartphone is denoted as 𝑅. Figure 3a shows that,
with a sensing signal sampled at 48 𝑘𝐻𝑧, we can accurately
detect a target object when the distance 𝑅 is 1𝑚. However,
when 𝑅 is increased to 5𝑚, the received signal is no longer
able to sense the target due to the significantly reduced SNR,
as shown in Figure 3b. When the sampling rate is increased
to 192 𝑘𝐻𝑧, we can again sense the target at 5𝑚, as shown
in Figure 3c. This example shows that increasing sampling
rate can yield an increased sensing range of acoustic signals
on smartphones.

2.4 Applicability
Although we are not able to hear ultrasound, it exists ubiq-
uitously around us in real life [4, 28, 50, 63]. These signals
contain important information that could be extracted to
support a variety of applications. For example, our daily
activities generate not only audible sound but also inaudi-
ble ultrasound, which can be utilized to perform privacy-
preserving daily activity recognition [28]. However, since
commodity smartphones can only support a sampling rate of
48 𝑘𝐻𝑧, they cannot hear most of the ultrasound whose fre-
quency is above 24 𝑘𝐻𝑧. Increasing the recording sampling
rate can enable the hearing of a broad frequency spectrum of
the ultrasound, which may significantly extend the sensing
applicability on commodity smartphones.

In this paper, we demonstrate that increasing sampling
rates of acoustic signals can enable new applications that
would be otherwise impossible. For example, the wireless
charger of a smartphone can leak ultrasound caused by home
appliances in the same house. The leaked ultrasound can
then be captured to infer the status of home appliances.

3 UNLEASHING THE POWER OF HIGH
SAMPLING RATE ON SMARTPHONES

This section describes how to increase the sampling rate on
Android smartphones. We first analyze the Linux device tree
to obtain the hardware structure. Then we analyze the feasi-
bility of enabling higher sampling rates by investigating bot-
tlenecks within the hardware structure. Next, we discuss the
technical details of reconfiguring the kernel driver and media
service to unleash higher sampling rates. Finally, we verify
the success of increasing the sampling rates by measuring
the frequency responses of the reconfigured smartphones.

3.1 Analyzing Hardware Structure
The electronic schematics of a smartphone are proprietary
and are not available to the public. The inaccessibility to

atoll-wcd937x-idp-audio-overlay.dtsi

#include "atoll-audio-overlay.dtsi"

atoll-audio-overlay.dtsi

clock-names = "tx_core_clk", "tx_npl_clk";
swr2: tx_swr_master {

compatible = "qcom,swr-mstr";
wcd937x_tx_slave: wcd937x-tx-slave {...};

};

joyeuse-atoll-ab-idp-overlay.dts

#include "cust-atoll-idp.dtsi"
#include "atoll-wcd937x-idp-audio-overlay.dtsi"

① ②

cust-atoll-idp.dtsi

&qupv3_se9_i2c {
tas2562@4c {

compatible = "ti,tas2562";
/* 0, i2S; 1, DSP; */
ti,asi-format = <0>;

};
};

Figure 4: The DTO for the Redmi Note 9 Pro. We
can identify that i) Qualcomm WCD9375 audio codec
is present on SoundWire bus; ii) Texas Instruments
TAS2562 speaker amplifier is present on an I2C bus,
with an I2S datalink to the SoC.

schematics makes smartphones a “black box” to us. While
we can confirm that the audio codec chips support a sampling
rate of 192 𝑘𝐻𝑧 based on the datasheet, to reconfigure the
sampling rate, we must have access to the smartphone’s
programming port. But having a “black box” implies that
there could be two possible hardware topologies: i) the codec-
controlling logic is running on a sub-system inside a co-
processor, whose programming port is inaccessible without
hardware modification, or ii) the codec is connected and
controlled directly from the System-on-Chip (SoC), which we
can re-program through USB port. Therefore, understanding
the hardware structure is the starting point and the first
challenge for our reconfiguration process.

We leverage the Device Tree (DT) of smartphones, a data
structure and language for describing hardware [30], to ana-
lyze their hardware structure. Thanks to Linux’s GNU public
license, smartphone manufacturers have the obligation to
open-source their Linux kernels, giving us access to the de-
vice tree of their smartphones. The DT consists of files writ-
ten in a tree structure describing hardware resources, such
as peripherals and data buses. In practice, DT is maintained
by SoC manufacturers (e.g., Qualcomm and Samsung), while
smartphone manufacturers (e.g. Xiaomi and Google) specify
the smartphone’s hardware connections in a DT Overlay
(DTO) [54]. Therefore, by looking through the DTO, we can
infer the hardware structure inside smartphones.

Figure 4 shows the process of finding audio hardware
connections through DTO on Xiaomi Redmi Note 9 Pro.
The root of DTO is joyeuse-atoll-ab-idp-overlay.dts,
where “joyeuse” is the code name of the smartphone, and
“atoll” is the code name of Qualcomm Snapdragon 720G SoC.
From this DTO, we can find two key audio integrated circuits
(ICs): Qualcomm WCD9375 codec for recording [24] and
Texas Instruments TAS2562 speaker amplifier [27], which
can support 192 𝑘𝐻𝑧 recording and 96 𝑘𝐻𝑧 playing sampling
rates, respectively. Furthermore, we can find that TAS2562
comes with a built-in DAC, which accepts digital signal input
through an Inter-IC Sound (I2S) bus from the SoC. We can
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Figure 5: Audio hardware structure of smartphones.

also find that TAS2562 is controlled by the SoC through the
I2C bus. For the WCD9375 codec, we know both data and
control signals are sent from the SoC through the Sound-
Wire bus [22]. Since both of the key ICs are controlled and
connected directly to the SoC, we can confirm that the codec-
controlling logic is running on the SoC, and it is possible to
reconfigure the sampling rates through the USB port.

Figure 5 summarizes the audio hardware structure based
on the analysis of more than 100 smartphones from 10 dif-
ferent manufacturers using the above-mentioned procedure.
The SoC is the “heart” of a smartphone, controlling both the
codec and speaker amplifier through I2C or Serial Peripheral
Interface (SPI). Amplifiers are digital-input based, accepting
Pulse-Code Modulation (PCM) signals from the SoC through
I2S, Time-Division Multiplexing (TDM), SoundWire [22], or
SLIMbus [21]. Such buses are also used for data exchange
between the codec and SoC. Depending on implementations,
the digital audio signal sent to the amplifier can be from ei-
ther the SoC or codec. For recording, most smartphones use
Analog-Output Microphones. Some smartphones use Digital-
Output Microphones which have built-in ΔΣ ADC capable of
outputting Pulse-Density Modulation (PDM) signals. Mod-
ern audio codecs are capable of receiving both analog or
PDM signals and converting them into PCM signals. The
audio codec and speaker amplifier are not necessarily dedi-
cated ICs. Sometimes, a dedicated audio codec or amplifier
IC is not used, but they are integrated into another IC.

Note that some smartphones may claim to support 192𝑘𝐻𝑧
recording sampling rates. However, to the best of our knowl-
edge, none of the smartphones on the market support 192𝑘𝐻𝑧
sampling rates on their built-in speakers/microphones with
their stock OS. We tried many smartphones in our study
including the latest “flagships” such as Samsung Galaxy S23
Ultra, Google Pixel 7 Pro, and Xiaomi Mi13 Pro. Even though
the smartphones’ specifications mention that they support
192 𝑘𝐻𝑧 recording, achieving it still requires the use of a
USB port, along with an external codec and microphone.

3.2 Analyzing Hardware Components
This section investigates whether the important components
in audio hardware can support higher sampling rates.

3.2.1 Digital Buses. Digital buses, such as I2S, TDM, Sound-
Wire and SLIMbus, are all single-data-rate, serial data bus
designed to communicate PCM-encoded audio signals. Such
buses all have a dedicated wire for bit-clock. In smartphones,

SoC is the “clock-leader”, implying that the bit-clock is gen-
erated by the SoC. On the other hand, the codec or ampli-
fier serves as “clock-followers”. Therefore, the speed of the
bit clock determines the upper bound of the bus’ bit rate.
To enable a higher sampling rate, we need to ensure the
bit clock can be correctly generated and transmitted. For a
typical 192 𝑘𝐻𝑧/16 𝑏𝑖𝑡 stereo audio stream, the bit clock is
192 𝑘𝐻𝑧 × 16 𝑏𝑖𝑡 × 2 Channels = 6.144 𝑀𝐻𝑧, which can be
easily generated by the Phase-Locked Loop (PLL) and clock
divider inside the SoC. Note that such clock means a data
rate of 6.144 𝑀𝑏𝑝𝑠 . As a comparison, a typical 1080𝑃/25 FPS
video stream has a raw data rate of 1.24416 𝐺𝑏𝑝𝑠 , implying
that the increased sampling rates pose negligible computa-
tional overhead on smartphones.

3.2.2 Microphones. Nowadays commodity smartphones use
Micro-Electro-Mechanical System (MEMS) capacitive micro-
phones due to their small sizes and low costs. Although most
commercial MEMS microphones do not specify ultrasonic fre-
quency response in their datasheets, the working principle of
the MEMS microphones does not limit their ability to record
ultrasonic sound [61]. In fact, the SNR of some MEMS micro-
phones tends to become larger when the sound frequency is
higher [14]. Thus, the microphones on smartphones support
receiving high-frequency sound. Our frequency response
measurements in Section 3.4 also confirm this.

3.2.3 Speakers. Speaker modules in smartphones can be
considered as hornless, closed-box, and small-diaphragm
loudspeakers. For such a type of loudspeaker, the power 𝑃
emitted by diaphragm is given by [59]:

𝑃 = 𝜌
𝑆2 (2𝜋 𝑓 )4𝑋 2

2𝜋𝑐 , (4)

where 𝜌, 𝑆, 𝑓 , 𝑋, 𝑐 are the density of air, area of the diaphragm,
sound frequency, diaphragm displacement, and sound speed,
respectively. Based on Equation (4), to send the sound of
higher frequency 𝑓 with the same power 𝑃 , the area of di-
aphragm 𝑆 must be smaller. Since the speaker diaphragms
inside smartphones are small, they have the potential to
generate ultrasonic bands. However, as speakers in modern
smartphones are not designed for ultrasonic sound, ultra-
sound transmission may damage the speaker. Fortunately,
the codec and SoC in smartphones are equipped with a
speaker protection algorithm that continuously monitors
the estimated speaker temperature and adjusts the power
accordingly to protect the speaker from potential damage.

3.2.4 Audio Codec and Amplifier. As mentioned in Section
3.1, modern smartphones do not have dedicated ADC or
DAC chips for audio. Instead, the ADC is integrated into
the audio codec or microphone, and the DAC is integrated
into the speaker amplifier. The ADC inside the audio codec
or microphone is ΔΣ ADC which is usually oversampled
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Table 1: List of RX and TX capabilities for the off-the-shelf smartphones.

Brand Lineup # of Models Audio Codec RX 𝑓𝑠 Speaker Amplifier TX 𝑓𝑠
Google Pixel 4 1 Knowles IA8505 192 𝑘𝐻𝑧 Cirrus Logic CS35L36 384 𝑘𝐻𝑧
Google Pixel 4a/5/5a 3 Realtek RT5514 192 𝑘𝐻𝑧 Cirrus Logic CS35L41 192 𝑘𝐻𝑧

Samsung Galaxy S21 lineup (Exynos) 4 Exynos 2100 (integrated) 384 𝑘𝐻𝑧 Cirrus Logic CS35L41 192 𝑘𝐻𝑧
Samsung Galaxy A50 lineup 2 Exynos 9610 (integrated) 384 𝑘𝐻𝑧 Cirrus Logic CS35L41 192 𝑘𝐻𝑧
Samsung Galaxy A10/A20/A30/A40 lineup 10 Samsung COD3035x 192 𝑘𝐻𝑧 Silicon Mitus SMA1301 192 𝑘𝐻𝑧
Samsung Galaxy S9 lineup (Snapdragon) 2 Qualcomm WCD9341 192 𝑘𝐻𝑧 Maxim MAX98512 192 𝑘𝐻𝑧
Samsung Galaxy S10 lineup (Exynos) 5 Cirrus Logic CS47L93 192 𝑘𝐻𝑧 Cirrus Logic CS35L40 192 𝑘𝐻𝑧
Xiaomi Redmi K40 lineup 4 Qualcomm WCD9380 192 𝑘𝐻𝑧 Cirrus Logic CS35L41 192 𝑘𝐻𝑧
Xiaomi Mi 9/10/11/12/13 lineup 24 Qualcomm WCD93xx 192 𝑘𝐻𝑧 Cirrus Logic CS35L41 192 𝑘𝐻𝑧
Xiaomi Redmi Note 8/8T/9Pro lineup 3 Qualcomm WCD937x 192 𝑘𝐻𝑧 TI TAS2562 96 𝑘𝐻𝑧
Huawei P40 lineup 3 HiSilicon Hi6405 384 𝑘𝐻𝑧 TI TAS2564 192 𝑘𝐻𝑧
Huawei Mate20/30/40, P30, Nova6/7 lineup 24 HiSilicon Hi6xxx series 192 𝑘𝐻𝑧 NXP TFA9874 96 𝑘𝐻𝑧
ASUS Zenfone 9 1 Qualcomm WCD9380 192 𝑘𝐻𝑧 Qualcomm WSA8835 384 𝑘𝐻𝑧

Motorola Edge (2020) 1 Cirrus Logic CS47L35 192 𝑘𝐻𝑧 Cirrus Logic CS35L41 192 𝑘𝐻𝑧
Sony Xperia 1/5 II/III, Xperia 10 lineup 6 Qualcomm WCD93xx 192 𝑘𝐻𝑧 Cirrus Logic CS35L41 192 𝑘𝐻𝑧
Vivo iQOO Neo3 5G 1 Qualcomm WCD9341 192 𝑘𝐻𝑧 Maxim MAX98928 48 𝑘𝐻𝑧

OnePlus OnePlus 6 lineup 2 Qualcomm WCD9341 192 𝑘𝐻𝑧 Maxim MAX98928 48 𝑘𝐻𝑧
OnePlus OnePlus 9 lineup 3 Qualcomm WCD9385 192 𝑘𝐻𝑧 NXP TFA98xx series 48 𝑘𝐻𝑧

Oppo Realme X50 lineup 4 Qualcomm WCD9385 192 𝑘𝐻𝑧 NXP TFA98xx series 48 𝑘𝐻𝑧

1

Driver Layer HAL Service Layer User Layer

Figure 6: The results for layer-by-layer analysis.

at a few megahertzs. Usage of such ADC leads to a much
higher cut-off frequency of the anti-aliasing filter. Therefore,
the anti-aliasing filter does not limit the acoustic frequency
response. Instead, the audio codec and speaker amplifier
determine the upper limit of the sampling rate. Table 1 sum-
marizes the maximum recording and playing sampling rates
of more than 100 off-the-shelf smartphones, obtained by ana-
lyzing and reverse-engineering their DTOs. These sampling
rates were obtained from the ICs’ datasheets, if available. In
case the datasheets are not open to public access, we inferred
the maximum sampling rates from their Linux drivers, which
are open-sourced by the chip manufacturers. Note that Ta-
ble 1 shows smartphones in “lineup”. For example, Samsung
Galaxy S9 lineup contains two different smartphones (S9,
S9+) as they all use the same audio hardware.

3.3 Reconfiguring the Operation System to
Support Higher Sampling Rates

This section presents the methods to reconfigure the smart-
phones’ OS to support higher sampling rates without any
hardware modification or adding additional modules. We
use Redmi Note 9 Pro as an example smartphone, and the
process could be generically applied to other smartphones.

Android OS has four layers—i.e., i) the Linux Kernel Dri-
ver Layer, ii) Hardware Abstraction Layer (HAL), iii) System

Service Layer, and iv) User Layer. The Linux Kernel Layer
contains device drivers and is open-sourced. The Hardware
Abstraction Layer is an interface that serves as a bridge
between drivers and the Android system. Smartphone man-
ufacturers implement the HAL in binary forms, and thus, its
source is proprietary. The System Service Layer is where the
Android OS performs audio mixing and routing. Finally, the
User Layer is the layer that smartphone app developers can
access to interact with the audio devices. To unleash the hid-
den sampling rates, we need to reconfigure the smartphone
layer by layer. We begin the reconfiguration process from
the drivers in the Linux Kernel Layer. Drivers run on the
SoC and interact directly with the SoC’s hardware resources,
such as buses, clocks, and DMA. In terms of audio recording
and playing, SoC drivers are responsible for three tasks: i)
initialization of the buses and clocks so that the SoC can
communicate with codec and amplifier; ii) sending control
signals to the peripherals (e.g., codecs and amplifiers); and iii)
establishment of a data stream through the DMA so that the
digital audio data can flow between the SoC and peripherals.
The driver source code needs to be reconfigured to cope with
the increased sampling rates for each of these tasks.

We first change the clock of the audio data bus. As men-
tioned in Section 3.2.1, all types of audio data buses have
a dedicated bit-clock, which is generated by the SoC and
followed by the peripherals. The new clock could be gener-
ated by the drivers of PPLs within the SoC. Then, we mod-
ify the configurations of the codecs and amplifiers via I2S
and SPI. Most audio codecs and amplifiers in modern smart-
phones have automatic sampling rate detection functionality.
In some smartphones, this functionality is disabled in the dri-
ver with hard-coded sampling rates. In such cases, we need
to revise the source code to enable automatic sampling rate
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Figure 7: Frequency responses after reconfiguration.

detection. We then configure the SoC to send and receive
audio data through DMA at the correct bit rate, which could
be achieved by simply allocating more memory to DMA and
updating the parameters of DMA-controller accordingly.

After the above procedures, the recorded audio data ob-
tained by Android API [51] is still sampled at 48 𝑘𝐻𝑧, and the
played audio does not contain the information above 24 𝑘𝐻𝑧,
indicating a down-sampling happens inside the operating
system (OS). For debugging, we need to retrieve the audio
data from different layers of the OS, which is not trivial. The
stock OS has restricted accessing policies, prohibiting any
application, including debugger, to access information below
the user layer. To obtain audio data from different layers, we
replaced the stock system with two different OSs. We first
install Ubuntu Touch [16] OS on top of the modified kernel.
Ubuntu Touch OS allows us to get the audio data from the
Hardware Abstraction Layer. Then, we build Lineage An-
droid distribution [41] from source codes. Since such OS is
built by ourselves, many debugging functionalities are avail-
able. Specifically, we can obtain the input and output of the
AudioFlinger service [52, 56] in the System Service Layer. As
shown in Figure 6, through such layer-by-layer analysis, we
know that Hardware Abstraction Layer does not change the
sampling rate, but the AudioFlinger service down-samples
the audio. To change AudioFlinger’s behaviors, we modified
its configuration files and rebuilt the OS.

We believe the above reconfiguration can be adopted by
smartphone manufacturers smoothly in their software devel-
opment. While it is true that different smartphones may cur-
rently have varying hardware components, vendor kernels,
and OS images, advances in software engineering have sim-
plified the process of enabling high sampling rates. Google’s
release of the Generic Kernel Image (GKI) [55] in 2021 in-
dicates that virtually all future Android smartphones will
adopt this standardized kernel, rendering the concept of “ven-
dor kernel” obsolete. Moreover, in the smartphone industry,
most Hardware Abstraction Layer (HAL) codes are provided
by System-on-Chip (SoC) vendors like Qualcomm and Medi-
aTek. These HAL codes have long supported 192 𝑘𝐻𝑧 sam-
pling rates due to the demand of the automotive industry.
The audio driver codes are provided by hardware component
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Figure 8: The illustration of the chirp signal.

vendors such as Cirrus Logic. They can easily have 192 𝑘𝐻𝑧
supported in their driver codes when chips support it.

By performing the above-mentioned reconfiguration on
kernel drivers and system services, we successfully increase
the recording sampling rate from 48 𝑘𝐻𝑧 to 192 𝑘𝐻𝑧 on
Motorola Edge (2020), Samsung Galaxy S9+ (Snapdragon),
Samsung Galaxy S10 (Exynos), and Xiaomi Redmi Note 9
Pro. Through a similar process, we also increase the playing
sampling rates. Additionally, we develop a command-line
tool that can interact with the audio kernel driver directly.

3.4 Frequency Response Measurement
After reconfiguring the smartphones to support higher play-
ing and recording sampling rates, we verify it by measuring
their frequency responses. We place the smartphone inside
an anechoic chamber. By playing a full-scale (i.e., 0 𝑑𝐵𝐹𝑆)
wide-band (i.e., 0 𝑘𝐻𝑧 to 96 𝑘𝐻𝑧) chirp signal using a flat-
response reference speaker [26], we can calculate the fre-
quency response of the audio recorded by the smartphone’s
microphone. Figure 7 shows the frequency responses of our
reconfigured smartphones. We can observe that the signal
amplitude generally decreases with frequency increase. Dur-
ing our experiment, one interesting observation is that most
microphones exhibit a high SNR at their self-resonant fre-
quency and its second-order harmonics, typically occurring
at 30 𝑘𝐻𝑧 and 60 𝑘𝐻𝑧 respectively.

4 ENHANCING SENSING CAPABILITY
We first introduce the signal processing workflow for ex-
tracting target information. Then we show the enhanced
capability of acoustic sensing on smartphones through both
benchmark experiments and field studies. The Motorola Edge
2020 smartphone is adopted as the default device.

4.1 Signal Processing Workflow
We choose chirp signal to show the sensing capability im-
provement. A similar improvement can also be obtained for
other types of signals.

As shown in Figure 8, the chirp signal transmitted by the
speaker is a sine wave whose frequency sweeps from 𝑓0 to 𝑓0+
𝐵 with a duration of𝑇 . The signal received at the microphone
is a time-delayed version of the transmitted signal. After
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Figure 9: The benchmark experiments for resolution.

multiplying the received signal with the transmitted signal
and then applying a low-pass filter, we can obtain the mixed
signal that can be denoted as [35, 74, 87]:

𝑠𝑀 (𝑡) = 1
2𝛼 cos(2𝜋 𝑓𝑑𝑡 + 𝜑𝑑 ), (5)

where 𝛼 is the signal attenuation factor. 𝑓𝑑 = 𝐵
𝑇 · 2𝑑

𝑐 con-
tains the coarse-grained distance information between the
target and smartphone, where 𝑑 is the distance and 𝑐 is the
sound propagation speed. 𝜑𝑑 = 2𝜋 𝑓0 · 2𝑑

𝑐 contains the fine-
grained target movement information. By performing Fast
Fourier Transform (FFT) on the mixed signal, we can obtain
both coarse-grained distance information and fine-grained
movement information.

4.2 Improving Sensing Resolution
We conduct experiments to show sensing resolution im-
provement, providing us with unique opportunities to en-
able multi-finger gesture recognition. Experiments using the
smartphone with the factory setting are adopted as the base-
line. Specifically, the smartphone transmits and receives a
4 𝑘𝐻𝑧-bandwidth chirp signal that sweeps from 18 𝑘𝐻𝑧 to
22 𝑘𝐻𝑧 at a sampling rate of 48 𝑘𝐻𝑧. For comparison, we
reconfigure the same smartphone to enable sampling rates
of 192 𝑘𝐻𝑧 on both transmission and reception. The chirp
signal after reconfiguration supports a bandwidth of 40 𝑘𝐻𝑧,
which sweeps from 18 𝑘𝐻𝑧 to 58 𝑘𝐻𝑧 at a sampling rate of
192 𝑘𝐻𝑧. Chirp duration is set to 20𝑚𝑠 for both settings.

4.2.1 Benchmark Experiments. To study the sensing resolu-
tion improvement, we first conduct benchmark experiments
with two finger-sized wooden boards as shown in Figure 9a.
Target 1 was put 30 𝑐𝑚 away from the smartphone. We var-
ied the distance between Target 2 and Target 1 from 1 𝑐𝑚 to
8 𝑐𝑚 at a step size of 1 𝑐𝑚. We repeated the experiment trial
of each distance 5 times, where each trial lasts for 10 𝑠 .

Figure 9b shows the resolvability for the two bandwidths,
which is defined as the ratio of the number of measurements
that successfully resolve two targets to the total number of
measurements. We find that, while the factory setting can
achieve a 100% resolvability when two targets are separated
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Figure 10: The illustration of multi-finger gestures.
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Figure 11: Confusion matrices for gesture recognition.

by 7 cm, PowerPhone pushes this resolvability to 1 𝑐𝑚. This
achieved resolution 1 𝑐𝑚 is still coarser than the theoretical
resolution 0.43 𝑐𝑚 computed using Equation (1) which we
believe might be caused by the sampling clock drift.

4.2.2 Field Study. We showcase one interesting application,
i.e., multi-finger gesture recognition, using a single pair of
speaker and microphone on the smartphone. As shown in
Figure 10a, we consider 4 different multi-finger gestures, i.e.,
Ok, Pinch, Cross, and Swap. We recruited 5 participants to
perform these gestures. In each trial, the participant was
asked to sit 0.5𝑚 away from the smartphone and raise one
of their hands to perform these finger gestures 10 times. We
repeated the experiments for 5 trials, indicating that we have
200 gesture measurements for each participant.

We adopt a simple 2D Convolution Neural Network (CNN)
to classify multi-finger gestures. Our network contains 5
layers, where the kernel size of each layer is 5×5. The channel
number for each layer is 8, 16, 32, 32, and 32, respectively.
Each layer is followed by batch normalization and a ReLU
activation function. For each finger gesture, we generate a
2D range-time spectrum image using FFT [39], as shown in
Figure 10b. Then we feed the image into the network for
training and testing. Figure 11 shows the confusion matrices
for both factory setting and PowerPhone using the leave-one-
out cross-validation method. The factory setting can only
achieve a recognition accuracy of 61% while PowerPhone
can achieve a recognition accuracy of 90.25%. Note that even
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Figure 12: The benchmark experiments for granularity.

due to the user diversity and a small dataset, PowerPhone
still achieves a reasonably high accuracy.

4.3 Boosting Sensing Granularity
Sensing granularity is very important in applications involv-
ing subtle movements such as heartbeat rate estimation and
machine vibration monitoring. In this section, we conduct
experiments on vibration sensing to show that PowerPhone
can push the boundary of sensing granularity to microme-
ter level on smartphones for the first time. For the factory-
setting experiments, the smartphone transmits and receives
chirp signals that sweep from 18 𝑘𝐻𝑧 to 22 𝑘𝐻𝑧 at a sampling
rate of 48 𝑘𝐻𝑧. For PowerPhone, we reconfigure the same
smartphone to transmit and receive chirp signals that sweep
from 58 𝑘𝐻𝑧 to 62 𝑘𝐻𝑧 at a sampling rate of 192 𝑘𝐻𝑧. The
chirp durations are set to 10𝑚𝑠 for both settings. We adopt
the relative frequency error as the evaluation metric, which
is defined as the ratio of the absolute frequency error to the
ground-truth vibration frequency.

4.3.1 Benchmark Experiments. We adopted a 20 𝑐𝑚 × 20 𝑐𝑚
wooden board as the target and placed it on a linear mo-
torized stage that is capable of moving at an extremely fine
granularity, i.e., 0.05 `𝑚 [9], as shown in Figure 12a. The
smartphone was placed 30 𝑐𝑚 away from the target. The mo-
torized stage was programmed to vibrate with a displacement
varying from 1024 `𝑚 to 2 `𝑚 logarithmically. We recorded
the ground-truth vibration frequency using the API provided
by the manufacturer [8]. For each displacement, we repeated
the experiments for 10 trials, where each trial lasted for 30 𝑠 .
As we aim at detecting extremely subtle movement, we con-
ducted experiments in a basement far away from the roads
to minimize the interference caused by vehicles passing by.

Figure 12b shows the median relative frequency error at
each displacement. We can observe that, given a 5% error
tolerance, the sensing granularity that the factory setting
can achieve is 64 `𝑚. In contrast, with a higher sampling
rate, PowerPhone can achieve a sensing granularity as small
as 2 `𝑚, which is finer than the theoretical improvement
calculated from Equation (2). We attribute this difference
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Figure 13: PowerPhone can turn our smartphone into
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Figure 15: Results for hu-
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to the fact that higher sampling rates also enhance the per-
formance of the DAC in the signal-playing pipeline. Such
extremely fine-grained sensing capability can lead to a lot of
novel applications on smartphones.

4.3.2 Field Study. Vibration-based machine condition anal-
ysis helps us know the status of the running machine and
diagnose the problems by analyzing the vibration frequency
of the machine [62]. However, measuring machine vibration
requires dedicated devices, which are usually very expen-
sive. One prior study [15] proposed the IMU-based vibration
measurement using smartphones, but it can only measure
large machine vibrations. PowerPhone can empower smart-
phones with the ability to measure extremely subtle machine
vibrations in a contact-free manner for the first time.

We perform vibration measurements on five machines in
our daily life, i.e., Dryer, HVAC fan, Humidifier, Microwave
oven, and Dishwasher. As shown in figure 13a, we placed
the smartphone 30 𝑐𝑚 away from the target machine. We at-
tached a high-accuracy piezoelectric vibration meter [42] on
the target machine to collect the ground-truth vibration am-
plitudes and frequencies. Each experiment was repeated for
10 trials. Figure 13b shows the median relative frequency er-
rors on five machines, where 𝑓𝑔𝑡 represents the ground-truth
frequency, and Δ 𝑑𝑔𝑡 represents the ground-truth amplitude.
We can observe that, with a 192 kHz sampling rate, Power-
Phone can significantly reduce the error from 60% to 1.1%
for a subtle vibration of 11 micrometers.
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4.4 Increasing Sensing Range
Limited sensing range is a main bottleneck for acoustic sens-
ing, which constrains users to interact with smartphones
in close proximity. In this section, we conduct experiments
to demonstrate that PowerPhone can significantly increase
the sensing range of acoustic signals on smartphones. For
factory-setting experiments, the smartphone transmits and
receives chirp signals that sweep from 18 𝑘𝐻𝑧 to 22 𝑘𝐻𝑧 at
a sampling rate of 48 𝑘𝐻𝑧. For PowerPhone, we reconfigure
the same smartphone to transmit and receive chirp signals
that sweep from 18 𝑘𝐻𝑧 to 58 𝑘𝐻𝑧. The chirp durations are
set to 40𝑚𝑠 for both settings.

4.4.1 Benchmark Experiments. As shown in Figure 14, we
adopted a 20 𝑐𝑚 × 20 𝑐𝑚 wooden board as the target and
mounted it on a linear guide slide which can precisely control
targets to move at an accuracy of 0.05𝑚𝑚 [43]. The distance
between the target and smartphone is varied from 0.5𝑚 to
6 𝑚 at a step size of 0.5 𝑚. For each distance, the target was
configured to move towards and away from the smartphone
10 times with a displacement of 10 𝑐𝑚.

Figure 16a shows the median displacement estimation
errors when the distance is increased from 0.5 𝑚 to 4.5 𝑚.
Given a 5𝑚𝑚 error tolerance, the sensing range for the fac-
tory setting is only 1𝑚 while it can be significantly increased
to 4.5𝑚 for PowerPhone. We further apply a software-based
solution proposed in a recent work LASense [35] to increase
the sensing range. Figure 16b shows the median displacement
estimation errors for four different approaches, i.e., factory
setting, PowerPhone, factory setting+ (with LASense), Pow-
erPhone+ (with LASense). We can observe that the sensing
range can be extended to 6𝑚 with the help of LASense.

4.4.2 Field Study. We now show PowerPhone can enable
room-scale human presence detection. The experiments in-
volved 5 participants. In each trial, one participant walked
around within a certain range with respect to the smart-
phone, e.g., 0𝑚−1𝑚, 1𝑚−2𝑚, etc. We repeated experiments
for 10 trials, where each trial contains 200 chirps.

We estimate the distance between the smartphone and
target using factory setting+ and PowerPhone+. A human
target is considered as “detected” when the estimated target
distance is within the designated 1 𝑚 range. The human
detection rate is computed as the ratio of the number of
“detected” estimates and total number of estimates. Figure 15
shows the mean presence detection rate. We can observe
that, given a 90% tolerance rate, PowerPhone+ significantly
increases the sensing range from 2𝑚 to 6𝑚.

5 EXTENDING SENSING APPLICABILITY
This section shows one interesting application that was pre-
viously impossible to be realized on smartphones. We use

(a) Short-range scenario. (b) Long-range scenario.

Figure 16: The benchmark experiments for range.

the ultrasonic signal leaked from a smartphone’s wireless
charger to infer if a home appliance is being used.

5.1 Fundamental Principle
The power line in residential settings provides sinusoidal
Alternating Current (AC) at 50 𝐻𝑧 or 60 𝐻𝑧. However, since
most modern home appliances have non-linear loads, they
create high-frequency distortions in the power line [37]. The
distortion created by each home appliance is unique, which
can be used to detect the appliance status (i.e., whether they
are ON or OFF) by analyzing the power line signal trace [91].
The high-frequency distortions propagate through the power
line, which can leak ultrasound signals from devices such as
wireless chargers. This is because wireless chargers deliver
power through LC-resonance [10], where the inductor (L)
is a coil inductor, and the capacitor (C) consists of multi-
ple small Multi-layer Ceramic Capacitors (MLCCs). Due to
the piezoelectricity of the dielectrics used in MLCCs, such
capacitors leak ultrasonic sound correlated to the voltage
across its two poles [31]. Therefore, the distortion that con-
tains the footprints of the appliance status could propagate
through the power line and leak to the environment as ultra-
sonic signals. Leveraging the increased sampling rate of our
smartphones, we can effectively capture and analyze high-
frequency ultrasonic leakage to detect the home appliance
status. Note that it is also intuitive to capture leakage at a
smartphone from a smartphone wireless charger.

We adopted the reconfigured smartphone Samsung Galaxy
S10 to record ultrasound emitted from wireless chargers
during charging. We conducted experiments using three
wireless chargers (Samsung EP-P5400 [60], Xiaomi MDY-13-
EJ [13], and Xiaomi MDY-12-EN [12]). As shown in Figure 17,
we can observe clear differences in the 20𝑘𝐻𝑧−40𝑘𝐻𝑧 power
spectrograms when a ceiling light in another room is ON
and OFF. The leakages are mainly above 24 𝑘𝐻𝑧, indicating
that most smartphones cannot capture them without our
reconfiguration. Furthermore, the leakages are various for
different wireless chargers. This is because they are not only
dependent on the appliance but also on the wireless charger.
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Figure 17: Illustration of power spectrograms (20 𝑘𝐻𝑧 −
40 𝑘𝐻𝑧) of the ultrasonic leakages from three wireless
chargers when a light in another room is ON and OFF.

5.2 Signal Processing
We use a vision transformer (ViT) neural network [48, 49]
to analyze the ultrasonic leakages for home appliance status
detection. The input to the network is a 3-channel power
spectrogram image of the ultrasonic signal [82] that can
be obtained as follows. We process the time-domain audio
signal every 100 𝑚𝑠 with a hop size of 256 samples. For
the purpose of privacy preservation, the time-domain au-
dio signal is first filtered through a high-pass Chebyshev
filter with a cut-off frequency of 20 𝑘𝐻𝑧. To compensate
for the amplitude variations caused by the Automatic Gain
Control (AGC) inside the DSP co-processor, we apply ITU-R
BS.1770-3 loudness matching to have a consistent loudness
of −37 𝐿𝑈 𝐹𝑆 [71]. After loudness-matching, we obtain spec-
trograms using Short-time Fast Fourier Transform (STFT)
whose Hanning window length and FFT size are both 512.
Then we convert the complex STFT results to real-valued
powers and map them to 3-channel space (𝑅,𝐺, 𝐵) using the
“Jet” color map with a power range from −45 𝑑𝐵 to 0 𝑑𝐵.
Finally, we normalize each channel of the image using the
mean and standard deviation of the training set.

5.3 Field Study
We showcase the status detection of four home appliances
in a single-family house, including light, computer, blower,
and vacuum cleaner. The Samsung Galaxy S10 smartphone
is charged using the Samsung EP-P5400 wireless charger
in the bedroom, while the appliance is running in another
room. The waveform recorded without any other appliances
but the wireless charger was labeled as “nothing”.

We collected recordings of all five classes on Day 1 as the
training and validation sets. On the following day (Day 2),
we repeated our recordings to obtain the test set. Note that
when recording, the remaining battery percentage of the
smartphone is controlled to be always below 40%. By doing
so, we can guarantee that the wireless charger is charging
at its full-rated power. Since the duration of each recording
is 300 seconds, and that of a single spectrogram is 100 𝑚𝑠 ,
we have ∼ 3, 000 images for each class. We split the training
and validation sets randomly using a ratio of 9 : 1, resulting
in ∼ 2, 700 training images and ∼ 300 validation images for
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Figure 18: The confusion matrix for home appliance
status classification.

each class. As we use the full Day 2 data as the test set, we
have a total of ∼ 15, 000(3, 000 × 5) images for the test set.

We applied random flip and random erase [90] data aug-
mentation techniques to artificially expand the training set.
The neural network was trained for 15 epochs using SGD
optimizer with a learning rate of [ = 0.01, a momentum of
𝛾 = 0.9, and a weight decay of _ = 1𝑒 − 5. Figure 18 shows
the confusion matrix on the test set. Our model can perfectly
distinguish the ultrasonic leakages between “nothing” and
other appliances. For each individual running appliance, our
model also achieves a high accuracy (i.e., > 90%), implying
that we can accurately monitor the use of home appliances
using the ultrasonic leakages from the wireless charger.

6 RELATED WORK
Recent studies on acoustic sensing have significantly ex-
tended the primary use of smartphones from simple com-
munication and entertainment to multifarious sensing appli-
cations. Those applications include localization and track-
ing [34, 45, 76], human-computer interaction [6, 17, 36, 77],
health sensing [38, 57, 65], temperature sensing [5, 73], etc.
Researchers have devoted their effort to pushing the sens-
ing boundary of acoustic signals on smartphones, including
increasing the sensing range [35, 45, 47, 75], improving the
sensing resolution [5, 34], and boosting the sensing granu-
larity [7, 38, 73]. These efforts involve incorporating deep
learning models [45, 47], designing new sensing signals [73],
developing novel signal processing algorithms [34, 35, 38].
Different from the above-mentioned efforts that focus on
improving one single capability, our work pushes the sens-
ing boundaries by breaking the fundamental sampling limit
from 48 𝑘𝐻𝑧 to 192 𝑘𝐻𝑧 on smartphones, which can signifi-
cantly enhance the sensing capabilities in almost all aspects.
Furthermore, our work is orthogonal to the prior studies
and can be combined with them to further improve sensing
performance and enable new sensing applications.

It is worth noting that the Android user-level API allows
applications to request arbitrary sampling rates [78, 88].
However, it is not achieved by changing the actual hard-
ware sampling rate but by interpolating the signal through
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the AudioFlinger service [56]. Even though the signal has a
higher sampling rate (e.g., 192 𝑘𝐻𝑧) after interpolation, its
frequency components are still constrained by the actual
hardware sampling rate (e.g., 48 𝑘𝐻𝑧). Our work is the first
one to reconfigure smartphones to support changing the
hardware sampling rate.

7 DISCUSSION AND FUTURE WORK
Availability on iPhones. This work focuses on the recon-
figuration of Android smartphones. Apple iOS is a closed
platform, prohibiting us from any audio reconfiguration on
iPhones. However, according to our investigation, speaker
amplifiers and codecs on iPhones are custom silicon from
Cirrus Logic [18] who also supplies ICs with high sampling
rates to other manufacturers such as Samsung. We believe it
is very likely that Apple can apply similar methods to enable
higher sampling rates on iPhones.

Power Consumption. Our measurements show that the
power consumption after reconfiguration is around twice
that of the factory setting. One solution to save power is to
adaptively adjust the sampling rates on demand [53]. There
are existing examples we can refer to. The Android Com-
patibility Definition Document (CDD), which serves as the
de facto standard for Android, increased the recording bit-
depth from 16-bit to 24-bit for a higher dynamic range. This
change brings about similar side effects as increasing sam-
pling rates. In practice, smartphone manufacturers make
16-bit the default option, with the 24-bit option available
through the API when required. Similar techniques can be
applied to increase the sampling rate. Another approach
is to leverage heterogeneous computing by offloading the
computation to the ultra-low-power DSP co-processors (e.g.,
Qualcomm Hexagon [25] and Tensilica HiFi DSP [69]) that
are integrated into modern smartphones. Such co-processors
are 8 to 32 times more efficient than general-purpose CPU
in terms of DSP [68]. For example, the always-on-voice such
as “Hey Google” virtual assistant wake-up word detection is
implemented on the DSP co-processor.

Frequency-Range Trade-off. Higher frequency signals
experience larger free-space attenuation and accordingly the
sensing range is smaller. There is thus a trade-off between
frequency and range. We can select our frequency band based
on the application scenario. For instance, for machine vibra-
tion sensing, it enquires a fine granularity to capture subtle
machine movement. On the other hand, machine vibration
sensing usually does not require a long sensing distance.
In this case, we can choose a high frequency, e.g., 60 𝑘𝐻𝑧,
for fine granularity. Another example is human presence
detection. For human presence detection, we need a long
sensing distance to cover the whole area of interest (e.g., a
room). On the other hand, presence detection does not re-
quire a fine sensing granularity. Since smartphones exhibit

better frequency responses in low frequencies, we can use
low-frequency signals, e.g., 20 𝑘𝐻𝑧 − 24 𝑘𝐻𝑧, and adopt a
relatively high power to achieve a large sensing coverage.

Future Work. This work presents new opportunities that
PowerPhone can bring to acoustic sensing on smartphones,
which we believe is only the tip of the iceberg. We believe
PowerPhone can benefit the research community in the fol-
lowing aspects: (i) PowerPhone enables the research com-
munity to explore the performance gain of acoustic sensing
on smartphones brought by the higher sampling rate. The
performance gap between the theoretical gain and actually
achieved gain can trigger a lot of follow-up research. (ii) Pow-
erPhone equips smartphones with stronger acoustic sensing
capabilities. The research community can explore new ap-
plications previously not possible with smartphone-based
acoustic sensing such as the application presented in our pa-
per, i.e., appliance usage monitoring. (iii) We believe another
exciting direction the research community can explore is the
stronger communication capability brought by the high sam-
pling rate. We have released the source codes to benefit the
research community, and established an open-source project
to integrate the contributions from other researchers and
developers. We also note that the proliferation of acoustic
sensing has caught a lot of attention from smartphone manu-
facturers. For example, Xiaomi has collaborated with Elliptic
Labs [2] to release multiple smartphones that can support
acoustic sensing. We envision smartphone manufacturers
can enforce high sampling rates on user-level API and push
the standardization of high sampling rates into the Android
Compatibility Definition Document in the future.

8 CONCLUSION
In this work, we present PowerPhone, a software reconfigu-
ration to unleash the capability of acoustic sensing on com-
modity smartphones. We found that more than 100 different
smartphones are possible to be reconfigured with high sam-
pling rates of 192 𝑘𝐻𝑧. Compared with the factory setting
48 𝑘𝐻𝑧 on smartphones, PowerPhone shows remarkable im-
provements in sensing resolution, sensing granularity, and
sensing range. Furthermore, we also demonstrate that Pow-
erPhone can enable new applications that were previously
infeasible. We believe PowerPhone can trigger plenty of
follow-up research studies in the near future. We hope that
the great potential of acoustic sensing on smartphones re-
vealed by this work can motivate smartphone manufacturers
to enable high sampling rates by default.
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