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Basin of attraction results
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Question

= How can we get the benefits of congealing
without lots of images, and without a massive
computational burden?
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How do we line up a new image? Funneling...

Sequence of successively “sharper” models

step O step1 step N
0/0[0]e |0]2] 2/0[0]e |0]2] olololo]o]|o]
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Take one gradient step with respect to each model.
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How to align a new image after congealing?

 More efficient to save sequence of distribution fields
from congealing

e High entropy to low entropy sequence » “Image
Funnel”

 Funneling: increase likelihood of new image at each
iteration according to corresponding distribution field
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Distribution Distribution Distribution
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New Image 1age Funnel Aligned Image
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Aligning two images using the funneling concept

= Given image I and image ]

= Generate many perturbed versions of image I,
including the original image.

= Generate image funnel for set of I images.
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Perturbed versions of an image
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As an image stack.
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Summing the perturbed stack.
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Distribution of perturbed stack.
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Distribution fields

= Is there a simpler way to generate the idea of
the distributions in a perturbed stack than to

randomly make the images and then compute
the distributions?

= Yes, distribution fields.
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Exploding an image
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Spatial Blur: 3d convolution with 2d Gaussian
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Spatial Blur: 3d convolution with 2d Gaussian

KEY PROPERTY: doesn't destroy
information through averaging
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How to compare?
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How to compare?

« L1 distance?
« L2 distance?
« KL divergence?
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The likelihood match

= Recall image I and patch J.

= Make a distribution field out of I and evaluate the
likelihood of J under the field.

Image |
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The likelihood match

Given distribution field D = D([/: o) and image J.

N

P'TOI)(J) — Hpsr-.y(']x..'y)

=1
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Sharpening match

N
m(;i,xonb (J:0) I |p$ y Jzy)
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Understanding the sharpening match
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What standard deviation maximizes the likelihood of
a given point under a zero-mean Gaussian?
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Intuition behind sharpening match

= Increase standard deviation until it matches
“average distance” to matching points.
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Properties of the sharpening match

= A patch has probability of 1.0 under its own
distribution field.

= Probability of an image patch degrades gracefully
as it is translated away from best position.

= Optimum “sigma” value gives a very intuitive
notion of the quality of the image match.
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Tracking results

= State of the art results on tracking with standard
sequences
 Very simple code
e Trivial motion model
 Simple memory model

Distribution Fields 29



JMassAmbhe

Distribution Fields 30



JMassAmhe
It’s not perfect...
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Closely Related work

= Mixture of Gaussian backgrounding (Stauffer...)
= Shape contexts (Belongie and Malik)

= Congealing (me)

= Bilateral filter

= SIFT (Lowe), HOG (Dalal and Triggs)

= Geometric Blur (Berg)

= Rectified flow techniques (Efros, Mori)

= Mean-shift tracking

= Kernel tracking

= and many others...

Distribution Fields 32



JMassAmbhe

= Lots more applications
e Backgrounding
 Image matching
* Pixel unmixing
e Superresolution
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Motivations

= A distance between images:
e Many metrics "broken" by slight misalignments.

 Measure of distance or similarity should degrade
gracefully with transformation.

e "Invariant metrics" throw away a lot of information.
e Integrating over regions
¢ "max pooling”
e Averaging over regions
» Lose fine-grained spatial info:
e Face recognition
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Spatial Blur: Compare to regular image blur
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