

Computer Vision

Image Formation

Last Time

- EM spectrum and visible light
- Distribution of light wavelengths
- Linearity
- Percent of light reflected off a surface.
 - Linearity of reflected light.
- Efficiency of a solar panel as a function of wavelength
 - Linearity of solar panel power.
- Photoreceptor response as a function of wavelength
 - Linearity of photoreceptor output.

Computer Vision

This lecture

More about how light originates from a source, interacts with the environment, and produces a response from photoreceptors (either natural or artificial).

What Do We

'See'?

Light Sources Surface Reflectance Eye sensitivi

Point light sources

- Point light sources
- Steradians
- Surface area of a sphere
- Watts
- Inverse Square Law

- How much light is falling on an area (in watts)?
- Total light power (in watts) * percent of sphere occupied by area.

Steradians

4pi steradians in a sphere

- Area of a unit sphere is 4pi units.
- How many steradians in a hemisphere?
 - 4pi * 0.5 = 2pi steradians

Watts on a solar panel

- How many watts fall on a 1 square meter solar panel on a bright sunny day?
- Need
 - distance to sun
 - watts output by sun

- What happens to amount of light falling on a surface as we move away from a light source?
- If we double the distance from the light source, what happens to the amount of light?

Computer Vision

The Human Eye

- Pupil The opening through which light enters the eye size from 2 to 8 mm in diameter
- Iris The colored area around the pupil that controls the amount of light entering the eye.
- Lens Focuses light rays on the retina.

Retina - The lining of the back of the eye containing nerves that transfer the image to the brain.

- Rods Nerve cells that are sensitive to light and dark.
- Cones Nerve cells that are sensitive to a particular primary color.

Rods and Cones

Cones are located in the fovea and are sensitive to color.

- Each one is connected to its own nerve end.
- Cone vision is called photopic (or bright-light vision).

Rods give a general, overall picture of the field of view and are not involved in color vision.

- Several rods are connected to a single nerve and are
- Sensitive to low levels of illumination (scotopic or dimlight vision).

Human Vision is "Multi-modal"

- Separate color vs. black-and-white detectors.
- Separate motion sensitive sensors (different time sampling properties).
- Uneven spatial sampling rates.
- Modern high-tech camera systems starting to use these ideas (see Shree Nayar's Laboratory):
 - High resolution slow-speed camera coupled with low resolution high speed.
 - Interleaved sensors with different dynamic range for high dynamic range

Computer Visior

Absorption Curves

Rods: achromatic vision green cone blue rod cone 437 nm 498 nm 533 nm 564nm Relative Absorbance 700 400 600 650 550 450 500 Wavelength - nm Dowling, 1987

The different kinds of cells have different spectral

Peak sensitivities are located at approximately 437nm, 533nm, and 610nm for the "average" observer.

Computer Vision

Responses

Cone sensitivity curves

Response from i-th cone type:

$$c_i = \int s_i(\lambda) t(\lambda) d\lambda$$

s_i(l) = sensitivity of i-th cone
t(l) = spectral distribution of light
l= wavelength

How can we find color equivalents?

Computer Vision

