
While Loops, Wrappers, and

Graphical I.O.
Feb 28, 2012

CMPSCI 121, Spring 2008

Introduction to Problem Solving with Computers

Prof. Learned-Miller

1

Logistics
 Chapter 6 exercises.

 Due Mar 1 Thursday

 Dice Problem.
 Due Mar 2 Friday.

 Midterm, next Wednesday (March 7th)
• 7:15 PM to 8:45 PM

2

Pasting into OWL

 Don’t duplicate code...

3

Pasting into OWL

 Don’t duplicate code...

4

Other OWL issues

 Problems: OWL should work well

 Let us know if your code works in Dr. Java

but not in OWL.

 Programming assignments:

 Make sure it runs in Dr. Java.

 As programs get more complicated, OWL

has a harder time with them.

5

Common question

 Can I put 2 class definitions in one file?

 NO, always one file per class.

6

Today

 While loops

 Almost like for loops, but slightly different

 Wrapper classes

 Mostly used for converting numbers to strings, and

strings to numbers

 Graphical IO

 like “scanner” class, but with pop up windows.

 Switch statements:

 like “If” statements, but slightly fancier.

7

While loops

8

While loops

9

While loops

10

While loops

11

While loops vs. For loops

 Either can be used!

 It’s a style issue:

 Sometimes it’s more natural to use one or the other.

 for loops tend to be used when

 We know ahead of time when we will end

• “from a to z”

• “from 1 to 10 by twos”

 While loops tend to be used when

 Termination condition is more complicated

12

While vs. For
for (int i=0; i< 10; i++) {

 System.out.println(“Random number i: “+Math.rand());

}

double foo=Math.rand();

while (foo<.5) {

 System.out.println(“Got another number less than 0.5”);
 foo=Math.rand();

}

13

While loops: moving the

increment

14

Counting downwards

15

Write the equivalent “for” loop

16

int j;

for (j=9; j>=5; j--) {

System.out.println(j);

}

17

Private attributes

18

Can’t access private attribute

directly

19

Where’s the “private”?!!!

20

Declare an Instance of the

Class

21

Accessing Attributes from

Outside the Class!!!

22

Can change public attributes

directly (no set method required)

Usually frowned upon in java programming

Considered safer to use private attributes with

set methods

23

Wrapper classes

 When you want to treat a fundamental

type (such as int, double, boolean) like a

class object.

 Integer

 Double

 Boolean

24

Wrapper classes (continued)

 Main uses for wrapper classes come later

 static method can be used for conversion

 How do I get 123 out of “123” ?

Integer.parseInt(“123”);

25

“Fancy” Input/Output:

JOptionPane

26

JOptionPane

27

JOptionPane: Static methods

28

JOptionPane: Static methods

29

JOptionPane: Static methods

30

JOptionPane: Static methods

31

JOptionPane: Static methods

Switch

switch(variable_name){

case case_1:

 statement_1;

 break;

case case_2:

 statement_2;

 break;

default:

 statement_d;

}

Jump to here if (variable_name == case_1)

Jump to here if (variable_name == case_2)

Jump to here for all other cases

NOTE: Use break (optional) if you want to jump out of

switch after case_1 and before case_2 statements

break

 Break statement takes you out of the current

loop you are in (for/while)

 Useful when you don’t want to continue to run

the loop if a condition is met

 For instance, when checking palindrome, if you see

a character pair that is mismatched, you don’t need

to continue checking subsequent pairs

 Think of how you could have used this in the “prefix”

problem

class SwitchExample

 {

 public void rateLetter(char ch)

 {

 switch(ch)

 {

 case 'a':

 case 'e':

 case 'i':

 case 'o':

 case 'u': System.out.println("vowel");

 break;

 case 'y': System.out.println("vowel or consonant");

 break;

 default: System.out.println("consonant");

 }

 }

 }

