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Abstract

This document reviews material you will need for Exam 1. I recom-
mend you do each problem here. If you can do them all without referring
to other material, you should be in good shape for the exam. I recommend

that you review your notes and the class documents before trying to do
the material so that you know where your deficits are. .



1 Basic notation

You should understand the following types of notation.
e Summation (}). Example:

N
d Xi=X1+Xo+ ..+ Xn. (1)

=1

e Product (J]). Example:

N
HXi:Xl XXQX...XXN. (2)

=1

e When we perform optimization of a function with respect to some change-
able parameter, we are usually interested in either the minimum or max-
imium value of the function itself, or, alternatively, we are interested in
the values of the parameter that achieved the maximum or minimum.

Suppose we are trying to find the maximum value of a function f(z,y)
when y is set to the value 3 and x can be any value from some set S. To
specify the maximum value of the function we write:

max flz,y=23). (3)

We frequently assign this maximum to some variable, as in:

F* = max f(z,y = 3). (4)

e If we are interested in the value of x which gave us this optimum, we use
the arg max notation:

argmax f(z,y = 3). (5)
eSS

In this case, of course, the maximizing x might be called z*:

¥ =argmax f(z,y=3). (6)
€S

2 Basic probability

e Know all the material from the Review of Basic Probability handout.
e Particularly focus on marginalization and Bayes’ rule.

e Suppose we are trying to classify images into one of several classes ¢q, ¢3,
and c3, and to do it we are using feature values f; and fo. Know what is
meant by the likelihoods of the classes, the priors of the classes, and the
posterior probabilty for each class.



Marginalization: If you are given a probability distribution for each pair
of possible values of Prob(X,Y), then you should be able to compute
Prob(X) and Prob(Y') for each possible value of X and Y.

Know the definition of statistical independence: For two random variables
X and Y, X and Y are statistically independent if and only if P(X|Y) =
P(X) for all X and Y. Or alternatively, P(X,Y) = P(X)P(Y). Be able
to derive one of these formulas from the other (multiply both sides by
P(Y).

Conditional probability. Be able to compute P(X|Y) from P(X,Y) and
P(Y).

Be able to given reasonable estimates of P(X), P(X|Y), and P(X,Y)
from raw data.

Classification

Understand Bayes’ rule. Practice it many times so you are fluid with it.
Try making up some tables of p(x|c) where z is a feature value and c is a
class, and then try to compute p(c|z). You will also need, of course, p(c)
the prior probabilty of a class. If you don’t understand this, you better get
help before the test.

If you estimate the posteriors for each class (p(c|z)) and you pick the
class with the highest posterior, this is known as maximum a posteriori
classification, or MAP classification. MAP classification is not ALWAY'S
the best strategy when you have estimated the posteriors.

However, if you have the exact, true posteriors for the classes, then choos-
ing the class with the highest posterior yields a Bayes Optimal Classifier,
which is a classifier with the minimum probability of error. This smallest
possible probability of error is also known as the Bayes error rate, or just
the Bayes error.

Given the true likelihoods (not the ones estimated from data) for each
class, and the true priors (not the ones estimated from data), one can
calculate the exact posteriors (p(c|x)), and hence, build a Bayes optimal
classifier, using Bayes’ rule and MAP classification. (MAKE SURE YOU
UNDERSTAND THIS!)

Supervised learning

Know the definition of supervised learning.

Review the problem set on digit recognition from a single pixel. What
kind of features give the best classifiers?



Imagine you have a joint distribution p(zx,y) over some symptoms « of a
rare disease and y, which indicates whether you have the disease or not.
What is the problem with building a training set by sampling from p(x, y)?
(Answer: you don’t get enough samples of patients with the disease, since
it is rare.)

What is the solution to the above problem? Answer: Sample a data set
that consists of p(z|y = hasdisease) and p(x|y = ishealthy) separately,
estimate the priors p(y) separately, and then use Bayes’ rule to compute
the posteriors.

Know how nearest neighbor classification works (check out the wikipedia
page if you need a review of this.)

Know how k-nearest neighbor classification works. Answer: Let k = 7.
When given a test point, find the 7 training points nearest to that test
point. Among the nearest neighbors, calculate the number of training
points from each class. Choose the class with the most training points
(from the 7) and guess that that is the identity of the test point.

What happens if my training data in supervised learning comes from one
probability distribution p(z,y) and my test data comes from a very dif-
ferent distribution ¢(z,y). Answer: The performance of my classifier may
be arbitrarily bad, since I trained on the “wrong data”. Example: My
training data consists of red apples (class A) and red pears (class B). My
test data consists of green apples and green pears. I cannot expect to get
the test examples correct (although I may get lucky and use shape as a
feature instead of color, but that would just be luck.)

What is the fundamental problem with estimating a distribution over en-
tire images? Describe the trade-offs between using smaller parts of the
image to classify images (like a single pixel) and using larger parts, like
mutliple pixels or even the entire image. (difficulty of estimation versus
amount of information in the features)

Basic Matlab familiarity

Know how to turn the values in a matlab matrix into a vector (use the
colon operator).

Know how to transpose a matrix and what this means (you can use either
the quote operator (’) or use the transpose command. This can used to
turn a row vector into a column vector or vice versa.

Understand the structure of a “grayscale” or “scalar-valued” image. It is
simply a 2-dimensional array of numbers.
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e Understand the structure of a “color” image: it is a 3-dimensional array

of numbers in which the first “layer” represents red, the second layer
represents green, and the third represents blue.

IMPORTANT: Understand that a grayscale or scalar-valued image can be
rendered in color using a look-up-table, which is essentially a scheme for
doing color-by-number. That is, for each value in the image, the computer
looks up the red-green-blue (RGB) color that should be used for that
particular number.

Know the repmat command in matlab. Know that it can be used to avoid
doing for loops, and that for loops are slow in matlab.

Image comparison

Understand the “sum of squared differences” between two scalar-valued
images I and J:

#ofpizels
SSD(I,J)= Y (Li—J)%
i=1
This is the same thing as the “Euclidean distance” except that the Eu-
cildean distance has a square root:

#ofpizels
Dpyeia(I,J) = > (Li—J)?

i=1

#ofpizels %
( > (Ii—Ji)2> :

i=1

Understand the “sum of absolute differences”:

#ofpizels

> -l

i=1

#Hofpixels %
( > ILinl) :

=1

Dabs(-[v J)

Understand why one might want to use one instead of the other (sum of
squared differences weighs larger errors more heavily, on average).

e Know the general formula for an L, distance:

#Hofpizels %
Lpu,J):( > <L——Ji>p> : (7)

)



Note that the Euclidean distance is the same as the Ly distance (p = 2)
and that the sum of absolute differences is the same as the L; distance

(p=1).

7 Transforms

You should understand the properties of the following sets of transformations.

e Shifting only. Also called Translations. Preserves orientation and all
the properties of rigid transformations.

e Rigid. (translation + rotation) Preserves areas (or volumes if in 3-D)
and all the properties of similarity transforms.

e Similarity (rigid + scale). Preserves angles, straightness of lines, par-
alllelness of lines.

e Linear transformations. This is the family of transformations that is
represented by ALL full rank 2x2 matrices. (Full rank just means the
matrix doesn’t squash the object to have no width or no height. For
example, a matrix filled with zeroes would transform all coordinates to
(0,0), so the object would effectively be shrunken to have 0 size.) Linear
transformations preserve the parallelness of lines and the straightness of
lines. These transformations include, as special cases, rotations, scalings,
shearings, and flips. IMPORTANT: Note that linear transformations do
NOT include translations!

e Affine transformations (Linear 4 translations). These transforma-
tions are exactly like the linear transformations, except that they also
include the translations. This allows you to, say, both rotate and move an
object, instead of just rotating it. This is important since linear transfor-
mations always transform with respect to the origin (0,0). So if you want
to rotate something about its center, and the center is not at the origin,
then you will need affine transformations.

7.1 Transforming images pixel by pixel

You should understand the programs we discussed in class to rotate images
using the “forward” transformation technique and the “inverse” transformation
technique. The next two pages contain two matlab functions called rotatel and
rotate2. In particular, you should understand why rotate2.m was necessary to
“fill the holes” created by rotatel.m.



function rim=rotatel(im,angle)

r=(angle/360)*2*pi;

rotmat = [cos(r) sin(r); -sin(r) cos(r)];

[rows,cols]=size(im);

xcoords = 1l:cols;

ycoords = 1l:rows;

xcarray = repmat(xcoords, [rows 1]);

ycarray = repmat(ycoords, [1 cols]);

xcv = xcarray(:);

ycv = ycarray(:);

pairs = [xcv’; ycv’];

newpairs = rotmat*pairs;

newpairs = round(newpairs);

newpairs (newpairs<1)=1;

newpairs (newpairs>rows)=rows;

rim=zeros(rows,cols);

for i=1:size(newpairs,2)
rim(newpairs(1l,i) ,newpairs(2,i))=im(pairs(1,i),pairs(2,1i));

end



function rim=rotate2(im,angle)

r=(angle/360)*2*pi;

rotmat = [cos(r) sin(r); -sin(r) cos(r)];

invmat = rotmat ~ (-1);

[rows,cols]=size(im);

xcoords = 1l:cols;

ycoords = 1l:rows;

xcarray = repmat(xcoords, [rows 1]);

ycarray = repmat(ycoords, [1 cols]);

xcv = xcarray(:);

ycv = ycarray(:);

pairs = [xcv’; ycv’];

oldpairs = invmat*pairs;

oldpairs = round(oldpairs);

oldpairs(oldpairs<1)=1;

oldpairs(oldpairs>rows)=rows;

rim=zeros(rows,cols);

for i=1:size(pairs,2)
rim(pairs(1,i),pairs(2,1i))=im(oldpairs(1l,i),oldpairs(2,1i));

end



8 Understanding the sizes of sets

e How many distinct 10x10 binary images are there? Answer: 2190,

e How many 1000x1000 color images are there if each color channel (red,
green, blue) can take on 256 colors? First, calculate the number of colors

per pixel:
c = 256 %256 x 256 (8)
= 28428428 (9)
= 2% (10)
= 220494 (11)
1,000, 000 * 16 (12)
16 million. (13)

Given about 16 million colors per pixel, the number of 1000x1000 images

1S

1000*1000) _ ( million.

(16 million 16 million)

According to some estimates, there are about 280 particles in the known
universe.

e Given 100 z translations of an image, 100 y translations, 1000 rotations,
and 500 different scales, how many different images tranformations could
I produce? T’ll let you do this one yourself.

9 Alignment

e The ingredients of image-to-image alignment are:

1. Images I and J.

2. A choice of a family of transformations. You should be familiar with
all the basic families of transformations discussed in class and in this
document.

3. A criterion of alignment that assesses how well aligned images are.
You should be familiar with multiple different criteria of alignment.

4. A method for finding the best alignment over the family of trans-
formations. These methods include exhaustive search (what do we
mean by this?), gradient descent or coordinate descent, and keypoint
methods. You are not responsible for keypoint methods.

e Be able to describe how gradient descent alignment works with the family
of translations. Also for say, the family of rigid transformations.

e You should understand how to do alignment by maximization of mutual
information (assignment 4).



10 Entropy and Mutual Information

11

Entropy is a function of a probability distribution. Know the definition of
entropy for a discrete distribution. Don’t forget the minus sign!

Mutual information is a function of the joint distribution of two random
variables. You do NOT need to memorize the mathematical definition of
mutual information. However, if I give you a joint distribution (as a table)
and the definition of mutual information, you should be able to compute
it. This will include computing the marginal distributions from the joint
distribution (as in Homework 5).

Remember that entropy is a measure of the negative of the average log
probability of points sampled from a distribution. If a probability distri-
bution just has a few possible values, each of which has a relatively large
probability, then entropy will be LOW. If a probability distribution has
many many possible values, each of which has a low probability, then
entropy will be HIGH.

Mutual information is 0 if and only if the random variables of the joint
distribution are statistically independent. I want you to be able to show
that if two random variables are independent, then their mutual informa-
tion is 0. (You don’t have to be able to show that this is the only way
that the mutual information can be 0.)

Mutual information should be high between two images when they are
aligned. Why?

A good feature, whose value in an image is represented by the random
variable X should have high mutual information with the class label for
an image, represented by the random variable C. If it is not, then the
feature random variable doesn’t give you any information about the class,
which means it is a useless feature.

Mutual information cannot be higher than the amount of information in
either random variable. What do I mean by this? Suppose I am doing a
classification problem with 4 classes. Then 2 bits of information is enough
to tell me which class I'm in. Thus, the mutual information between any
feature and the class label cannot be more than 2 bits.

Joint alignment

What is congealing? Answer: a method of simultaneously aligning a bunch
of images to each other.

What is the criterion being optimized in congealing? (Answer: the sum
of the estimated entropies of each “pixel stack”. A pixel stack is the set
of values in a particular location across all of the images.)

10



e Why is it sometimes easier to align a group of images than a pair of images?
What can happen when we try to align a pair of images? Answer: We can
stuck in local minima of the alignment function. Congealing “smooths
out” the alignment landscape. (Think of the image of the “average 3”
during congealing. It is smoother than a single 3.)

e Understand the basic congealing algorithm. Answer: Iterate until conver-
gence: For each image i, for each transform parameter j, try adjusting
image 7 with a small change to transform j and see if it reduced the sum
of the pixel stack entropies (or alternatively, if it increased the probability
of the pixels in the changed image with respect to the distributions of the
pixel stacks). If the small change to transform parameter j for image 4
improved the criterion of joint alignment, keep that change and continue.

e While you don’t need to understand the details of the “brightness cor-
rection congealing” that I showed in class to fix the brightness artifacts
in magnetic resonance (MR) images, I want you to be aware that con-
gealing can be done not only with spatial transformations, but also with
brightness transformations.

11



