
While Loops, Wrappers, and 

Graphical I.O. 
Feb 28, 2012 

CMPSCI 121, Spring 2008 

Introduction to Problem Solving with Computers 

Prof. Learned-Miller 



1 

Logistics 
 Chapter 6 exercises. 

 Due Mar 1 Thursday 

 Dice Problem.  
 Due Mar 2 Friday. 

 Midterm, next Wednesday (March 7th) 
• 7:15 PM to 8:45 PM 
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Pasting into OWL 

 Don’t duplicate code... 
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Other OWL issues 

 Problems: OWL should work well 

 Let us know if your code works in Dr. Java 

but not in OWL. 

 Programming assignments: 

 Make sure it runs in Dr. Java.  

 As programs get more complicated, OWL 

has a harder time with them. 
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Common question 

 Can I put 2 class definitions in one file? 

 NO, always one file per class. 
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Today 

 While loops 

 Almost like for loops, but slightly different 

 Wrapper classes 

 Mostly used for converting numbers to strings, and 

strings to numbers 

 Graphical IO 

 like “scanner” class, but with pop up windows. 

 Switch statements: 

 like “If” statements, but slightly fancier. 
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While loops 
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While loops vs. For loops 

 Either can be used! 

 It’s a style issue: 

 Sometimes it’s more natural to use one or the other. 

 for loops tend to be used when 

 We know ahead of time when we will end 

• “from a to z”  

• “from 1 to 10 by twos” 

 While loops tend to be used when 

 Termination condition is more complicated 
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While vs. For 
for (int i=0; i< 10; i++) { 

   System.out.println(“Random number i: “+Math.rand()); 

} 

double foo=Math.rand(); 

while (foo<.5) { 

   System.out.println(“Got another number less than 0.5”); 
   foo=Math.rand(); 

} 
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While loops: moving the 

increment 
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Counting downwards 
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Write the equivalent “for” loop 
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int j; 

for (j=9; j>=5; j--) { 

System.out.println(j); 

} 
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Private attributes 
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Can’t access private attribute 

directly 



19 

Where’s the “private”?!!! 
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Declare an Instance of the 

Class 
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Accessing Attributes from 

Outside the Class!!! 
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Can change public attributes 

directly (no set method required) 

Usually frowned upon in java programming 

Considered safer to use private attributes with 

set methods  
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Wrapper classes 

 When you want to treat a fundamental 

type (such as int, double, boolean) like a 

class object. 

 Integer 

 Double 

 Boolean 
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Wrapper classes (continued) 

 Main uses for wrapper classes come later 

 static method can be used for conversion 

 How do I get 123 out of “123” ? 

 

Integer.parseInt(“123”); 
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“Fancy” Input/Output: 

JOptionPane 
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JOptionPane 
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JOptionPane: Static methods 
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JOptionPane: Static methods 



Switch 

switch( variable_name ){ 

case case_1: 

  statement_1; 

  break; 

case case_2: 

  statement_2; 

  break; 

default: 

  statement_d; 

} 

Jump to here if (variable_name == case_1)  

Jump to here if (variable_name == case_2)  

Jump to here for all other cases  

NOTE: Use break (optional) if you want to jump out of 

switch after case_1 and before case_2 statements 



break  

 Break statement takes you out of the current 

loop you are in (for/while) 

 Useful when you don’t want to continue to run 

the loop if a condition is met 

 For instance, when checking palindrome, if you see 

a character pair that is mismatched, you don’t need 

to continue checking subsequent pairs 

 Think of how you could have used this in the “prefix” 

problem 



class SwitchExample 

    { 

      public void rateLetter(char ch) 

      { 

        switch(ch) 

        { 

        case 'a': 

        case 'e': 

        case 'i': 

        case 'o': 

        case 'u': System.out.println("vowel"); 

          break; 

        case 'y': System.out.println("vowel or consonant"); 

          break; 

        default: System.out.println("consonant"); 

        } 

      } 

    } 


