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Abstract. The sensory pathways of animals are well adapted to processing a special dass 
of signals, namely stimuli from the animal's mvironment. An imponant fact about natural 
stimuli h that they are typically wry redundant and hence the sampled representation 
of these signals formed bj the a m y  of sensory cells is inescient. One muld argue 
for some animals and pathways, as we do in this review, that efficiency of information 
representation in the newow sfstem has m r a l  evolutionay advantages. Consequently, 
one might expect that much of the processing in the early levels of these sensoy pathways 
wuld be dedicated towards r e d i n g  incoming dgnals into a more efficient form. In this 
review, we explore the p ~ c i p l e  of efficiency of information represenlation as a design 
principle for sensory processing. We give a preliminary discussion on how this principle 
wuld be applied in general w predict neural processing and then discuss concretely 
-me neural systems where it recently has been shown w be successful. In particular, we 
examine the fly's UIC d i n g  strategy and the mammalian retinal mding in the spatial, 
temporal and ehromalic domains. 

- 

1. Introduction 

This review explores the use of information theory (Shannon anu Weaver 1949) as a 
basis for a fust principles approach to neural computing. The relevance of this theory 
to the nervous system ultimately derives from the fact that the nervous system pos- 
sesses a multitude of subsystems that acquire, process and communicate information. 
This is especially true in the sensory pathways. One could use information theory to 
assess the efficiency of information representation in many of these pathways. This 
already has given some insight into computational strategies in simple neural systems 
(Bialek et af 1991a, Warland et d 1992). More interestingly one could argue, as we do 
in section 3, that efficiency of information representation in the nervous system po- 
tentially has evolutionary advantages (Attneave 1954, Barlow 1961, 1985, Uttley 1979, 
Srinivisan ef d 1982, Linsker 1958, 1989a,b, Field 1987, Atick and Redlich 1990a,b, 
1992a, Atick et af 1990, 1991, Bialek et a1 1991b, see also Barlow 1989 and references 
therein) and that much of the processing in the early levels of sensory pathways might 
be geared towards building efficient representations of sensory stimuli in an animal's 
environment. 

The above efficiency principle, formulated as an optimization problem, can be 
used as a design principle to predict neural processing. Starting with the natural 
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representation of environmental signals as sampled by the array of sensory cells, one 
can try to find the reoodings needed to improve efficiency subject to identifiable 
biological hardware constraints. The several stages of processing required to cast 
incoming data into the optimal form can then be compared to the stages of neural 
processing observed in sensory pathways. This principle has been shown to successfully 
predict retinal processing in space-time and colour (Atick and Redlich 1990a,b, 1992a, 
Atick et ai 1990, 1991), and there are encouraging signs that it could be equally 
successful in predicting some of the cortical computation strategies (Barlow 1989, 
Field 1989, Barlow and Foldiak 1989, k i c k  d a1 1992). The approach just described 
can be termed 'ecological', since it attempts to predict neural processing from physical 
properties of the stimulus environment. &entia1 to the success of this programme k 
a quantitative lolowledge of (statistical) properties of natural signals. Several studies 
on properties of natural stimuli are currently underway. 

The organization of the review is as follows. We start in section 2 with a brief 
review of information theory cast in a language suited for our subsequent analysis. In 
section 3, we speculate on why eficiency of information representation could be an 
organizing principle underlying sensory processing. We then formulate this principle 
as an optimization problem and discuss how in general it might be solved. In sections 
4 and 5 we analyse in detail some biological systems where information theory has 
been shown to predict the observed neural processing. In section four, we analyse the 
contrast-coding of the LMC cells in the blowfly compound eye (Laughlin 1981, 1989), 
while in section 5 we study the spatio-temporal (Atick and Redlich 1990a,b, 1992a) 
and colour (Atick ef ai 1990, 1991) coding of the mammalian retina. Our discussion 
on retinal processing is self-contained since in subsection 5.1 we have included a brief 
review of the relevant experimental facts on retinal coding in space, time and colour. 

2. Information theory: 8 quick primer 

Information theory evolved in the 1940s and 1950s in response to the need of electrical 
engineers to design practical communication devices. The theory, however, despite 
its practical origins, is a deep mathematical theory (Shannon and Weaver 1949) 
concerned with the more basic aspects of the '"munjcation process'. In fact, it 
is a framework for investigating fundamental issues such as efficiency of information 
representation and its limitations in reliable communication. The practical utility of 
this theory stems from its multitude of powerful theorems that are used to compute 
optimal efficiency bounds for any given communication processt. These ideal bounds 
serve as benchmarks to guide the design of better information systems. 

In this section we give a brief review of information theory. This review is not 
intended to be a full account of the theory. It focuses primarily on one aspect 
of information theory, namely the effect of statistical regularities on efficiency of 
information representation. Other important aspects are ignored including the role 
of noise and the reliability of representation. However, this account is adequate 
to enable the reader with no prior howledge of information theory to follow its 
subsequent applications to neural computing. Readers interested in further details 
are encouraged to consult the literature (Shannon and Weaver 1949, Gallager 1968). 

t Physicists might hnd c h m  bounds leminisccnc of the bounds sel by the law of thermodpamia on the 
performanoe d heat engines. 
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21. Infonnnfion sources and channels 

In information theoly any device, system or process that generates messages as its 
output is generically referred to as an information source. Although each source has 
its own representation that it uses to put out messages, generally speaking sources 
represent their messages as combinations of symbols selected from their alphabers, 
the list of all possible symbols they are capable of producing. The symbols are often 
called the source symbols or the representation dements. The choice of alphabet and 
the way the symbols are used to construct messages constitutes a representation or a 
code-source coding. 

For example, a book in English can be thought of as the output of an information 
sourceEnglish language-whose alphabet is A , .  . . , 2, + blank. Similarly, a neuron 
or a layer of neurons can act as an information source whose alphabet is the different 
neuronal response levels. Finally, an information source that is discussed often in 
this review is the visual environment, where the alphabet is the different grey levels 
of light pixels in the image mosaic. For simplicity, we introduce information theory 
for the discrete case, where there is a countable number, N, of symbols that can be 
produced by the information sourcet. In written English N = 27, while in an &bit 
grey scale imaging, N = 2* = 256. 

An important fact about 'natural' information souroes is that they never produce 
messages which are random combinations of their symbols. Instead, their messages 
tend to possess regularities or what is known as statistical stmcture. In other words, 
the way symbols are put together to form messages obeys certain statistical rules that 
are source specific. 'I3 begin with, information sources do not utilize their symbols 
with equal frequency. In long sequences of written English for example, E occurs at 
the rate of once in every ten letters while 2 occurs only once in a thousand (Pratt 
1942). In totally random sequences of English alphabet the frequency of occurrence 
would be once in every 27 for all the letters. The frequency of occurrence of source 
symbols is captured by the set of probabilities { P( m) , m = 1, . . . , N}. 

More importantly, the selection of a symbol in a message is influenced by previous 
selections; Le. symbols in a message are not statistically independent, instead there 
are intersymbol dependencies or correlations. Again, in English when a T occurs 
somewhere in a text it is very likely it will be followed by an H while it is very 
unlikely that it will be followed by a Q for example. This statistical influence can be 
quite significant and can extend up to many symbols. Mathematically, it is captured 
by conditional probabilities or equivalently by joint probabilities among symbols. For 
messages of length I symbols the joint probabilities are denoted by { P ( m l , .  . . ,mi)} 
where mi is the ith symbol within the message. 

We model real information sources as stochastic systems (F'apoulis 1984) that 
generate sequences of symbols subject to some statistical rules (see also Geman and 
Geman 1984, Kersten 1990). Since our bowledge of the statistical regularities of 
natural information sources is somewhat limited at this time, the rules we impose 
on our models represent only a subset of all regularities real information sources 
might possess. This is not necessarily a handicap since at any given stage in a sensory 
pathway, especially at the early stages, we suspect that on& incomplete knowledge 
of statistical regularities of the stimulus source is available to neurons. For example, 
we shall see in section 5 that retinal cells receptive fields can be accounted for with 
howledge of painvise correlation function of input signals only. Thus an approximate 

t l l i s  cdn always be achieved ty an appmpriale choice of discretization of source outputs. 
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model of natural scenes that generates luminosity pixels subject only to the constraint 
of a fixed pairwise correlation function may be sufficient for studying the retina. Of 
course, to predict the processing in the cortex, knowledge of more complex regularities 
is necessary. 

Finally, another basic concept in this theory is the concept of an information chan- 
nel, which is the medium through which messages from sources are transmitted or 
stored. Just like an information source a channel possesses a set of symbols, called 
channel symbolr, which are used to carry the messages. The problem of mapping 
source symbols into channel symbols is referred to as the channel coding problem 
(Gallager 1%). Fbr the sake of brevity in the present review we ignore all differ- 
ences between source and channel coding and deal only with the generic problem 
of information representation regardless of where the coding is happening. This is 
justifiable especially since we are focusing on discrete noiseless information theory. 

22 Eficiency of information reprcrentation 

As mentioned earlier, one of the main concerns of noiseless information theory is 
quantifying elficiency of information representation. Intuitively, inefficiency can be 
attributed to the fact that information sources are constrained to obey statistical rules 
in constructing their messages. These rules build some degree of redundancy where, 
for example, many pieces in a message are a priori predictable from other pieces and 
from knowledge of the statistical structure. Also the presence of constraints implies 
that a source does not utilize its alphabet to its fullest capacity since the constraints 
limit the combinations of symbols that are allowed as output. Hence, a representation 
that possesses any statistical regularities is in many ways wasteful or inefficient. In 
this section we find a quantitative measure for this inefficiency. 

lb begin with, information theory attributes to each message in the ensemble M 
of all messages that can be produced by a source, a statistical quantity known as the 
infomiation which is given byt 

where P(w) is the probability of the message w normalized so that E:==, P ( w )  = 1, 
with ,U the total number of messages in the ensemble M .  /(w) is essentially a 
measure of ‘surprise’ or a priori ‘unexpectedness’ of a message. According to it, a 
message that occurs often P(w) - 1 has low surprise or information value I ( w )  - 0, 
while that which is unexpected has high information. This measure conforms to the 
usual editorial policy where rare events are given more attention than frequently 
occurring ones. However, we should emphasize that it ignores the semantic value of 
a message; in this theory, the unexpectedness of a message plays an important role 
but is distinct from the m-aning of the message. 

Averaging (2.1) Over all messages in the ensemble M defines 

N N 
H (  M )  = P(w) I (  w) = - P( w) log* P(u) (22) 

W = 1  W = l  

which is known as the entropy or average information per message. As is shown below, 
H (  M )  is the mathematical object one needs to construct a quantitative measure of 

t Since we use log, !he unik of I are bill  (or binary digils)/message, 
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efficiency. Its precise significance derives from the powerful theorems that were 
proven about it. For example, the source coding theorem (see e.g. Gallager 1968) 
shows that H (  M) is the minimum length in binary digits (bits) per source message 
that are needed on average to represent the outputs of the source. Immediately, this 
says that a representation is most efficient iff on average messages in the ensemble 
M are equal to H (  M) bits in length. 
RI see how H (  M) is used to define a quantitative measure of efficiency, we 

ficiency, namely the statistical structure. For concreteness, we consider a repre- 
sentation where each message w is built out of a combination of 1 symbols, then 
P ( w )  = P ( m , ,  . . . ,mi ) .  We examine the value of H (  M) as a function of the 
statistical structure of the source keeping the N symbols and the length 1 fixed. We 
show that H (  M) decreases the more statistical constraints the source has to obey in 
generating messages. 

Consider first the case of a source that uses a representation where the symbols are 
statistically independent, i.e. the only statistical structure is that given by { P ( m i ) ] .  
In thatcase P ( m l ,  ..., ml)  = P ( m , ) . P ( m z ) . . . P ( m l )  and theentropy H ( M )  
can be written as a sum over the individual symbol (or pixel) entropies, H (  i), 

iz\,&oate ~-..- i@ denenrlenre --r -..-- ogp inrnirivelv -._-.._ .-., w1.ppive.c =-.-..-” &.e p~cse of kef- 

I N  1 

.-\l.-/ U (  An\ - - --i- I- P(” .1”*,.-.61. . )  I n m .  P l n  \..”,/ . I  = - v -.l”/. UIi)  (2.3) 
i=l m.=1 i s 1  

In general, however, the symbols are not statistically independent, so P ( m , ,  . . . , ml)  
does not factorize into a product and the total entropy does not equal the sum of 
symbol entropies. Instead it satisfiest 

i 

H ( M )  4 H ( i )  (2.4) 
i=1  

with equality if€ the symbols are statistically independent. ms means that statistical 
influence among symbols lowers H ( M )  or the amount of information carried by 
those symbols, which is intuitive since in this case many of the symbols redundantly 
carry the same information. 

The upper bound on H ( M )  in (2.4) is not the absolute maximum since one 
can still look for the distribution { P ( m , ) }  that maximizes the symbol entropy 
H ( i )  = -EN m,=1 P(mi)log, P(m;) .  Again, it is not hard to show that the maxi- 
mum occurs when { P ( m i )  = 1/N, V mi}, or when the alphabets are utilized with 
equal frequency, as anticipated. The maximum this gives is 

t lb see how the proof goes mnsider the simple case of two symbols. Define the matrix Di, = 
P(m,)P(m3) - P(m.,m,),  then using the fundamental hequalily z 2 In(1 + 2 )  applied to z = 
D;jjPjm,,m,j we have the lnequaiity D . , j P j m , , m , j  2 i n j i + D . , i P i m , , m , ) j .  Multipiying his 
by P ( m , ,  m,) on both sides and Summating on i and f remembering thal P ( m i )  = E, P i n , ,  m,) 
and E. P i m i )  = 1 one arrives a1 H ( 1 )  t H ( 2 )  2 H(1,Z). Generalizing his pmof to arbitraty 
number of symbols is slraightfonvard. 
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where the first maximization is over the fuU statistical structure, and the second is 
over the distribution { P ( m i ) } .  Thus, maximum entropy is achieved by a source that 
represents its messages such that no statistical regularities exist among the symbols. 
A representation with no statistical structure is one where the receiver's knowledge 
about what to expect is minimal and thus on average a message when received con- 
veys maximum amount of 'surprise' or equivalently maximum amount of information 
H ( M ) .  

The last equality in (2.5) defines another important information theoretic quantity, 
namely the capoe9 C of the representation or the channel, which is the absolute 
maximum information that 1 symbols selected from a list of N distinct alphabets 
could ever carry. Notice that C = 1 log, N = log, NI,  is the logarithm of the total 
number of messages, NI,  that the representation can carry. It can also be interpreted 
as the actual length of messages in binary digits. In English, C/1 = log,27 = 
4.73 bitsfletter, while the capacity of an &bit grey scale 256 x 256 pixel screen is 
8 x 256 x 256 .  

We are now ready to define a measure of efficiency: for any source with H ( M )  
using a representation of capacity C one useful measure of efficiency is 

which is called the Shannon rcdundancy. Since H (  M) 6 C , 0 6 R 4 1 with R = 0 
being the most efficient where C = N ( M ) .  This measure has two interpretations. 
Fist, thinking of H (  M) as the actual amount of information transmitted and C as 
the maximum amount that could be transmitted, ef6ciency calls for using a channel 
where the transmitted rate H ( M )  is as close as possible to the maximum rate C. 
Altematively, since C is the average length of a message in bits and H (  M) is the 
smallest average length that can ever be achieved by any representation (source coding 
theorem), efficiency calls for finding a representation where the actual length C is as 
close as possible to minimum allowed H (  M). 

In general, to improve efficiency one recodes the output of the source into a 
representation that uses C as close to H (  M )  as possible. This data compression is 
achieved by discarding the structure that is apriori predictable from the messages (the 
s t a u s t ~ a ~  srrucmrc) icanng uniy w e  w-WIICU L~XLUBI VI I I U ~ I - ~ I G U I G U V I C  uiiuiiiiauuii. 
In principle, a coding strategy that takes advantage of all statistical regularities can 
compress the represcnration down to its minimal size, i.e. can allow the use of 
C = H ( M ) .  In practice, it might prove computationally prohibitive to achieve 
the optimal compression. In general one tries to hnd a compromise between the 
complexity of the representation and its efficiency, for example by ignoring certain 
aspects of the statistical structure and concentrating on those regularities that are 
simple to disentangle and discard in recoding. Also in real information systems noise 
is always present. In that case it is not advantageous to eliminate the redundancy 
completely, since it is redundancy after all that distinguishes what is signal from 
what is noise. Information theory formulated for noisy channels can be used to 
fmd the best compromise. In our analysis of real neural coding in section five we 
use an effective approach to handle the noise without the need for developing the 
complicated machinery of information theory in the presence of noise. The more 
general approach for handling noise in early sensory processing can be found in 
(Atick and Redlich 199Oa,b). 

I __,.. .L_ _ _  -- --- ..--,.:-.AL,A :-on--".:-- 
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23. The cost of inefic&ncy 

'Ib illustrate the cost of inefficiency, it is helpful to start with an example. Consider 
the DNA of a fictional creature whose bases, A, 1; C, G are assumed to occur with 
probabilities listed in the second column of table It. The problem is to find a 
coding that will store long sequences of this DNA on a computer disk economically. 
Since table 1 does not supply any knowledge of statistical structure beyond base 
probabilities, we have to treat this information source approximately as if no statistical 
influence among the bases existed, and deal with each symbol as an independent 
message. Then the entropy Of this DNA is H ( M )  = f x 1+ x 2+2 x 3 +  x 3 = 
bits/Base. This means that there exists a code that can represent this DNA'S sequences 
with as few as 2 bitsbase. If we code the four bases into 00, 11, 01, 10, then 
the average length (or capacity) used is 2 bitsbase which is greater than H ( M ) .  
However, if we code in the fashion illustrated in the third column of table 1, then 

of the source and thus the most elficient code possible given base probabilities only. 

n b l e  1. The probability distribution of Ihe t s e s  A, T C, G of the DNA of a Bctional 
mature  and lhe two simple binary d e s  discussed in Ihe text. 

Symbol P ( i )  Code 1 W e  2 

+h- n . , n _ n ~  Ia-nrh ;c 1 Y 1 ~I 1 v CI I 1 Y ?I 1 v ? - 2 .xrh:rh k n m . - + l . r  thn nne~nnw ,,,r 1.U.L.6' . c 1 , p , ,  0 - h A T - * 1 T - h U T  - h Y - -, ".,,..A. Y '""'L.J L..I .,L,LL"y, 2 4 a a 4 

A f "  0 
T a 01 10 
C b 10 110 
G p 11 111 1 

One might think that since the bases in code 2 are not of equal length that 
decoding sequences would be difficult. This is not true; the code by construction has 
a trivial decoding algorithm. In any sequence, a zero signals the end of a coded base; 
with one exception, where one does not encounter zero for three consecutive digits, 
in that case the base is G and the next digit is part of the next coded base. There 
is a general procedure for constructing these minimal redundancy codes known as 
Huffman coding which generalizes this trivial example to arbitrarily complicated real 
problems (see &lIager-1968). 

bitsbase or 12.5% shorter than code 1. Thus 
if this creature has lo9 bases in its DNA, code 1 effectively requires an additional a x lo9  = 250 Megabits or N 31 Megabytes to store the same information. Further 
savings in storage space could be achieved using a code that can discard other statis- 
tical regularities that this DNA might have, such as correlations among the bases. Of 
course, this wouid occur at the cost oi increasing the compiexicy of the code. 

The above example leads into the general question of the cost of inefficiency. In 
man-made systems, inefficiency usually means more storage space, more expenditure 
of transmission power, longer transmission times or in general larger bandwidths or 
dynamic range to transmit or store the same amount of hformation. 

In biological systems the consequences of inefficiency are not as clear and they are 
most likely animal dependent. What one needs is a way to translate the information 
theoretic cost into a biologically significant cost to an animal. However, generally 

Notice that code 2 is on average 

t Never mind Ihe fact that they violate Chargaff's d e .  
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speaking we suspect that most areas in the nervous system of many species could 
not afford to be inefficient, since invariably neurons have a limited response range 
(capacity or dynamic range) especially in comparison with the wide range of stimuli 
the animal encounters (Shapley and broth-Cugell 1984, Barlow et al 1987). Pooling 
its dynamic range resources, we believe the brain possesses a relatively limited number 
of states that it has to use to build representations of the great multitude of objects 
and events in its information-rich environment. Under such circumstances, an efficient 
representation can allow the brain to extract more information about its environment 
without the need to evolve to larger sizes. 

In addition to savings in dynamic range, efficient representations could potentially 
facilitate certain cognitive tasks, such as associative learning (Barlow 1989) and pattern 
recognition. Actually, in higher animals we feel it is more likely that cognitive benefits 
are the driving force towards efficient representations. These issues are discussed in 
further detail in section 3. 

24. ppes of ineficiencies 

mere  are hvg types of ineficiencies that one encounters in information systems. As 
we shall see shortly, both types can influence the computational strategies of real 
sensory neurons. Both were alluded to in our discussion above, here for future 
reference we exhibit them more explicitly. To do that, we rewrite the Shannon 
redundancy (2.6) as R = (1 / C ) (  C - H (  M)) in the following equivalent form 

(2.7) 

where we have added and subtracted (l/C)Ci=, H ( i )  to the definition of R. 
The two terms in the brackets in (27) explicitly quantify the contribution of the 

two forms of redundancy to R. First if the alphabets are used with equal frequency 
then E:=, H ( i )  = 1 x log, N = C (2.5), and the first term in the bracket drops 
out. In general, however, Cl,, H ( i )  < C, and this term contributes positively to 
the redundancy. Second, if there are no intersymbol dependencies, then the total 
entropy H (  M )  equals Ef=, H ( i )  exactly and the second term in (27) vanishes. 
vpically, however, there are statistical relations among the symbols in which case 
Cl=, H ( i )  > H (  M) (24) and hence the second term contributes a positive amount 
to the redundancy. In a system where there is absolutely no redundancy C = 
E!=, H ( i )  = H( M )  to make R = 0. 

To get a feel for the relative significance of the two types of inelliciencies, consider 
witten English. There C/f = log, 27 = 4.76 bitsfletter, while H ( i )  computed using 
the well known probabilities of different symbols (Pratt 1942) is 4.03 bitsfletter, which 
gives a redundancy of about only 15%. In gencral inefficiency due to unequal use of 
symbols is minor. The major source of redundancy comes &om statistical correlations 
among symbols. For English, an estimate of H ( M ) / 1  was first done by ShaMOn 
(1951) using a method that takes into account statistical correlations among the 
symbols. He found that the entropy is around 1.4 bitsfletter. From C / l  = 4.76, 
H ( M ) / I  = 1.4 and H ( i )  = 4.03 we can see ghat redundancy due to intersymbol 
correlations in English is about 55%, making the total redundancy of written English 
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close to 70%t. The situation is very similar in many natural sensory information 
sources. 

25. Minimum-redundancy vs minimum-entropy codes 

The expression for R in (2.7) also makes explicit two classes of codes that we will 
refer to in our discussions on neural coding. A code that minimizes the full R is 
h o w  as minimum redundancy code, while that which minimizes the part of R due 

Minimum entropy codes minimize the difference Cl=, H ( i )  - H ( M ) .  In the limit 
H ( i )  = H ( M ) ,  they produce a representation where the symbols are statisti- 

cally independent, so the probability of any message is given by the product of the 
probabilities of the symbols making up the message, i.e. joint probabilities factorize 
into products of individual probabilities (hence the name factorial code). If one in- 
sists on no ioss oi information, then iactoriai d e s  minimize xi=, l i i i j  subject to 
the constraint of Bed total entropy H (  M ) .  We should emphasize that these codes 
are not by themselves redundancy reducing. In fact, from (2.7) we can see that these 
codes preserve the total redundancy by transforming redundancy due to correlations 
to redundancy due to unequal use of symbols. 

The interest in minimum redundancy codes in engineering is clear; they allow 
the use of smaller dynamic range or smaller capacity. The  reason^ factorial code5 
are also interesting is that usually after minimizing E!=, H (  i) one can fmd trivial 
transformations to fit the coded messages into a channel with a smaller C, and thus 
they can be Viewed as a convenient first step for achieving minimum redundancy 
codes. For a simple example of this type of two-stage coding applied to continuous 
signals see subsection 4.2. 

In sensoly pathways, we expect factorial codes to play an important role for 
two reasons: -just as h engineering, factorial codes are excellent first steps towards 
redundancy reduction. This is especially uue for natural stimuli where the most 
significant part of the redundancy is coming from intersymbol dependemy. Second, 
factorial codes could have an intrinsic cognitive advantage beyond the fact that they 
enable the nervous system to use smaller dynamic range. Both issues are elaborated 
on in the next section. 

to &tersym.ooi mrrejaiions. ij “Own entropy de or jacton’ai m,dei. 

3. Information theory as an ecological theory of sensory ptvcessing? 

3.1. General remark 

The neural networks in the sensory pathways of animals are well adapted to processing 
signals from the ‘natural’ environment. One fact about these special stimuli which was 
discussed in subsection 21 is that they are never random; instead they tend to possess 
statistical regularities. For example, in natural images, due to the morphological 
consistency of objects, nearby pixels are very similar in their visual appearance. The 
luminosity profile in these images changes gradually in space and only abruptly at 
edges or borders. Similarly in time and colour there is continuity and smoothness. 

t For estimates of redundanq m other w l e m  languages, see Barnad (1955). 
t Elegant examples of factorial mdes o n  be found m Barlow ef d (1989) and Henlschel and Barlow 
(1991). see also Wdlanabe (1981, 1985). 
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This means that in natural images there is a high degree of spatio-temporal and 
chromatic correlation among pixels. Hence a pixel by pbtel representation of natural 
scenes, which is the representation formed by the photoreceptor mosaic, is inefficient. 
This fact was well known to engineers in the television industry as far back as the 
Mties. In fact, the statistical studies on television signals that they conducted indicate 
that redundancy could run well in excess of 90% in natural images (Gouriet 1952, 
Kretzmer 1952, Harrison 1952, Schreiber 1956). The situation is expected to be 
similar for most other senses. 

reasons why the nemus  system might invest some of its resources to recode in- 
coming signals to improve efficiency. We present three potential benefits of efficient 
representations. The first is an advantage of strict redundancy reduction, while the 
other two are advantages of both redundancy reduced and minimum entropy repre- 
sentationst. These benefits, however, are not mutually exclusive and do not exhaust 
all potential advantages of efficiency. Furthennore the discussion in this section 6 
somewhat heuristic; we hope to present a more mathematical analysis of the material 
in this section elsewhere. 

3.1.1. It is possible that at some point along a sensory 
pathway there exists what may be termed an information bottleneck. This means 
that somewhere there exists a restriction on the rate of data flow into the higher 
ieveis of a pathway. Tnis couid arise from a iimited bandwidin or dynamic range 
of a neural link, which is not unlikely given that neurons invariably possess limited 
response range (Shapley and Enroth-Cugell 1984, Barlow et a1 1987). Alternatively, 
the limitation could be due to a computational bottleneck in the higher levels of 
the sensory pathway that restricts the number of bits of data per second that can be 
analysed in the object recognition process. An example of such limitation might be 
the ‘attention bott!eneck‘ which B suspected to occur somewhere between area V4 
and the inferotemporal cortex lT (Van Essen et a1 1991)$. 

Studies on the speed of visual perception (Sziklai 1956) and reading speeds (Korn- 
huber 1973), consistently give numbers around 40-50 bits/s for the perceptual capacity 
of the visual pathway in humans. This number can be interpreted as the maximum 
rate of visual information that can be processed by the deep layers of the visual 
pathway and is in a sense a measure of the bottleneck. On the other hand the rate 
at which visual data is collected by the photoreceptor mosaic is known to exceed 
5 x lo6 bitsis (Jacobson 1951). In order to fit the huge range of incoming signals 
into the limited capacity anticipated at higher levels a sensoly pathway might have to 
perform a series of data compressions. One strategy for data compression in neural 
systems is redundancy reduction! (Attneave 1954, Barlow 1961). Other strategies 
include noise filtering and generalization. 

iBi iiai.umi slimuii iii a ~ @ ; y  form, afve svevverdi 

Informarion bofrleneck. 

t At this sage we cannot tell which of lhe WO slraregia, Rdundancy reduction or minimum entmpy, 
is more fundamental in the nervous system. However, since rhey arc closely related we Will mntinue lo 
k r  bath on an equal fooling under the banner of efficiency. 
t Actually il is very unlikely lhat the bottleneck is abmpl. I1 is mosl Likely happening through a gradual 
mnstriction of data Row. 
Fj Of m u w ,  if the animal’s needs are very specific then it muld develop specialized feature detmors-bug 
detectors-very early on in its pathways that are tuned for objects and pltems that are aitical for ils 
survival. Such detectors will ml down on the data rate sin= they discard almosl everything they do 
not detect. In higher animals, where the needs are no1 very speci6c and where flexibility lo changing 
environment is mliml, a better sirategy is one which recodes to improve effieency Athoul discarding a 
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3.1.2. Associative k m i n g .  Barlow (1989), argued that the way the nervous system 
represenn objects and events in the environment might have dramatic implications to 
an animal's ability to perform associative learning. The idea is that for an animal to 
learn a new association between any two events, m, and m2, the brain should have 
knowledge of the prior probability of Occurrence or the a priori coincidence rate of 
m, and m,. Without this infomation the animal cannot tell whether event m, has 
become a good predictor of m2 or whether the joint Occurrence of ml and m, (or 
ml foIlowed by m2) is consistent with the random coincidence rate, i.e. it cannot 
learn the association of mi and m2t. What the animal needs is knowledge of the 
prior joint probability P(m, , m2)$  Similar arguments apply for associations among 
any number of events. 

However, howledge of the prior probability of joint events in the environment is 
not easy to achieve. In general, there is a huge number of events and conjunctions 
among them. By any reasonable estimate, knowledge of the prior probabilities of all 
these conjunctions would require storage of an exponentially large set of numbers 
that far exceeds any estimate of brain storage resources. The only way out seems 
to be if the representation of events and objects in the brain is very special. In 
fact, if the representation is such that the elements are statistically independent- 
of course, until the association to be learned occurs-then the probability of any 
mmbination of them can be obtained very simply from individual probabilities, since 
1. in t h w  ..._. mw -I- P(- ,.",,. . . , ...n, 
NR probabilities { P ( m , ,  . , . , mn)] can be computed from knowledge of the N 
individual probabilities { P(m,) ;  m, = 1 , .  . . , A'}§. 

So the fact that the brain is finite in its resources suggests that a minimum 
entropy representation of the world might be necessary for it to perform a cognitive 
task essential for survival, namely associative learning. 

m 1 P i m  1..  . qw",), m.fls fer I"" N events !he 
\"",I  .' 

3.1.3. Pafteh recognilion. The ultimate goal of any sensory pathway is pattern recog- 
nition: for its survival, an animal needs to acquire from its senses knowledge of the 
location and identity of all objects in its immediate environment. A third possible 
explanation for why a sensory pathway might choose to preprocess incoming signals 
to improve their efficiency is that efficiency might facilitate the pattern recognition 
process (see also Barlow 1985, Watanabe 1981, 1985). 

Consider for instance the visual pathway. In the incoming representation, pixels 
are highly correlated and thus have low information value. A large number of pix- 
els is needed to define any feature. An efficient representation, on the other hand, 
decomposes images in terms of elements that are statistically independent and thus 

lot of infomation early on. In reality, a mmbination of the WO mechanisms is in place. For example. 
an animal chooses a sensory sampling unit-acuity limit or resolution-Mow which il discards all data. 
t In Pavlovian mnditioning ml b the mnditional stimulus while ml  b he unconditional one. 
$ 'B be more precise, it needs knowledge of the mnditional probability P(mzlm1) which is related 
to the joint probability through P(mzlm3) = P(ml,mz)/P(ml).  A high mnditional probability 
P(mzlm1) means that ml is a goad predictor of m ~ .  
8 'B take an example, imagine the situation where the visual pathway recodes images into a factorial 
representation. l h e n  the probability of any scene can be mmputed easily f" the pmducl of probabilities 
U, Y l r  "IUIIIuYaI sIcul=,Iu .,Id. I. LILLI"',LCL l l l l D  _,IC p'""~""'Ly . _ , I  E L"""g"L "1 "1 .W" ."ay.* "UC 

as the pmbabilily of some mmplex stimulus and two as the joint probability of lhe features lhat make 
up the stimulus. Thus factorial d e s  in vision provide the visual pathway with a simple way lo mmpute 
joint probabilities of visual features. 

-, .LA :_*:.i*..^l ..I"...,.-." .L̂ . i. ^̂ .i..̂ ..._ n:" ^ ^ ~ ^ ^  "--L"L:n:,.. _" L .*̂ ..̂ L. "r i" '..̂  ... - " ~  
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necessarily more informative elements. These elements are the features or the 'vocab- 
ulary' from which natural images can be assembled most economically. It is possible 
that these building blocks, arrived at by pure statistical considerations, are closer to 
the patterns and objects an animal needs to recognize in its environment and hence 
a representation that uses them could simplify the subsequent pattern recognition 
process. 

Independent of whether the visual system takes advantage of efficiency for pattern 
recognition, it is of interest to find what the features in efficient representations of 
naturai images turn out to be. lTnis is a concrete proposal, since starting with a data- 
base of natural images, one can look for transformations that drive 72. or some variant 
of it down. One promising approach for doing this is to use neural networks which 
can be trained using unsupervised learning algorithms that incrementally improve 
efficiency of representation as the network is exposed to more examples of natural 
images. Some unsupervised learning algorithms that achieve this in some simple 
.s++:nn. hI..n ..nnn.,mrl :- /P-,,,,A.,II %am u:..mn .,-A C~:~,,..~I,; lam D ~ . , . I ~ . . + + ~ ~  
c-,L"'Lp L . L I " I  '.ypu.ru U. \U""UP" I>_( 1 Y l l l " L l  YL." u-,,,""'Ly *>"a, L M . . I . . U L L I .  

and Hinton 1986, Barlow and Foldiak 1989, Redlich 1991, Atick and Redlich 1992b). 

3.2. An optimization problem 

In this section we formulate the principle of coding to improve efficiency as an op- 
timiition problem. Fbr concreteness, we focus on Visual processing. We make the 

factorial representation of the natural worldt. Wbat this means is that the visual 
system has to map the photoreceptor signals, which are highly correlated, to a rep- 
resentation where the elements are statistically independent. It is unlikely that any 
system could achieve this in one recoding. It is more likely that it would have to 
work in an iterative scheme that tries to improve efficiency by successively eliminating 
more mmplex forms of correlations. f i r  instance, we shall see in subsections 5.2 
and 5.3 that if at the first stage one insists on eliminating only second order statistics 
ignoring all the higher order regularities, one arrives at filters with properties that 
are close to those observed in the retina. It is then conceivable that the elimination 
of more complex statistical structures could lead to processing similar to that found 
in the primary visual cortex. 

RI begin with, let { L ;  , i = 1, . . . , n) denote the activities of the n ncurom in the 
inpui iayer and { 0, , i = i , . . . , i j the corresponding activities in ihe output iayer. (i 
is not necessarily equal to n). The response of the output neurons is assumed to be 
some general function of the input activities: 

hypat\& ;hat :he rJ.stcm G=nce-r;.Led .&h b;s&...?g a r&TuT,Er, . .  entrGFj ai 

O i = K i ( L l , . . , , L n )  V i .  ( 3 4  

The input and output layer could be any two consecutive stages along the visual 
pathway. The question is then how should the recoding functions {IC.;} be chosen in 
order to achieve the desired statistical independence? 

In subsection 3.2, we have seen that a recoding that minimizes the sum over 
pixel entropies xi=, H(0;) to its absolute minimum while keeping the total entropy 
fixed achieves statistical independence. In general, one may not be able to fmd the 
{Ki} that achieves the absolute minimum. For this reason, we define a fitness or 

t S i n e  
are equally relevant 10 minimum redundancy d i n g  

a simple Vansfomation we can also achieve minimum redundancy, the resulls of lhis section 
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energy functional, E{Ki} ,  that grades different recodings, { K i } ,  according to how 
well they minimize the sum of pixel entropies without loss of information. A reooding 
is Eonsidered to yield an improved representation if it possesses a smaller value for 
E. The simplest energy functional for statistical independence is 

1 

E { K i } = C H ( O i ) - 2 p [ H ( 0 ,  ,..., O l ) - H ( L ,  ,..., L,)] (3.2) 
i = 1  

where p is a parameter penaliziog information loss. It can also be treated as 
a Lagrange multiplier in which case it enforces the constraint H (  0,, . . . , 0,) = 
H (  L, ,  . . . , L,) exactly. Any hardware constraint can be added to (3.2) with the 
appropriate Lagrange multiplier. 

The optimal recoding can be found by solving the variational equations: 

(3.3) 

In general, these equations are hard to solve if { K ; }  is allowed to be any arbitrary 
function. However, it is not clear that biology could implement recodings by arbitrary 
functions. A better approach would be to find the optimal solution for a restricted 
class of functions that are implemcntable by realistic layers of neurons. For example 
the retina to a good approximation performs a linear transform on the photoreceptor 
signals, so one could solve (3.3) for the class of linear functions. 

An interesting simplification occurs when { Ki) is restricted to the class of linear 
one to one (I = n) rewdings, i.e. Oi = E;=, Kij L, , V i .  By a change of variables, 
keeping in mind that P( 0, , . . . ,On) transforms a i  a density it is not hard to show 
that H(O,,  . . . ,On) - H (  L , ,  . . . , L,) = log det K independent of details of the 
statistical structure of natural scenes, where K stands for the matrix K i j .  The only 
knowledge of the statistics resides in the pixel entropies { H ( O i ) } .  In subsection 
5.2, we solve (3.3) explicitly for th is  special class of codes. But first we discuss the 
statistics of natural scenes which are needed to compute E:=, H ( O i )  in (3.2). 

_._. 7 7 S r n r i r r i m  _- nf nntnml "--..-I v r ~ n o i  

Unfortunately only little is known at the quantitative level about the statistical prop- 
erties of natural scenes. Some of that knowledge has come from the early work 
on the statistics of television images (Gouriet 1952, Kretzmer 1952, Harrison 1952, 
Schreiber 1956) and from the more recent measurements of the painvise correlation 
function of natural scenes by Field (1987, 1989). Thus our model of natural scenes 

The two-dimensional pairwise correlation function, or alternatively the spatial 
%$! hg;,e tfi hp zppXL~,ate.  

autocorrelator, is defined as 

R(=,,z,)  = (L(z,)L(z,)) (3.4) 

where the brackets denote ensemble averaging over Scenes or average over one large 
scene assuming ergodicity (Papoulis 1984). L(z,),,L(z,) are the light levels above 
the mean level at two spatial points z1 and z2. By homogeneity of natural scenes 
the autocorrelator is only a function of the relative distance, X z1 - z2: R ( X ) .  
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One can thus define the spalial power spectrum which is the Fourier transform of the 
autocorrelator 

R(f) = JdX e x p ( i f . X ) R ( X ) .  

RI an ergodic system (Papoulis 1984). the power spectrum R( f) is simply given by 
L ( f ) L ( - f ) ,  and therefore it is only necessary to take the Fourier transform of a 
scene L(z) hi &ei io mmpuie the power speaium. 

This is what Field did, where he found that invariably for natural scenes 

R(f) - l/lfI2 ( 3 4  

which corresponds to a scale invariant autocorrelator: under a global rescaling of 

scale invariant spatial power spectrum is by no means a complete characterization of 
natural scenes, it is the simplest regularity' they possess. 

The model of natural Scenes that we adopt is one where the pixels 
( L ( z l ) ,  ..., L(zn)) making up an image are chosen with a Gaussian probability 
distribution of the form 

!hp spatia! ~ ~ r d i f i a t ~  ?: - QZ the autoErre!ator P,(=z) - *?'(z)t. LAJt.h.cggh $3 

. .I P(L) = [(2~)"det(R)]-"*exp (3.7) 

In writing this expression we have used upright bold-face symbols to denote mavices 
and vectors; R stands for the matrix Ri, = ( L ( z i ) L ( z j ) )  and is given by the Fourier 
transform of (3.6), and L is the vector ( G z t ) ,  . . . , L(z,)). The distribution in (3.7) 

being R. In other words it is the distribution that incorporates no knowledge beyond 
what is specified by the autocorrelator, and hence is the one that most honestly 
reflects what we h o w  about natural scenes. Equation (3.7) will be used in section 5. 

k ;ye on* ;tat &<es i-ila&miii-ir .a.d; eatioW HiLj  miis&ieni .With ;;e autoGiie;atoi 

A wtig impmv.e &eienr-F &rate@= 

The number of examples of neural systems where a computational strategy to improve 
efficiency has been demonstrated, is growing (Laughlin 1981, Atick and Redlich 199Oa, 
1992a, Bialek 1990, Atick er a f  1990). In this review, we only have space to discuss in 
detail two examples. These two illustrate coding strategies designed to deal with the 
two types of ineficiencies described in subsection 2.4. Our first example, discussed 
in this section, illustrates a d i n g  scheme from the fly compound eye that eliminates 
inefficiency due to unequal use of neural response levels (Laughlin 1981). The second, 
io which we dedicate section 5, examines the mammalian retinal coding strategies in 
space-time and colour, which appear to be designed primarily to deal with inefficiency 
due to interpixel dependencies or correlations. 

t lb make the inverse Fourier transform of (3.6) well defined one has to use a low and high frequenLy 
CuloKs which physically mrrepond to U ( s k  of lhe visual field) and l/(rcsolution scale) respectively. These 
cum& violale the scale invariance of R(z). which holds only as an approximale qmmeuy. 
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4.1. LMC gain control in the bfowfty compound eye 

The large monopolar cells (LMC) in the blowfly compound eye have been studied 
extensively over the last two decades (for reviews see Shaw 1984, Laughlin 1987). 
They are interneurons known to respond to contrast signals. These neurons, just like 
all other neurons, face a serious coding problem since they have a strictly limited 
dynamic range, Le. they possess only a small number of distinguishable response 
levels. The question is how the LMC should choose its gain (or contrast sensitivity) 
so as to most eficientiy represent the different contrast ieveisi. 

If the LMC sets its sensitivity too high, inputs very often would saturate the 
response and much of the information about high contrast inputs would be. lost. On 
the other hand, if the sensitivity is too low, the information about low contrast inputs 
would be lost. In both cases, the different output levels would be far from being 
equally utilized. In the first case, the higher output states are used much more often 
than the lower ones, while in the second case large parts of the output at the high 
end remain unde r -u t i l i .  ?b achieve an efficient encoding, the LMC must choose its 
gain such that all response levels are used with equal frequency. 

This problem was first analysed information theoretically by Laughlin (1981), here, 
we paraphrase his analysis. The first step in trying to discover the optimal code is to 
lind out the statistical regularities of the input. In this case we only need to h o w  the 
probability distribution of contrast signals occurring in the natural environment of the 
fly. Laughlin (1981) measured it from samples of horizontal scans of dry woodland 
and lakeside vegetation. 

Contrast AI t i  

I 0.5 
m Probability 
. 
U 

-1.0 0 +i.o 
Contrast AI ii 

Figure 1. Probability distribution of mntrasls, (U), in the fly envimnment from the 
measurements of Laughlin (1981). The mntrast-responx predicted by informalion theorj 

mponse and that actually measured ty laughlin (1981) in h e  LhlC. 
k !he C"m.!ltiYC pEL!2br!lly ".1p h (5). (c) b a mmpn,:m!I IP!WCP!! !hC prdk!ed 

Let us denote the input contrast signal by c, and use o to represent any one 
of the output or response levels, measured in some appropriate quantization units. 
The probability distribution for the input is P ( c )  and it looks something like what 
is shown in figure l(a): adapted from Laughlin (19Sl). The neural transfer function 

t Here we am working at high luminosity so we can ignore the role of noix and @ a t  the problem wilh 
h e  twls of noiseless information theoly. 
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or the neural gain g defines a mapping from the input c to the output o = g ( c ) .  
?I, achieve optimal coding, the function g should be chosen such that the probability 
distribution of the output, P(o), is constant for all output states o, i.e. P ( o )  = U 
for some constant U. Since the transform from the input c to the output o can be 
thought of as a change of variables, and since the probabilities transform as densities, 
then 

P(o) d o  = P ( c )  d c .  (4.1) 

Setting P(o)  = a ,  we can integrate the resulting equation to find the wansformation 
on the input needed to equalize the output probabilitiest: 

o = g ( c ) =  L / ‘ d c ’ P ( c ’ )  
O1 -1 

- = LZ d c ’ P ( c ’ )  
(4.2) 

U 

which can be recognized as the cumulative probability map. Notice that the constant 
01 is given by 1/omax since omax = ( l / ~ ) J ; ~ d c ‘ P ( c ‘ )  = l/u. Also, the sensitivity 
of the cell, defined as d o l d c ,  in this coding scheme is simply P ( c ) .  So the neuron is 
most sensitive around the most prohahle input contrast with its sensirivify droppLng 
to zero as the signal c becomes improbable (see figure I@)). 

Laughlin compared this predicted neural coding strategy to that found in experi- 
ments where he measured the response of the light-adapted LMc to sudden increments 
or decrements of light about the steady background level. The results of the compar- 
ison are shown in figure l ( c ) .  The full curve is the cumulative probability computed 
from measured contrast probability distribution in the fly environment, while the dots 
with error bars are actual measurements of contrast response in the LMC The dots 
represent the average of repeated responses to the same stimulus. The agreement is 
clearly very good. 

4 .2  Gain control in a @er of n neurons 

In this section we generalize Laughlm’s result to a layer of TI neurons each receiving 
inputs from a spatial array of 1% sensory cells. If we denote the inputs &om the sensory 
cells by { e ; ,  i = 1,.  . . , n) and the response of the neurons by {oi,i = 1,. . . , n), the 
question again is how to choose the gain function, defined by o; = gi( cl,. . . , c,,),  in 
order to use the neuronal output levels most efficiently. We will make the assumption 
that all the output neurons have the the Same limited dynamic range. 

The analogue of (4.1) here is 

P(o1, ..., on) d o l . . . d o , =  P(c1 ,..., c , ) d c l ~ . . d c , , .  (4.3) 

In general, contrary to the one-neuron case, it is not obvious how to integrate (4.3) 
when we set P ( o ,  , . . . ,on) = a. However, suppose that the neurons before choosing 
their gain function, coded the signals into a factorial representation, Le. coded the 

t The mnlrast signal is defined as ( I  - I o ) / l o  where I is b e  intensity 01 a given pixel while IO is the 
average intensity within some visual window. This definition gives 8 mnfrast that cannot be smaller lhan 
-1. 
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input signals {ci} into { y i }  such that P(yl,...,yn) = P(y,) . . .P(y, , )  . Equation 
(4.3) can then be easily integrated to derive the necessary gain control on the resulting 
signals. The latter is simply given by the cumulative probability maps 

- 

(4.4) 

Minimum - Gain 
Entropy Coding Control - - 

where P is a number < 1 characterizing the degree of overlap between the two 
channels, and the brackets denote ensemble averages. According to figure 2, the 
signals c1, c2 are first transformed to the decorrelated signals y+,  y-: 

The y+,y- signals are also Gaussian with variances 1 + P and 1 - P respectively. 
Thus the final transformation From yt, y- to ot, o- is given by a cumulative integral 
over a Gaussian which is simply related to the standard error functions. The net 
transformation for this system is 

1 c1 + c2 

J z m  

JzJI1;; 

o+ - erf (- -) + constant 

o- - erf (Lm) +constant. 
(4.7) 

Notice in the regime where the contrast signals are small in comparison with the 
square root of the variance, the response linearizes, o* - (cl  & c 2 ) / m ,  and the 
only effect of the gain control is to normalize the signals by dividing by the square 
root of the variance. 

In the next section, we generalize the above minimum entropy code to the more 
realistic case of the array of retinal ganglion cells and will modify the coding to take 
into account the noise. However, we will ignore the gain control transform or the 
cumulative probability map and work purely within the linearized approximation. 
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5. Retinal coding strategies in space-time and mlour 

The mammalian retina is a rather unique neural system. It is a network that is 
complex enough so insight gained from understanding it promises to be useful in 
understanding other areas in the brain, yet it is still simple and isolated enough that 
quantitative experiments with clear outcomes can be performed. As such, the retina 
is ideal for developing and testing theoretical ideas on neural computations. 

In this section, we start by giving a brief review of relevant experimental facts 
about the retina. We then explore the efficiency principle discussed in section 3 in 
the context of the retina. This gives a predictive framework that explains many of the 
experimental facts in subsection 5.1. 

5.1. The retina: some relevanl experimental fac& 

The retina is the thin tissue lining the back of the eyeball. As a neural network, it has 
feedfonvard architecture with three essential layers: photoreceptors, bipolar cells, and 
ganglion cells. However, it also has important lateral connections and interneurons 
acting within a given layer. The photoreceptor layer forms the input to this network, 
where photons from an image focused on the surface of the retina are captured and 
transduced into graded voltage signals. The output is built of spike trains generated 
by ganglion cells, and it propagates down the optic nerve to the LGN and subsequently 
to the visual cortex 

Since, here, we are only interested in functional properties of the retina, neither 
detailed connectivity of its network nor properties of cells other than photoreceptors 
and ganglion cells are of interest to ust. We simply think of the retina as a black-box 
processor whose input is the photoreceptors' activities and output is the ganglion cells' 
activities. This processor can be characterized by its transprfirnction which specifies 
how the output is related to the input, see figure 3. 

The retinal transfer function is measured in single-cell recordings of ganglion 
cell outputs or inferred from psychophysical contrast sensitivity measurements subject 
to some plausible assumptions (see Shapley and Enroth-Cugell 1984 and references 
therein). In single-cell experiments, one finds that after adaptation to the light levcl 
the output of any given ganglion cell, measured as the rate of spikes in spikes& is to 
a good approximation given by a weighted sum of the photoreceptor activities over 
a smaU contiguous region on the surface of the retina known as the cell's receptive 
field, RF (figure 3). Thus the output of a ganglion cell whose RF is centred at zi and 
at time t can be written as2 

O(z,,l) = dz'dt'li(zi,z';t,t')L(z',t') E 1 C . L  (5.1) J 
where L ( d ,  t') is the activity of the photoreceptor at location z' and at time t ' ,  while 
K ( z ; , z ' ;  t ,  t') is the retinal kernel or retinal transfer function. 

t For further information about retinal organization the reader should mnsult reviews on the subject (eg. 
D a w n  1980, Shapley and Enrolh-Cugell 1984, Sterling 1990). 
$ The linear cells in cat are often referred lo as the X cells, while in monkey they arc known as the 
parvocellular cells which mnstitutc about 80% of the ganglion Dells in the retina. In monkey, they are 
considered U) be part of a pathway lhal atends into the deep layers and h believed to be mncemed 
with detailed form m g n i l i o n  (see e.g. Van Essen and Anderson 1988). 



Ecological theory of sensory processing 

Photoreceptors 
Ganglion Cells \ 

231 

Transfer Function 
K 

Figure 3. me retina as a black-box processor. 

Without loss of generality, the kernel can always be reexpressed in terms 
of relative coordinates, X E (2; - 2')/2, and average coordinates (2; + 2')/2: 
K ( ( z ,  - z')/2,(zi + 2')/2;t,t'). However, in many species, K has a weak de- 
pendence on the average coordinates. In other words, the kernel changes gradually 
with eccentricity or with angular distance from centre of gaze. Also, after adaptation 
it is known to be only a function of the temporal difference T = t - 1'. 7hus. to 
a first approximation one can assume translation invariance and retain only the de- 
pendence on the relative coordinates, K ( z i , z ' ;  t , t ' )  = K(si - 2'; t - t'). This is 
convenient since it enables us to define the retinai Biter, iC(f ,w) ,  simpiy by Fourier 
transforming IC 

K ( f , w )  = jdX d T  exp(- i f .  X - i w T ) K ( X , T ) .  (5.2) 

This is the object that is actually measured in experiments. Furthermore, by rotational 
symmetry it is only a function of ( I f l , ~ ) .  In experiments, a luminosity grating, 
L = Io( 1 + m cos( fz) cos( wt)) is projected onto the RF of a cell and the minimum 
contrast m,,y,l ,  needed to elicit a certain level of response, r,, at that spatio- 
temporal frequency of stimulation is recorded. The recording is repeated for different 
values of (f. w ,  I o ) .  By linearity of the output: 

(5.3) 

Thus there is a family of retinal filters, one for each adaptation or luminance 
level I,. In figure 4, which is reproduced from the data of Enroth-Cugell and Robson 
(1966) and De vdlois ef af (1974), we show two typical families of filters, one for the 
cat and one for the monkey, as a function of f and at a given low temporal frequency 
W .  More precisely, what is shown is Io x K which is called confrasf sensifivily. A 
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Cat data Macaque datn 

.- 4 - ann 

Spatial frequency lcyclesldegl Spatial frequency kyclesldegl 

Figure 4 Measured " a s 1  sensitivity. m e  data in the len figure are reproduced &om 
Enrolh-Cugell and Robson (1966). while that on Ihe right are hom De Valois et d 
(1974). Ih both 0s- the luminance level IO decreases by one log writ each time wc 
go to a lower cuwc. 

prominent feature in that figure is the transition from band-pass to low-pass filtering 
as I, is lowered. A similar transition is also observed as the temporal frequency of 
stimulation is increased for a given spatial frequency. 

If a retinal filter at high luminance is Fourier transformed back into space, it 
looks like the curve in figure 5. This is a onedimensional slice in a twodimensional 
rotationally invariant spatial profile, and it shows the familiar centre-surround orga- 
nization of ganglion cell RF: The cell effectively receives excitatory input (+) from 
the photoreceptors in a small region around its RF centre and inhibitory input (-) 
from the surround region. These cells are known as on-centre cells. The other class 
of spatially opponent cells found in the retina have an inhibitory centre and an ex- 
citatory surround and are known as off-centre cells. A similar organization exists in 
the temporal domain. 

Figure 5. Retinal kernel at high adaptalion level showing the opponent spatial organi- 
zation 01 a ganglion cell's w. 

In retinas of species that possess colour vision, such as most primates and shallow- 
water fish, RFS of ganglion cells possess a more complicated centre-surround organ- 
ization. In thcse retinas, there are several types of photoreceptors that possess 
different photosensitive pigments. Functionally, the mrious pigments are identical 
except they differ in the location of their peak spectral sensitivity. In humans for 
example, the three types of pigments referred to as B, G and R for blue, green, 
and red respectively (or alternatively known as S, M and L for short, medium and 
long spectral wavelength respectively) best absorb light of spectral wavelength around 
419 nm, 530 nm and 558 nm respectively. 
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Corresponding to the diversity of photoreceptors there are several types of spa- 
tially opponent ganglion cells. These cells differ in the way the three photoreceptor 
'ypes are used in the organization of their RF. In the primate retina, the most wm- 
mon on-centre ganglion cells receive excitatory input dominantly from one type of 
photoreceptors in the centre and inhibitory input from a different type in the sur- 
round: the two most wmmon on-centre cell types are +R in centre and -G in the 
surround or +G in centre and -R in surround (Derrington er uf 1984), see figure 
I,-\ mn naC^n-+m -ti. mmn &..:I-. mnln *-T -... --dnrl I __.._ or I;r~ir yu). lllr " I L - c c L I L l r  W l l D  a,- .x'II"OLL. I ' IbUC W I U Y L  W C "  U I W  L . L C  N L U l l l l  - *U'&" 
opponent cellst. 

Figure 6. The WO atremes  of opponent mlour coding. ?he cell lypes found in primates 
are shown in (a), while ulose found in shallow-water fish are shown in (b). 

Singie opponent ceiis are not b u n d  in retinas of aii species that p s e s s  miour 
\ision. In fact, they represent one extreme in colour coding. The other extreme 
is found in shallow-water fish which possess what are called double opponent cells 
(Daw 1968). As the name implies, these cells receive inputs of comparable strengths 
from two types of cones at every spatial location in their W. For example, in one 
double opponent cell type found in goldfish retina, the RF has a centre that receives 
excitatory R and inhibitory G stimulation while its surround receives inhibitory R and 
excitatory G inputs, figure 6(b). 

The fact that colour coding is qualitatively dependent on the environment of the 
animal makes it an interesting dimension for testing ecological theories. A successful 
theory of the retina should not only explain the shape of the retinal kernel and its 
dependence on background luminance, it should also account for differences seen 
among species. In the theory of retinal processing presented in subsections 5.2 and 
5.3, differences in computation strategies among species are attributed to identifiable 
differences in the visual environment (information source differences). In subsection 
5.2, we start by examining the problem in the purely spatial domain, and then show 
how to inwrporate time. We also discuss something that we have ignored thus far, 
namely the role of noise. We introduce colour in subsection 5.3. The problem in pure 
space-time was first considered by Atick and Redlich (1990a,b), in the pure wlour 

t There are other opponent cell types that involve blue mtm. However, since blue cones are rare in 
the retina (noneuistent in fovea) these cells are also rare and hence will not be discussed here (De 
Monasterio d al 1985). 
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domain by Buchsbaum and Gottschalk (1983), and in the fully mixed dimension of 
space-time and colour by Atick et a1 (1990, 1991). 

5.2 Theoretical approach to the retina: spatial processing 
In section 3, we have given several reasons why a sensory pathway, such as the visual 
pathway, might recode incoming signals from the natural environment into a more 
efficient representation. In this section, we show how to use this idea to predict retinal 
processing in the spatia! domain, We work with the hypothesis that the retina's main 
goal is to build a minimum entropy representation, ie. a representation where the 
elements are statistically independent or decorrelated (the same procedure followed 
by the appropriate gain control yields a redundancy reduced code as we have seen in 
subsection 4.2.) Hoivever, we limit the class of recodings to linear transformations. 
Actually, with this restriction we shall see that the retina can only eliminate pailwise 
correlationst. 

5.2.1. Decorrelation in h e  absence of noise. In subsection 3.2 the problem of finding 
minimum entropy codes was formulated as a variational prohlcm of some well defined 
energy functional (5.3). The solution to the variational equations (3.3) then gives the 
optimal transformation that best minimizes (3.3). Here, we explicitly solve (3.3) for 
thc class of linear mappings which, as discussed in the previous section, is the class to 

to that of one to one mappings purely for simplicity. The analysis can be repeated 
allowing the number of outputs to differ from the number of inputs-which is the 
hiologicaly more realistic situation-however, our prediction for the organization of 
the receptive fields is insensitive to this assumption. With these simplifications (5.3) 
takes the following form 

which t!!e me2sured retina! transfor!?! be!ongs. we wU! ?.!so restrict this c!ass hxtbrr 

E{K} = k H ( O i ) - 2 p [ H ( 0 ) - H ( L ) ]  
:=I 

I 

= H (  0;)  - plog det KT . K (5.4) 
i= l  

where 0; E O ( z i )  is the response level of ganglion cell at location I;, and we have 
used the upright bold-face symbols to denote matrices and vectors; K denota the 
matrix Ifij E K ( z i - z j ) , O z ( O 1 ,  ..., O1),andsimilarlyforL. We havealsoused 
the fact that H(0) - H(L) = logdet K = 4 logdet KT . K which is valid when 0 
is related to L through a linear transformation$. 

731 exhibit E{K) more explicitly we need to compute the sum over pixel entropies 
Cf-: H ( 0 ; ) .  Peatine the discrete response levels 0; as a continuous variable, the 
ith pixel entropy can be approximated by a simple integral: 

H( 0 ; )  E -E P ( 0 ; )  log P(0;) -+ - dOiP(Oi)log P ( 0 ; )  (5.5) 
0.  J 

t Since we will k issuming Gaussian signals, two-pain1 demrrelalion and slatistical indcpcndene are 

$ B see this, note that under a linear Vansformalion 0 = K . L, lhe probabilities being densities- 
dOP(0) = dLP(L) Iransfom as P ( 0 )  = P(L)/detK. Substituting this expression inm the definition 
of H ( 0 )  and changing variables it is slraightfonvard lo gel H ( 0 )  = H(L) + IogdetK. 

-,,b,b", 
--I-...-.--- 
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which depends on the ith pixel probability P ( 0 ; ) .  The latter is computable from 
the input probability P(L) since 0; = K i j L j .  P(L) in (3.7) is a Gaussian 
with a covariance matrix R, therefore P ( 0 )  is also a Gaussian but with covariance 
matrix R K . R . KT. In (5.5) we only need the individual pixel probability P( O i )  
for every i, which is given by 

P ( 0 ; )  = / n d O j P ( 0 )  
j # S  

It is easy to do the integrals and show that 

1 
2?iRi; 

P(0;) = -exp 

(Again k,, = (OT), the diagonal part of Ri j  = (OiOj).) 

log Rii ,  which when summed over all pixels yields 
Substituting the expression for P ( O i )  from (5.6) in (5.9, we find H ( O i )  = 

I I 

H(0;) = !og R i i .  (5.2 
;=1 ;=1 

~y translation invariance, a11 the Rii are equal, R;; = (0;) for a pixel at some 
arbitrary location 0, thus Cl=, H ( 0 ; )  = Ilog((0;)). This can be substituted for 
the first term in (5.4); however, there are a couple of mathematical steps that lead to 
an even simpler form of the energy functional. 

first since (0;) 2 0, we can drop the logarithm from log((0;)) and minimize 
instead the simpler quantity (0;). However, by translation invariance, minimizing 
(0;) is equivalent to minimizing the explicitly invariant expression Ci(Oz(z;))  = 
C i ( K .  R . KT);; = T r ( K .  R . KT). The final energy function is then 

E{K} = T r ( K .  R. KT) - plogdet(KT . K ) .  (5.8) 

The advantage of this invariant form of E is that we can now go to Fburier space 
very easily: 

W K }  = / d f l X ( f ) i Z R ( f )  - p / d f l o g  lWf)I2 (5.9) 

where we have used the identity log det Q = Tr log Q valid for any positive matrix 

The variational equations in frequency space, 6 E { K } / 6 K ( f )  = 0, are trivial in 
Q. 

this case: the optimal solution is just 

(5.10) 

This could have been guessed more easily by diagonalizing the autocorrelator matrix 
of the output R(zi - zj) ( O ( z j ) O ( z j ) ) .  However, we have gone through the 
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analysis systematically to illustrate the general procedure which will be useful for 
more complex codings. Since R(f) = l/lfla for natural scenes, the predicted kernel 
is simply A'(f) = plfl. On a log-log plot this gives a curve of slope one. 

We can compare this simple prediction with retinal filters in the regime where 
the noise is not signscant, namely in the regime of high luminance Io and at low 
frequencies. In figures 7(a) and 7(c)  we have plotted some typical experimentally 
measured retinal filters at high luminance Io. The data are taken from De Valois 
ef a2 (1974) and from Kclly (1972): respectively. In figures 7(b) and 7(d)? we show 
the ratio x(f) = K,,,(f)/Kp(f) where IC,,, and I(, - I f 1  are the measured and 
predicted filters respectively. At low frequency, we can see that x(f) is fiat or that 
both filters have the same slope. 
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Figure 7. Retinal filters [o), and (c) at high mean luminosities, taken from the data of 
D e  Valois et al (1974) and Kelly (1972), respectively. (b)  and (d) are the data in (a )  and 
(c), respectively, multiplied by 1/1f1, which is the amplitude spectrum of natural Scenes. 
This gives the retinal ganglion cell's oulput amplitude spectrum. Notice the whitening 
of the output at low [requency. The ordinate units are arbitraly. 

Another way to interpret the results in figures 7(b) and 7(d) is as follows. The 
power spectrum of the output is given by the square of the retinal filter times the 
input power spectrum: 

(O(f )O*(f ) )  = ((lc(f)L(f))(lr(f)L(f))')  = IWf)12~(f). (5.11) 

However, R(f) from (3.6) is l/lflz. The output amplitude spectrum, which is the 
squarc root of.the power.spectrum, is then pioportional to x(f)  which is what is 
plotted in figures 7(b) and 7(d). Thus at low frequencies, the input spectrum Ifl-' 
is converted by the retinal kernel K(f)  into a flat spectrum at the retinal output: 
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(O(f )O*(f ) )  = constant. This whitening of the input by the retina continues up to 
the frequency where the kernel peaks in figures 7(a) and 7(c). Beyond that the noise 
is no longer ignorable and the actual kernel deviates from the pure whitening kernel. 
This whitening is the statement in frequency space of demrrelation in regular space. 
Of course, since the whitening does not continue all the way to the system's cutoff 
the decorrelation in space is not perfect. In the next section we shall see that by 
incorporating a strategy for noise suppression in addition to decorrelation we arrive 
at filters that agree with what is measured not only Over the entire range of visible 
spatial frequencies hut also at all luminance levels. 

5.22 Lkcorrefuiion in the presence of noise. The above agreement does support a 
strategy of decorrelation in the absence of noise. However, decorrelation cannot be 
the only goal in the presence of input noise such as photon (or quantum) noise which 
always exists. In that case! decorrelation alone would be a dangerous computational 
strategy as we now argue: If the retina were to whiten all the way up to the cutoff 
frequency or resolution h i t ,  the kernel K ( f )  would be proportional to I f [  up to that 
limit. This would imply a " a n t  average squared response KRK' to natural signals 
L(z), which for R - have large spatial p w e r  at low frequencies and low power 
at high frequencies. But this same K ( f )  - I f 1  acting on input noise whose spatial 
p e r  spectrum is approximately flat has a very undesirable effect, since it amplifies 
the noise at high frequencies where noise power, uniike signai power, is not becoming 
small. Therefore, even if input noise is not a major problem without decorrelation, 
after complete decorrelation (or whitening up to cutof€) it would become a problem. 
Also, if both noise and signal are decorrelated at the output, it is no longer possible to 
distinguish them. Thus, if decorrelation is a strategy, there must be some guarantee 
that no significant input noise is passed through the retina to the next stage. We 
believe this is why the retina stops whitening its input at a frequency far lower that 
the cutoff frequency. 

Further evidence that the retina is concerned about not passing significant amounts 
of input noise is found in the fact that the ganglion cell kernel, as we have seen in 
subsection 5.1, makes a transition from band-pass to complete low-pass as the retina 
adapts to very low I,. Since as I, decreases the signal to noise ratio of the input 
signals decreases, one expects low-pass filtering as a way of suppressing the noise, 
which is what the retina does. 

Since here we are primarily interested in testing the predictions of minimum 
entropy coding (equivalently redundancy reduction), we take a somewhat simplified 
approach to the problem with noise. Instead of doing a full-fledged information 
theoretic analysis that unifies minimum entropy with noise suppression (as in Atick 
and Redlich 1990a,b), we work in a formalism where the signal is first low-pass 
iiitered to eiiminaie noise and the resuiting signai is then decorreiated as before. Tie 
advantage of this modular approach is that it leads to a more intuitive picture of the 
various processing stages in the retina and it also gives parameters that have physical 
significance. firthermore, the analysis is not as complicated as that in the unified 
formalism. 

We start by going Over the stages of signal processing that we assume precede 
the decorrelation stage. Figure 8 shows a schematic of those stages. Fit, images 
from natural Scenes pass through the optical meQium of the eye and in doing so their 
image quality is lowered. It is well known that this effect can be taken into account by 
multiplying the images by the optical modulation wanferfinclion or m of the eye, 
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Figure S Schematic of h e  signal processing stages assumed 10 take place in the retina. 

a function of spatial frequency that is measurable in purely non-neural experiments 
(Campbell and Gubisch 1966). In fact, an exponential of the form exp(-(lfl/fc)"), 
for some scale f, characteristic of the animal (in primates f, - 22 cycles/deg and 
a - 1.4) is a good approximation to the optical MTF. The resulting image is then 
transduced by the photoreceptors and is low-pass filtered to eliminate input noise. 
Fmally, we assume that it is decarrelated. In this model, the output-input relation 
schematically takes the form 

0 = I < .  ( M  .(L + n) + no) (5.12) 

where the dot denotes a convolution as defined in (5.1), n(z) is the input noise 
(such as quantum noise) while no(Si) is some intrinsic noise level which models 
post-receptor synaptic noise. Fmally, M is the filter that takes into account both the 
opticai MTF as weii as the iow-pass iiitering needed to eiiminate noise. An expiicit 
expression for A4 will be derived below. 

With this model, the energy functional determining the decorrelation filter I<(f) 
is 

E { K )  = I d f  lA'(f)12 [ M ' ( f ) ( R ( f ) +  N 2 ) +  N ~ l - p / d f l o g I ~ ~ ( f ) l '  (5.13) 

where N a ( f )  (In(f)I') and Ni(f) E (Ino(f)12} are the input and synaptic noise 
powers resgectively. This energy functional is the same as that in (5.9) but with the 
variance R( f) replaced by the variance of 0 in (5.12). 

As before, the variational equations 6 E / 6 K ( f )  = 0,  are easy to solve for K ( f ) .  
The predicted filter that should be compared with experimental measurements is this 
variationai soiution, A', times the &iter id. We denote this by Kexpt: 

(5.14) 

An identical result can be obtained in space-time trivially by replacing the auto- 
correlator R(f) and the filter M ( f )  by their space-time analogues R ( f , w )  and 
M ( f , w ) ,  respectively, with w the temporal frequency. However, we focus here on 
the purely spatial problem where we have Field's (1987) measurement of the spatial 
autocorrelator ~ ( f )  of natural scenes: R(f) = Ii/lfl'. 
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5.23. Deriving the lowpass jilter. In our explicit expression for Kerpt, below, we shall 
use the following low-pass filter 

(5.15) 

The exponential term is the optical h m  while the first term is a low-pass filter that we 
derive next using information theory. The reader who is not interested in the details 
of the derivation can skip this rather technical section without loss of continuity. 

It is not clear in the retina what principle dictates the choice of the low-pass 
filter or how much of the details of the low-pass filter Xuence  the final result In 
the absence of any strong experimental hints, of the type which imply redundancy 
reduction, we shall ay a simple information theoretic principle to derive an M. We 
insist that the filter M should be chosen such that the filtered signal 0‘ = M .( L+n)  
cames as much information as possible about the ideo1 signal L subject to some 
constraint To be more explicit, the amount of information carried by 0‘, about L, is 
the mutual information I(O‘,  L) (see the appendix). However, as we discuss in the 
appendix I( 0’, L) = H (  0’) - noise entropy (for L and n statistically independent 
Gaussian variables), and thus if we maximize I (O’ ,L )  keeping fixed the entropy 
H (  0’) we achieve a form of noise suppression. 

We can now formulate this as a variational principle. ’lb simplify the calculation 
we assume Gaussian statistics for all the stochastic variables involved. The output- 
input relation takes the form: 0’ = M . ( L  + n) + no. A standard calculation leads 
to 

(5.16) 

where we have chosen units where the quantization noise have unit variance (nz) = 1. 
Similarly, one finds for the entropy H(0’) = J d f l o g ( M 2 ( R +  N 2 )  + 1) in the 
same unit?,. The variational functional or energy for smoothing can then be H7itten 
as E { M )  = - I (O’,  L )  + q H ( 0 ‘ ) .  It is not dimcult to show that the optimal noise 
suppressing solution 6 E / 6 M  = 0 takes the form: 

If the parameter q 2 1 then clearly there is no non-vanishing solution A4 to this 
smoothing problem. We will assume that q << 1 so in fact we are in the regime 
where the fist term inside the square root dominates and hence we can drop the -1 
term. Actually q has a dependence on I,, since to hold H (  0‘) fixed at all values of 
I,, implies that q be a function of I,,. It is not hard to see that q - I,, will ensure 
that H ( 0 ’ )  tixed with mean luminance (we assume that noise N Z  is quantum noise, 
and hence N Z  - Io). Ignoring all overall factors in M that are independent of f 
and I,, we arrive at the expression that we exhibit in the first term in (5.15). 

5.2.4. Anaiyshg the solurion. Let us now analysq the form of the complete solution 
(5.14), with M given in (5.15). In figure 9 we have plotted KeXpt(f )  (curve A) for 
a typical set of parameters. We have also plotted the filter without noise R ( f ) - ’ I 2 ,  
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(5.10), (curve B) and M ( f ) ,  (5.15), (curve C). There are two points to note: at low 
frequency the kernel Kexpt(f) (curve A) is identically performing decorrelation, and 
thus its shape in that regime is completely determined by the statistics of natural 
scenes: the physiological functions M and N drop out. At high frequencies, on the 
other hand, the kernel coincides with the function M, and the power spectrum of 
natural Scenes R drops out. 

We can also study the behaviour of the kernel in (5.14) as a function of mean 
luminosity I,. If one assumes that the dominant source of noise is quantum noise, 
then the dependence of the noise parameter on Z, is simply N 2  = where N' 
is a constant independent of Io and independent of frequency (flat spectrum). This 
gives an interesting result. At low frequency where Kexpl goes like I/&? and its 
Io dependence will be KeXp, - I / &  (recall R - Zi), the system exhibits a Weber 
law behaviour, i.e. its contrast sensitivity ZoKeXpt is independent of Io. In the other 
regime-at high frequency-where the kernel asymptotes to M with N2 B R, then 
Kexpt - l/Z;'' which is a De Vries-Rose behaviour ZOKexexpt - 1;''. This predicted 
transition from Weber to De Vries-Rose with increasing frequency is in agreement 
with what is generally found (see KeUy 1972, figure 3). 
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Figure 9. A l y p i s l  predicted retinal Blter (curve 
A) fmm (5.14), while curve C is R(f)-1/2 wttich 
is the pure whitening filler (5.10). Finally cuwe B 
is the low-pm filter M. 

Figure 10. Predicted retinal 611e& (5,14), at dif- 
ferent Io separated by one log units, assuming lhat 
the dominant murce of input noise is quantum 
noise ( N z  - IO). No olher parameters depend on 
10. ?he fixed parametm are f. = 22 qc"/deg, 
01 = 1.4, P = 2 . 7 ~  IO'. N' = ,075. The data are 
psychophysical mnlrast sensitivity measurements of 
Van Nes and Bouman (1967). 

Given the explicit expression in (5.14) and the choice of quantum noise for N we 
can generate a set of kernels as a function of Zo. The resulting family is shown for 
primates in figure 10. We need to emphasize that there are no free parameters here 
which depend on Z,. The variables that needed to be tixed were the numbers f,, a, 
p, N' and No and they are independent of I,. Also we work in units of synaptic 
noise no, so the synaptic noise power N i  is set to one. We have superimposed on 
this family the data from the experiments of Van Ncs and Bouman (1967) on human 
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psychophysical contrast sensitivity. It does not take much imagination to see that the 
agreement is very reasonable especially keeping in mind that this is not a fit but a 
parameter-free prediction. 

We can also compare the predicted kernels in (5.14) to ganglion cell kernels mea- 
sured in single-cell experiments. However apriori we do not expect close quantitative 
agreement for the following reason. The theory predicts the aansfer function for the 
aggregate system, Le. for the collection of all the output cells. The only reason why 
it might appear that we predicted a single-cell kernel is because of the assumption 
of translation invariance which forced all cells to have the same kernel and forced 
single-cell properties to be identical to aggregate properties. In the real retina, where 
translation symmetry is broken, different cells have different kernels and hence the 
aggregate aansfer function (obtained by combining the different single-cell kernels) 
is not q u a l  to any one single-cell kernel. In experiments, it turns out that the 
difference between single-cell and psychophysics data is quantitative not qualitative. 
Fbr instance, in the psychophysical data one finds that the frequency of optimal con- 
trast sensitivity decreases with lo more than what is found in single-cell experiments. 
The shifts that the theory predicts are more consistent with the psychophysical shifts. 
However, we expect that repeating the calculations of the last section without trans- 
lation invariance would produce a family of single-cell kernels with shifts that are in 
closer quantitative agreement with experiment. 

5.3. Introducing colour 

Images in nature carry information through their spectral compositions in addition to 
their spatio-temporal modulations. So an image is generally a function of the form 
L ( z , t , A ) ,  where X is the spectral wavelength. Many animals have evolved visual 
pathways capable of extracting this colour information. In the retina of these species, 
images are fust sampled in the spectral domain through the three cone types to give 
the output activities 

dXC"(X)L(z,i,X) + n ( z , t )  (5.18) 

where the functions C"(X) are the spectral sensitivity functions for the three pho- 
toreceptor types, Q = 1 , 2 , 3  for R, G and B respectively. In figures ll(a) and l l (b)  
we show the spectral sensitivity curves for the cones in the retinas of primates and 
shallow-water fish, respectively (the two systems that form the two extremes in retinal 
colour coding). 

One important feature to notice about the two sets of curves in figure 11 is the 
fact that the R and G spectral sensitivity curves overlap. The degree of overlap is 
more significant for primates' retina than for shallow-water fish. 'Ib be quantitative, 
in the monkey Macaca fascicularis the separation of the spectral peak sensitivities 
between R and G is about 30 nm while for goldfish the corresponding separation is 
about 90 nm. This difference between the two species is due to adaptation of cone 
pigments to different visual environmentst and will play an essential role in explaining 

t In the case of primates, which are believed to have evolved in a forest Like environment, one finds 
that the proximiry of R and G mnes a n  be explained bj Ihe bct  that most of the information in a 
forest is squeezed in a narrow spectral band centred about 550 nm. Thus one needs lo sample that 
region more densely if one is to m l v e  diiierent objects found in that spectral band. On the other hand, 
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Figure 11. Spectral sensitivity a w e s  for primates (a), and sha l lwwaler  Bsh, (6).  Nolice 
that the overlap of C' and C2 specially in the primates. 

the subsequent differences in the neural coding strategies for colour mentioned in 
subsection 5.1. 

The fact that the cones sample in such an overlapping fashion introduces an addi- 
tional source of correlations in the photoreceptor signals and thus an additional source 
of inefieiency that has to be eliminated (Barlow 1961, Buchsbatlm and Gottschalk 
1983, Atick et ul 1990). We will limit our analysis to the twocone (R and G) system, 
since in primate retina these photoreceptors occur with equal density and are more 
abundant than the blue cones. In fact, the blue cones constitute only 15% of the total 
cone population in the entire retina while in the fovea they are virtually non-existent. 
For a discussion of the role of blue cones see Atick et a/ (19%). 

We now generalize the analysis of the previous subsection 5.2 to include 
colour. The chromatic-spatio-temporal correlator is a matrix of the form R a b ( s , t )  
or in Fourier space R " * ( f , w ) .  Here R"(z , t )  is the red-red correlator 
(P'(O,O)P*(z,t)) and R'2(z,1) is the red-green correlator defined similarly and 
so on. Unfortunately, not much is known experimentally about the entries of this 

under water light in the s+%ctral band between 550 nm and 610 nm b heavily absorbed by water with 
the amount of absorption increasing dramatically ~ t h  distance travelled. Thus il shallow-water Bsh had 
adopted pigments around 568 nm just like primates, they would not have teen able U) see far under water. 
Shallow-water Bsh instead evolved cones thal sampled near the infrared. an area where lhe signal under 
water m v e k  mueh fanher before complete absorption. Additional discussion regarding the adaptation 
of the mnc y t e m  of various species to the environment can be found in the excellent book of Lythgw 
(1979). 



Ecological theory cf sensoy processing 243 

matrix. Thus, we are forced to make some assumptions. Although, it is possible to do 
the analysis entirely for the most general form of Rab( f, w )  (see k i c k  et a1 l w ) ,  it 
is just as informative and much simpler to analyse the case where R a b ( f , w )  can be 
factorized into a pure spatio-temporal correlator times a 2 x 2 matrix describing the 
degree of overlap between the R and G systems. We will also only examine colour 
coding under conditions of slow temporal stimu!ation or zero temporal frequency. In 
that case, we can replace the spatio-temporal correlator by by I ~ / l f l z  (3.6). Thus we 
L.iKC 

(5.19) 

where P < 1 is a parameter describing the degree of overlap of R and G. We should 
emphasize, that we do not advocate that this is the form of Rub necessarily found 
in nature. We have reduced Rob to one degree of freedom in order to illustrate 
very simply the possibilities. More complex Rab, in particular those where space 
and colour are not decoupled, lead to quantitatively different but qualitatively similar 
solutions. 

As before, the output 0 is related to the input P through 

O = K . ( M . I p + " \ A n \  \ . . I ' V I  (5.20) 

where na(a,t) is input noise including transduction and quantum noise, while 
no(z,t)  is noise (e.g. synaptic) added following the low-pass filter M. We have 
introduced upright bold face to denote in this section matrices in the 2 x 2 colour 
space; also in (5.20) each . denotes a convolution in space. To see how the presence 
of two channels affect the spatial low-pass filtering, it is helpful to rotate in colour 
space to the basis where the colour matrix is diagonal. For the simple colour matrix 
in (5.19), this is a 45 degree rotation from the red R and green G basis to the lumi- 
nance, G+Q and chromatic, G - R, channels (in vector notation, the red and green 
channels are denoted by R = (1 ,O)  and G = (0,l)). This 45 degree rotation matrix 
is 

U , , = - (  1 1) 
Jz -1  1 

(5.21) 

In the G k R basis, the total correlation matrix plus the contribution due to noise is 

where the noise, (nun*) = P b N 2 ,  is assumed equal in both the R and G channels, 
for simplicity. Since in the G f R basis the two channels are decoupled, the spa- 
tial Elters Mi(f)  are found by applying our single-channel result in (5.15). More 
specifically they are found by replacing R ( f )  in (5.15) by 

(5.23) D ,a?\-/, L - \ 7 2 1 1 0 1 2  
n i ( J ) - ( L x r . ) l o l l J l  ' 

Notice that the two channels differ only in their effective signal-to-noise ratios: 
( S I N ) ,  = m ( I o / N )  which depend multiplicatively on the colour eigenvalues 
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1 f P. In the luminance channel, G + R, the signal-to-noise is increased above that 
in either the R or G channel alone, due to the summation over the R and G signals. 
The filter M+( f ), therefore, passes relatively higher spatial frequencies, increasing 
spatial resolution, than without the R plus G summation. On the other hand, the 
chromatic channel, G - R, has lower S I N ,  proportional to 1 - P, so its spatial lilter 
M-(f) cuts out higher spatial frequencies, thus sacrificing resolution in favour of 
colour discriminability. The complete fiter is tinally obtained by rotating from the 
G ?c R basis by 45 degrees back to the R and G basis 

O ) :) * (5.24) = - ( 1 ) ( M , d f )  M-(f) 
1 1 -1 
2 1  

(Again M * ( f )  is given by (5.15) with R(f) + R,(f) in ( 5 2 9 . )  
After filtering noise, the next step is to decorrelate the signal as if no noise existed 

as we did h the purely spatial problem (subsection 5.2). In this case this means that 
we have to find the kernel K that achieves diagonalization of the low-pass filtered 
spatiochromatic autocorrelator 

fi = ( ( M .  ( P +  n) +no). ( M .  ( P +  n) +%IT). (5.25) 

In other words we need to find K that satisfies K . I%. KT = D with D a diagonal 
matrix in space and colour. In the purely spatial problem, we have insisted on 
a translationally invariant, local set of retinal filters: the approximation where all 
retinal ganglion cells (in some local neighbourhood, at least) have the Same receptive 
fields, except translated on the retina, and these fields sum from only a nearby set 
of photoreceptor inputs. These assumptions force D to be proportional to the unit 
matrix. In generalizing this to include colour, we note that when D is proportional 
to the unit matrix, the mean squared outputs for output 0;) of all 
ganglion cells are equal. This equalization provides efficient use of optic nerve cables 
(ganglion cell axon?.) if the set of cables for the cells in a local neighbourhood all have 
similar information carrying capacity. We therefore continue to take D proportional 
to the identity matrix in the combined space-colour system. " k ing  D proportional 
to the identity, however, still leaves a freedom to arbitrarily mix the proportion of 
the two decorrelated colour signals since one can still rotate by a 2 x 2 orthogonal 
matrix U i b ,  i.e. K ( f )  -+ U,K(f) ,  that leaves D proportional to the identityt. This 
freedom to rotate by U, will be eliminated later by looking at how much information 
(basically S I N )  is carried by each channel. We shall insist that no optic nerves are 
wasted carrying signals with very low S I N .  

We are now ready to write down the prediction for K"*( f ) .  'Ib do that we go 
to the Gf R basis where M = * ( f )  is diagonal in colour space. K a b ( f )  can then be 
taken to be diagonal since there are no correlations in colour in that basis: it consists 
of two functions K,(f) which are chosen to separately whiten the G& R channels. 
Since the complete frequency space correlators in the two channels after filtering by 
M,(f) are M : ( f ) ( R , ( f )  + N 2 )  + N,", the K,(f) are therefore 

t Utb is a cowlant malrix depending only on one number, the mtation angle; it satisfies U e U z  = 1 
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where N: is the power of the noise which is added following the filter M a b ( f ) ,  see 

Now putting (5.26) together with (5.23) and (5.15), we obtain the complete retinal 
(5.20). 

transfer function, ie. the one to be compared with experiment, 

As a reminder, the rightmost matrix aansforms the G, R inputs Into the G + R basis. 
These signals are then separately filtered by K,M,.  Finally, the rotation U, to 
be specified shortly, determines the mix of these two channels carried by individual 
retinal ganglion cells. We should emphasize that the outputs of the two colour 
channels defined by (5.27) continue to be decorrelated for any choice of rotation 
angle B .  

5.3.1. Analysing the colour solutions. In this section we show how the diverse process- 
ing types such as those found in goldfish and primates are both given by (5.27) but 
for different values of the parameter r in the colour correlation matrix. 

For the case of goldfish, as mentioned earlier, one expects only small overlap 
between R and G responses and thus r is small. The diagonal channels G f R then 
have eigenvalues 1 ?C T of the same order: (1 - v ) / ( l  + r) - 1. This means both 
channels on average carry roughly the same amount of information and transmit 
signals of comparable S I N .  Thus the filters K,(f)M,(f) and K-(f)M-(f) are 
very similar. In fact, they are both band-pass filters as shown in figure 12@) for some 
typical set of parameters. Since these channels are already nearly equalized in S I N ,  
there is no need to mix them by rotating with U,, so that matrix can be set to unity. 
Therefore, the complete solution (5.27) when acting on the input vectors R, G, gives 
two output channels corresponding to two ganglion cell types: 

2, = ( G  + R) K + M ,  

Z , = ( G - R )  K - M - .  
(5.28) 

If we Fourier transform these solutions to get their profiles in space, we arrive at the 
kernels K D b ( x  - 2‘) shown in figure 13 for some typical set of parameters. The top 
row is one cell type acting on the R and G signals, and the bottom row is another 
cell type. These have features of double opponency cells. 

Moving to primates, there is one crucial difference which is the expectation that 
r is closer to 1 since the overlap of the spectral sensitivity curves of the red and 
green is much greater: the ratio of eigenvalues (1 - r)/(1 + v )  << 1. Since the 
colour eigenvalues modify the S I N ,  this implies that the G - R channel has a low 
S I N  while the G + R has much higher S I N .  Therefore, K-(f)M-(f) is a low- 
pass filter while K,(f)M+(f) is band-pass as shown in figure 12(b). These two 
channels can be identified with the chromatic and luminance channels measured in 
psychophysical experiments, respectively. The curves shown in figure 12(b) do qual- 
itatively match the results of psychophysical contrast sensitivity experiments (Mullen 
19%): namely the low-pass and band-pass properties of the chromatic and luminance 
curves, respectively. 

Although there is psychophysical evidence that indicates that colour information 
in primate cortex is organized into luminance and chromatic channels under normal 
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Figure U. Predined retinal kernel ICpb in Lhe R and C basis in lhe goldfish regime 
r = 0.2 and for lhe same parameten as those in figure U. nese cells can be termed 
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adaptation mnditions (Mullen 1985), this is not how the primate retina transmits in- 
formation down the optic nerve (Derrington el a1 1984). One reason why the primate 
retina may choose not to use the G f R basis is that the representation of informa- 
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tion in chromatic and luminance channels has one undesirable consequence. If we 
compute the signal-to-noise ratio as a function of frequency in the chromatic channel, 
given by ( S I N ) ?  = K ? M Z R - / [ K ? ( M Z N 2  + I)], and compare it with the corre- 
sponding ratio in the luminance channel we find that the ratio ( S I N ) -  /( S I N ) ,  << 1 
because (1 - ~)/(1 + T) g 1. So for primates, transmitting information in the lu- 
minance and chromatic basis would result in one channel with very low S I N ,  or 
equivalently one channel that does not carry much information. " n i t t i n g  infor- 
mation at low S I N  down the optic nerve could be dangerous, especially since the 
optic newe introduces intrinsic noise of its own; it also may be wasteful of optic newe 
hardware. What we propose here is to use the remaining symmetry of multiplication 
by the rotation matrix U, to mix the two channels so they carry the same amount of 
information, i.e. such that they have the same S I N  at each frequency. Keep in mind 
that this does not affect the decorrelated nature of the two signals. 

In the case of primates, where the hierarchy in S I N  between the two channels 
is large the mixing of the two channels is significantt. In fact it is not hard to show 
that the angle of rotation needed is approximately 45 degrees A 45 degree rotation 
leads finally to the following solutions for the two optimally decorrelated channels 
with equalized S I N  ratios 

Z , = ( G + R )  K t M t + ( G - R )  K - M -  

= R ( K ,  M ,  + K -  AL) + G ( K, M ,  - I<- M-)  
(5.29) 

2, = - ( G -  R )  K-M- + ( G  + R )  K,M, 

Since for primates, K , ( f ) M , ( f )  and K ( f ) M - ( f )  are very different, the end 
result is a dramatic mixing of space and colour. For example, ceU type no. 1 at low 
frequency has K - ( f ) M - ( f )  > K,(f)M,(f) so it performs an opponent R - G 
processing. As the frequency is increased, however, K - ( f )  M - ( f )  becomes smaller 
than K,(f)M,(f) and the cell makes a transition to a smoothing G + R type 
processing (Derrington et a1 1984). In figure 14, we show the filters in frequency 
space, in the R and G basis. These filters are in principle directly measurable in 
contrast sensitivity experiments. We view the zero crossing at some frequency as a 
generic prediction of this theory. 

In figure 15 (dashed line), we show how the solutions look for a typical set 
of parameters after Fourier transforming back to space. We can see cell type no. 1 
summates red mostly from its centre and an opponent green mostly from its surround, 
while for type 2 the red and green are reversed. These cells can be termed single 
opponency cells, as seen in primates (Derrington er ai 1984). One might object that 
the segregation of the red and green in the centre is not very dramatic. Actually, this 
is due to the simplified model we have taken. Complete segregation can be achieved 
if one allows the synaptic noise parameter No, which was set to 1 for the dashed 
line, to be different for the two channels. A difference of ln between the two noises 
produces the solutions shown by the solid curves in figure 15. 

We hope the results of this and the previous section have convinced the reader that 
the application of information theory to neural system merits further investigation. 

t A rotation could have been done in the goldash case also, but there the two channels (5.28) Z1 and 
Z, already have approximately equal SIN  so the degree of mixing is MV small or ignorable. 



248 J J Arick 

'OoO 300 K K" 

KZ' 
300 

lam 

~ ~ ~ ~ ~ ~ , ~ :  30 10 

3 

1 
.1 .3 1 3 10 30 100 

1000 

30 

1 
. I  .3 1 3 10 30 100 

Spatial frequency (cycles ldegl Spatial frequency Icycles/degl 

Figure 14. Pxdicled retinal filler K e b ( f )  in Ule R and G basis for Ule primale regime 
r = 0.85 and for the Same parameters as those in figure 12. The d i d  (dashed) awes 
represent ~ ~ d r a t o r y  (inhibimry) responses. Notice lhal bOlh cells 2, and % make a 
transition at some frequency h m  opponent colour G - R or R - G 10 non-opponent 
C + R. 

Acknowledgments 

I would like to thank 2 Li and N Redlich, L Kruglyak and K Miller for many hours of 
useful discussions, J Kmiec for cOmments on the review and L Ferraro for interesting 
discussions. This work is supported in part by a pant  from the Seaver Institute. 

Appendix 

Another useful concept in information theory is that of mutual information of two 
events or variables, 0 and L defined as 

I ( 0 ; L ) E  H ( O ) + H ( L ) -  H ( 0 , L )  

where H (  0, L) is the joint information; H( 0, L) = -CO,& P( 0,  L) log P(0, L). 
This quantity has some interesting properties. For example If the events 0 and L are 
completely statistically independent then P ( 0 , L )  = P ( O ) P ( L )  and N(0,L) = 
H (  0)  + H( L )  making I( 0; L)  = 0. On the other hand, if the two events are 
mmpletely dependent then H(0, L) = H( L )  = H(0) and I ( 0 ;  L) is the Same 



Ecological theory of sensory processing 

~ 

249 

-.5 t 
-1 IIII(JIIIII 

o .2 .4 .6 .a 1 

C O  
L c 
v) 

-.5 t- 
- 1  

0 .2 .4 .6 .8 1 

Normalized distonce 

-.5 1 
-1 

0 .2 .4 .6 .8 1 

-.5 -1 0 F .2 .4 .6 .8 1 

Normalized distance 

Figum Is. Predicted retinal kernel Kab in the R and G basis in the primate regime 
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achieved. 

as H(0) (or equivalently H ( L ) ) .  Thus, I ( 0 ;  L )  in general is a measure of the 
interdependence of the two events. In fact, it can be thought of as the information 
camed by 0 about the event L. If 0 = L -t R where R is some additive noise 
and if all the variables are Gaussian distributed with some variance., then I ( 0 ;  L )  = 
H( 0) - noise entropy, a fact that we needed in our analysis in section 5.2 
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