April 19: Interfaces Continued...

CMPSCI 121, Spring 2012
Introduction to Problem Solving with Computers
Prof. Learned-Miller



Polymorphism: Operating on arbitrary
types of objects.

import java.util.Random;

public class Chance extends Random({

1

2

3

<

5 public int throwDie()({

6 return (1 + nextInt(6));}
-
8

public int throwDice()({

9 return (throwDie() + throwDie());}
10
11 public void shuffle(int|[] nums){
12 // method randomly shuffles an array of integers
13 int swapPos, temp;
14 for (int i = nums.length-1; 1 > 0; i--=) {
15 swapPos = nextInt(i+l); // pick pos from 0 -> 1 (1 1s possible)
16 temp = nums|[swapPos); // swap vals at 1, swapPos
17 nums [swapPos)] = nums|[1];
18 nums(1] = temp;
19 }
20 }



Drlava



Interface Example:

public interface Scoring{
public double getScore():;

public void setScore(double newScore);

}

-Kind of like a class, but can’ t make one of these
-Doesn’ t specify implementation of methods, just
what they should do.



public class CookieSeller implements Scoring

{

private String name;
private double boxesSold:

publie CookieSeller(String n, double sold)
{

name = n;
boxesSold = sold:
}

publie String getName()
{

return name;

}
public double getBoxesSold()

{

return boxesSold;

}

public void setName(String newName)

{

name = newlame;

}
public woid setBoxesSold{double sold)

{
boxesSold = sold;
1

public double getScore() // implements interface method

{

return boxesSold;

}

public woid setScore({double sold)// implements interface method

{
boxeaSold = sold;

}




One method for multiple classes.

public static int scoreMax(Scoring[] theArray){
// returns position of entry in array theArray with highest score
S/ array theArray i1s an array of objects from class that implements
/4 Scoring interface
int highPos = 0;
for{int j = 1; j < theArray.length; Jj++){
if (thehArravy[j].getScore() > thehrray[highPos].getScore())
highPos = j;:}
return highPos;



One method for multiple classes

publiec class Scorefns |
S/ contains methods that exploit the Scoring interface

public static int scoreMax(Scoring[] theArray){
/f returns position of entry in array theArray with highest score
S/ array theArray is an array of objects from class that implements
// Bcoring interface
int highPos = 0;
for{int j = 1; j =< theArray.length; Jj++)/{
if (theArray[j].getScore() > theArray[highPos].getScore())
highPos = j;}
return highPos;



One method for multiple classes

publiec class Scorefns |
S/ contains methods that exploit the Scoring interface

public static int scoreMax(Scoring[] theArray){
/f returns position of entry in array theArray with highest score
S/ array theArray is an array of objects from class that implements
// Bcoring interface
int highPos = 0;
for{int j = 1; j =< theArray.length; Jj++)/{
if (theArray[j].getScore() > theArray[highPos].getScore())
highPos = j;}
return highPos;

int which = Scorefns.scoreMax(golfers);



Almost “multiple inheritance”

Person ‘
Scoring J\
\ 4
‘Golfer ‘

Golfer extends Person implements Scoring

9



10

Another Example:

public interface Directions{

final int MORTH = 0;
final int EAST = 1;
final int SOUTH = 2;
final int WEST = 3;

-“implements Directions”
is just like adding these attributes to a class.

-Could have achieved the same thing by deriving from a class.



Either of these works...

public class Directions { public interface Directions {
final int NORTH = @; final int NORTH = @;
final int EAST = 1; final int EAST = 1;
final int SOUTH = Z; final int SOUTH = Z;
final int WEST = 3; final int WEST = 3;
} }
public class Car extends Directions { public class Car implements Directions {
} }

11



12

However...

there is only one way to do this...

public interface Directions {

final int NORTH = @;
final int EAST = 1;
final int SOUTH = Z;
final int WEST = 3;

}

public class Car {

: e

public class UsedCar extends Car implements Directions {

: e




Almost “multiple inheritance”

Car

\

‘ UsedCar ‘

Directions

UsedCar extends Car implements Directions

13



Almost “multiple inheritance”

Car

Pricing

Directions

\

‘ UsedCar ‘

UsedCar extends Car implements Directions, Pricing

14




Implements vs. Extends

* Add engine type and tire type to Car:
— public class HotRod extends Car

e Add getCost() and setCost() to Car:

— Might implement these as a Pricing interface...
* They are generic and we could use them for other classes.

— public class sellableCar extends Car implements Pricing
OR

— public class Car implements Pricing

15



16

More uses of interfaces

public int compareTo{Object other);



More uses of interfaces

public class Infant implements Comparable

{

private String name;
private int age; ./ in months

public Infant{String who, int months){
name = who;
age = months;

}

publiec String getName(){
return name; }

publiec int gethge(){
return age;}

public void anotherMonth(){age = age + 1;}

public int compareTo(Object other){

int b = {({Infant)other).gethge();
int a = this.age;
return{a-b);

}
}



Using one interface to implement
another

.publiﬂ int compareTo(0bject other)

{
String b ({Infant)other).getName() ;

String a this.name;
return{a.compareTo(b));

}

18



