Review for Exam 2

Erik G. Learned-Miller
Department of Computer Science

University of Massachusetts, Amherst
Ambherst, MA 01003

December 6, 2012

Abstract

This document reviews material you will need for Exam 2. In addition,
you should also cover all of the material for Exam 1 from the previous
review sheet.

1 Basic notation

In this document, I will use square bracket notation for representing functions
that are defined over the integers. For example,

[zl

is a function that can take values for z = {...,—2,-1,0,1,2,...}. So f[3], f[0],
and f[—1000] are meaningful, but f[0.5] is not. For functions taking values over
the real numbers, I will use the standard parentheses notation. That is, f(x) is
defined for any value of x that is a real number.

2 A bit of vector math

You will need to understand certain basic results about vectors. For the purposes
of this class, you can think of a vector as just a collection of numbers, like in
Matlab. For example, a vector of length 3, also known as a vector v in three
dimensions, or a 3-dimensional vector, might be something like

12

2.1 Vector magnitudes

The magnitude of a vector is a simple concept. You can think about it as the
length of the vector, or equivalently, as the distance from the point specified by
the vector to the origin of the coordinate system, that is, the distance between
the vector and the zero vector. Using the example of v defined above, the
magnitude of v is written

[[v]] = /122 + (—3)2 + 42 = 13.

2.2 Unit vectors

A unit vector is just a vector whose length is 1, like

v lod)

To convert a vector whose length is not 1 into a unit vector that is pointing in
the same direction (whose components have the same relative magnitude as the
original vector), just divide each original component by the magnitude of the
vector. For our example v from above:
12
13
u=v/13= |32

4
13

You can verify for yourself that u has a magnitude of 1.

2.3 Dot products of vectors

The dot product of two vectors is just the sum of the product of the correp-
sonding components. Let

2
t=|1
3
Then the dot product of t and v is

t-v=1(2)(12) + (1)(=3) + (3)(4) = 33.

If the components of v are vy, vy, and v3, and the components of t are tq, to,
and tg, then the dot product can be written

3

t-v= Z(ti)(vi)'

i=1

2.4 Angle between unit vectors

When the bases of two vectors are put together (for example, if they are both
at the origin), then an angle is formed between them. Let’s call it §. For unit
vectors, the following formula gives the relationship between the angle 6 and
the two vectors u and v:

cos(f) =u-v. (1)
If the two vectors being compared are not unit vectors, then they have to be
converted to unit vectors before the formula works. Consider two vectors y and
z that are not unit vectors. To find the angle between them, normalize them
first:

vy oz
s = 5T " Tl @

Note: these formulas work for vectors with any number of components,
whether it is 2, 3, 5, or a hundred thousand components!

2.5 Vector that maximizes the dot product

Given a unit vector v, which other unit vector maximizes the dot product with
v? To answer this question very simply, first ask, “What angle 8 maximizes
the cosine function (from equation 1)?” The answer is that the cosine function
is maximized when 6 = 0 and cos(0) = 1. Thus, to maximize the dot product
between two unit vectors, the angle between them should be 0! This implies
that the unit vector which maximizes the dot product with a unit vector v is
the vector v itself! In other words:

for any unit vector w.

2.6 Exercises

Here are simple questions to test your knowledge:
1. What’s the magnitude of a unit vector?

2. What’s the maximum possible value of the dot product between two unit
vectors? (Answer: it’s the same as the maximum value of the cosine
function.)

3. What’s the maximum possible value of the dot product between two vec-
tors if their magnitudes are 2 and 5 respectively. (Answer: multiply both
sides of equation 2 by the magnitudes of y and z and reason from there.)

2.7 Images as vectors

Consider a grayscale image that has 100 rows and 100 columns. There are 10,000
pixels in the image. You can think of this as a 10,000 component vector. Now
consider two images I and J. If you think of them as two 10,000 component
vectors, you can compute the dot product between them. If we normalize the
two vectors, and take their dot product, what is the maximum possible value?
(Answer: 1.0, the maximum of the cosine function.)

Suppose we have taken an image I, turned it into a vector, and normalized
it, but dividing each element of the vector the magnitude of I. What other
normalized image vector would maximize the dot product with the normalized
1?7 The answer, drawing from section 2.5, is the same image. This the math-
ematical basis for the tracker that we built in the correlation based tracking
assignment.

3 Filtering and Convolution

Consider a function f[z] defined over the integers, where

o [0]=1,
o f[1]=2,
o [2]=1,

and f[i] = 0 for all other values of i, both positive and negative.
e Be able to plot f[i], with appropriate labels on the axes.
e Be able to plot f[i] + 1.
e Be able to plot f[i + 1].

Be able to plot f[i + 1] + 1.

Be able to plot f[i — 1].

Be able to plot 2f[d], 2f[i + 1], 2f[¢] + 1.

Be able to plot f[i] + f[i — 5].

Be able to plot f[i] + f[i — 1].

Be able to plot 2f[i] + 3f[i — 1] + f[i — 3] + 2f[i — 4].

Finally, be able to plot

where g[t] is defined by

)
o

)

1
2
3
4

<

Q

<

0] =1
[1] =4
2] =2
B]=0
[4] =3

Q

The expression in Equation 3 is called the convolution of the discrete function
f with the function g, and can be written as

flil @ glil-

3.1 Properties of convolution
1. Commutativity: f[i] ® g[i] = g[i] ® fli].
2. Associativity: f[i] @ (g[i] @ hli]) = (f[i] ® ¢[i]) ® h[d].
3. Linearity: f[i] @ (g[i] + hli]) = f[i] ® g[i] + f[i] @ [h[i].

3.2 Two-dimensional convolution

If T defined a two-dimensional function f[i, j] over the discrete grid, you should
be able to understand the meaning of functions like f[i — 1,5 — 3] just as in the
one-dimensional case above. (The offsets —1 and —3 shift the function one unit
to the right and three units up.) Putting these together, you should be able to
understand expressions such as

o 3fli—1,j—3]—5f[i —2,j — 2], and

Zzg[s7t]f[i_8’j_t]7 (4)

which is the two-dimensional convolution of f with some other function g.

3.3 The relationship of convolution to vision

Convolution is often used in computer vision to model certain processes which
occur in image formation. Two of the most common processes are:

e blurring due to lack of focus, or blurring due to atmospheric effects (as in
astronomy,

e blurring due to motion of the camera

In either of these cases, the easiest way to start thinking about convolution is
to think about what would happen to the photograph of a single point of light
when the entire rest of the image was black. For example, think of the photo,
on a very dark night of a star which is visible between some clouds, such that
there is really only one point of light in the whole photograph. If the camera is
out of focus, then this single point of light will appear as a smudge, known as
the point spread function. If there happen to be two stars visible that are far
enough apart, then there will be two copies of the point spread function, one at
the location of each of the stars. This is how to think about convolution. The
imaging process effectively “drops” a copy of the point spread function (which
is the same thing as the convolution kernel) at each point of light in the image.
The brightness of the smudge is exactly proportional to the brightness of the
original star.

Of course, if the stars are close together, their smudges (or point spread
functions will overlap), and we may not be able to discern in the blurred image
that there were two stars there to begin with. Hence, the convolution of a
complicated image will end up looking more just like a blur than a bunch of
copies of a point spread function.

4 Filtering

Filtering or correlating the image with a kernel is very closely related to convo-
lution, but conceptually, it is used in a very different way. Filtering is generally
used to analyze what is in the image rather than to model the process of image
formation, which is what convolution is frequently used for.

For example, filtering is often used for detection of an object that one has
stored in memory. By filtering an image with an image of an object, we hope to
find the patch of the image most similar to that patch (in some sense). Closely
related to this is the idea of finding edges in images. If we want to find the
places in the image where there are vertical edges, we filter the image with a
convolution kernel that looks like a veritcal edge. Any region which responds
strongly must have a patch that looks something like a vertical edge.

4.1 How to filter an image

Given an image I with N pixels and another image J of ezactly the same size,
then the result k of filtering I with J is simply the dot product of the two

images:
N
k=Y I xJ,
i=1

where I; and J; are the pixel values in each image.

To filter an image I with a smaller image J, repeat the process described
above for each patch of I that is the same size as image J by “sliding” the filter
window across each possible position in [.

When you filter a larger image I with a smaller patch J, you will generally
end up with a smaller image as a result. For example if [is 7x7 and J is 3x3,
then the final image will be 5x5, because there are exactly 25 locations where
the entire filter kernel J will fit within the image I. If it is important to make
the final image the same size as the original image, one can allow the filter to
extend outside the image I. To do this, one has to invent values for the missing
pixels outside the image I. Usually, a value of 0 is used.

4.2 Some very common filter kernels

We have mentioned a variety of common filter kernels in class. Here is a review.

4.2.1 Averaging filter

The following filters compute the average brightness value of the patch that
they are filtered with:

11 1
f3.’£3: ???
9 9 9
1 01 1 1 1
25 25 25 25 25
fous = | = = = = =
.
25 25 25 25 25

The first one averages over a 3x3 neighborhood. The second over a 5x5 neigh-
borhood.

4.2.2 Weighted average filter

Instead of each pixel contributing equally to the average, we can have pixels
near the middle of the filter contribute more and pixels near the edge of the
filter contribute less, as in

0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
faauss = | 0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030

While you don’t need to memorize the specific values of such a filter, things you
should notice include

e The values are all positive,

e The values in the middle are largest, decreasing away from the middle,
e The values sum to 1.0,

e They are symmetric about the center.

If you plotted the filter as a surface it would look approximately like a two-
dimensional Gaussian (or normal) distribution. This is the kind of filter that one
uses to produce the smoothed (or blurred) images used in a Gaussian pyramid
(such as the one used in the SIFT descriptor).

4.2.3 Edge filters

Some filters, which look like little “mini-edges” if you show them as an image,
are good for detecting edges. The following filters can be used to find horizontal
edges in images, vertical edges, and diagonal edges, respectively:

-1 0 1
fvert = -1 0 1)
-1 0 1
-1 -1 -1
fhor = 0 0 0 s
1 1 1
0 0.5 1
faiag=] —05 0 05
-1 =05 0

4.2.4 Partial derivative filters

In class, we discussed ways of estimating the gradient of an image at each point.
This is the direction in which an image is changing the brightness the fastest,
and can be written as a vector of the partial derivatives:

oI
oz
VIZ[M].

To compute a “discrete” approximation to the partial derivatives you can
use the following filters:

0 0 O
fam: 01 -1 ’
0 0 O

and

0 0 0
foy=10 1 0
0 -1 0

Alternatively, you could use the vertical edge filter (x-derivative) and horizontal
edge filter (y-derivative) defined above to compute approximations to the partial
derivatives.

4.2.5 The trivial “identity” filter

You should be able to figure out what the following filter does. If not, you don’t
understand filters yet:

fident =

o O O
O = O
o O O

5 SIFT features

Review the slides on SIFT features using the link on the course web site (Nov.
19 lecture).
The key high-level ideas of the SIFT descriptor are

e First, we find points of interest, known as “keypoints” in the image. These
will be local extrema (minima or maxima) of the Difference-of-Gaussian
image pyramid (discussed below).

e Some of these local extrema points are thrown out because they are unsta-
ble. This means that a very small change to the image (changing one pixel
by one brightness value, for example), may change whether the point is a
local extremum. Points in smooth regions of the image and along “ridges”
(like images of folding curtains) are typically the types of points that are
thrown out.

e After a keypoint is found (it is at a local extremum and it is not unstable),
its “scale” is defined to be the level of the image pyramid in which it was
found. If it was found in the blurriest level of the image pyramid, it will
have a large scale. If it was found in the sharpest level of the image
pyramid, it will have a small scale.

e Then a keypoint orientation is assigned. This is the, or one of the, domi-
nant orientations in a patch around the keypoint. The dominant orienta-
tion is found by looking at a histogram of the gradient orientations in the
patch, and picking the orientations with the most values in the histogram.

e Finally, with keypoints that have scales and orientations, we put a set
of 4x4 bins down at the given orientation and scale, and build sixteen

histograms of local gradient magnitudes. Since each histogram has 8 bins,
this will give us a total of 4x4x8 values for on SIFT descriptor.

You should understand all of the above points about SIFT keypoints and de-
scriptors. Now, here are some additional details you need to understand to
apply SIFT features.

5.0.6 Scale space and difference-of-Gaussian scale space

The scale space of an image is a sequence of successively more blurred copies
of an image. By starting with an image I and letting this be layer 1, which we
can call I1 of the scale space, we can form layer 2 of scale space by filtering the
image with a Gaussian kernel (see weighted average filter in filtering section).
Since a Gaussian filter is symmetric, the resulting of filtering with the kernel and
convolving with it (by flipping the kernel vertically and horizontall) is equivalent.
Thus we can think about this as Gaussian convolution rather than Gaussian
filtering, which makes it easier to write:

—[2 = Il ® fGauss-

You can blur more or less depending upon the spread of your Gaussian kernel,
but you can just think of using the kernel given above. In general,

Ik+1 = Ik & fGauss-

The set of images I, Io, ..., [is called a Gaussian scale space of K levels. The
difference-of-Gaussian scale space is formed by taking differences of successive
images in the Gaussian scale space:

Dy =1, - I,

and more generally,
Dy = Ijy1 — Ii.
The set of images D1, Do, ..., Dk _1 is called a difference-of-Gaussian scale space
of K — 1 levels.
5.0.7 Local extrema
A pixel in the stack of images D1, Do, ..., Dk _1 is a local extremum if it is larger
thanits 26 neighbors or smaller than its 26 neighbors.
5.0.8 Magnitude and Orientation of a gradient

Using the partial derivative filters described in the filtering section above, you
can compute the partial derivatives of an image at each point, and hence form
the gradient of the image at each point. You can compute the magnitude of
the gradient simply by using the vector magnitude formula from section 2.1.

10

Assuming the magntiude is not zero, you can compute the gradient orientation

as
ol 01

oy’ 0x”
That is, € is the angle whose tangent is the y-partial over the x-partial. If you
don’t understand the arctangent function, you need to look it up on your own.

0 = arctan(

5.0.9 SIFT uses

SIFT was specifically defined to create descriptors for image points such that if
the same object were seen again, the descriptor for points on that object would
be highly similar to the previous view of that object.

6 RANSAC

Given a bunch of SIFT keypoints and descriptors in one image, and a bunch of
SIFT keypoints in another image, we can draw lines between descriptors that
are very similar to each other (Euclidean distance betwen two SIFT vectors
is less than some €). However, some of these matches will be incorrect. THe
purpose of RANSAC is to find a transformation that puts as many points from
one image into correpondence with the other image as possible. I ask you to
refer to the slides on the course web site to review RANSAC (slides from Nov.
21).

You should be generally familiar with how to use RANSAC with SIFT fea-
tures to build an image panorama, as discussed in class.

7 Face Detection and Face Recognition

Suppose you read an article with a quotation from the CEO of a new face recog-
nition company that says, “Our algorithm achieves 99.9% in face recognition.”
Why is this a meaningless statement? Consider the following factors:

e What is the number of people who are considered as potential identities
of a face?

e Is the face under even lighting, or arbitrary lighting?
e Is the subject asked to pose for the picture, or are the pictures candid?

e How many training examples are given for each face?

These are just some of the reasons a single number is meaningless. Be prepared
to discuss other reasons.

Discuss why face recognition might not yet be practically applied when look-
ing for terrorists in an airport. How is the deployment of face recognition tech-
nology dependent upon the costs of the errors that might be made? I discussed
these issues in class. You can review them in the “Intro to face slides” (Nov. 26
lecture).

11

7.1 Face Detection

1. Be familiar with the “Face in the Beans” slide (from “Intro to face slides”
on course web page.) What does it illustrate about face detection in
humans?

2. Discuss some of the subtleties in defining face detection. What is a true
positive? A true negative? A false positive? A false negative? Why do
we need a very, very, very low rate of false positives?

3. How is face detection posed as a classification problem? What are the
classes?

4. Give a plausible number of regions that must be evaluated for a face
detector and a typical image size.

7.1.1 Boosting

Understand the following elements of the “Boosting” algorithm as presented in
the slides from Dec. 3.

e Boosting is a discriminative classification method which means that it
uses training data to try to form regions of feature space that belong to
one class or another class. THe example in the lecture slides is a two-
dimensional feature space, meaning that it tries to break up the plane (a
two-dimensional region) into areas that belong to the class “red” or “blue”.
In face detection, we may use a much larger number of features, but the
same principles apply. A good exercise is to make sure you understand
how Boosting would work with 3 features instead of 2 features.

e Boosting uses “weak learners”, which are often based on computing a
single feature. For example, you could build a gender classifier by asking
whether someone’s hair was longer than 6 inches. It wouldn’t be a very
good classifier, but as long as it is right more than 50% of the time, it is
called a weak learner or a weak classifier. Boosting combines weak learners
into a single better classifier.

e In each stage of Boosting, the examples that the previous learner got
wrong are ‘re-weighted” and a new weak learner is found that tries to
do better on the reweighted examples. You can think of reweighting as
adding extra examples of the data points that were classfied incorrectly.

e After some number of weak learners are built, Boosting makes a final deci-
sion by adding together the weak learners in a voting scheme. Whichever
class gets the most votes from all of the weak learners is the final decision.

12

7.1.2 Haar features and integral images

The rectangular features used in the Viola-Jones face detector are called Haar
features. Many Haar features can be computed efficiently in a single image by
first computing the integral image. You should understand the principles of
integral images. If you can’t remember how they work, refer to your notes and
the lecture slides (from Dec. 3).

7.1.3 The cascade of classifiers

The Viola-Jones face detector is very fast because it uses a “cascade” of classi-
fiers. An image region is only detected as a face if it makes through all of the
classifiers in the cascade. The way it is designed, the Viola-Jones detector can
reject most patches in an image as being highly unlikely to be faces by putting
them through a very very simple classifier that comes at the beginning of the
cascade. It can then spend more effort on the small number of images that come
later in the cascade by applying more complicated classifiers to those patches.

8 Acromegaly and morphable models

Be able to answer these questions. You can refer to the slides for Dec. 5.
e What is acromegaly and what does it have to do with face recognition?
e What does it mean to screen for a medical condition?

e Why did I decide to use a morphable model to help screen for acromegaly
instead of using a procedure which analyzed the location of various features
within the image?

You do not need to understand principal components analysis or the details
of the morphable model for the final.

13

