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2 The Sharpening Match 

Lecture 3 in 1 slide 

  In comparing images, people use “binning” to 
introduce spatial invariance. 

  Big bins don’t allow us to do fine discrimination. 
  Small bins don’t give us enough invariance. 
  What should we do? 

Answer: Adapt the bin size specifically for the 
current images being compared. 
•  The sharpening match – a dynamic procedure for 

comparing images. 



3 The Sharpening Match 

Outline 

  Similarity measures in vision—general remarks 
  Piece 1: Sensitivity to position in image 

comparison 
•  What’s the right histogram bin size? 

  Piece 2: Image matching with gradient descent 
•  Overcoming problems with traditional blurring 

approaches using distribution fields. 

  Putting the pieces together:  
 the sharpening match. 

  Some related results 
•  Basin of attraction studies 
•  Tracking experiments 
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Similarity measures in vision 

  Right similarity measure depends on goal. 
  The way humans evaluate similarity strongly 

depends upon what they are comparing. 



5 The Sharpening Match 

How Similar are These Images? 
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How Similar are These Images? 
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F(    ,    ) > F(    ,   )!

Design a Similarity Function F such that… 
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There is No Universal Similarity Function 
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There is No Universal Similarity Function 

Totallylookslike.com!
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There is No Universal Similarity Function 

“Higher Level”!

“Lower Level”!
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Take Home Messages 

1.  The useful notion of similarity depends upon the 
goal. 
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Take Home Messages 

1.  The useful notion of similarity depends upon the 
goal. 

2.  Human similarity judgments are related to the 
strength of our models. 
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Strength of Models Example: Human Face Rec. 

  Human models for upright faces 
•  Very strong 
•  Can distinguish among large number of faces 

  Human models for upside-down faces 
•  Less strong 
•  Can’t distinguish among as many upside-down faces 
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Similarity as a function of model strength 

Schwaninger  
et al., 2003 
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Low level similarity 

  Try to establish similarity for very general 
images.  



16 The Sharpening Match 

Outline 

  Similarity measures in vision—general remarks 
  Piece 1: Sensitivity to position in image 

comparison 
•  What’s the right histogram bin size? 

  Piece 2: Image matching with gradient descent 
•  Overcoming problems with traditional blurring 

approaches using distribution fields. 

  Putting the pieces together:  
 the sharpening match. 

  Some results 
•  Basin of attraction studies 
•  Tracking experiments 
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Some “Low Level” Vision Problems   

  Tracking 
  Backgrounding 
  Optical Flow 
  Stereo 
  Affine Invariant Matching 
  Medical image registration 
  Image stitching 
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Some “Low Level” Vision Problems   

  Tracking 
  Backgrounding 
  Optical Flow 
  Stereo 
  Affine Invariant Matching 
  Medical image registration 
  Image stitching 

  What makes these “low level”? 
•  Weak models of appearance 
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A Sample Application: Tracking of General Objects 
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Basics of Tracking 

Frame T! Frame T+d!
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Basics of Tracking 

Frame T! Frame T+d!
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Basics of Tracking 

Frame T! Frame T+d!
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Basics of Tracking 

Frame T! Frame T+d!
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Basics of Tracking 

patch I!
image J!

Find best match of patch I to image J, 
for some set of transformations.!
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The core alignment problem 

  Given a patch in one image, find the region in 
another image that is as similar as possible to 
that region. 
•  What similarity function? 

•  Image representation 
•  Comparison function 

•  What method to find the optimum? 
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Common pixel-based similarity measures 

  L2 (Euclidean) 
•  Square root of sum of squares differences in pixels 

  L1 
•  Sum of absolute value of pixel differences 

  Correlation measures 
•  Are brightness values in image correlated? 
•  Maximum value of 1 
•  Minimum value of -1 
•  Value of 0 implies no linear relationship. 
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A Strange State of Affairs… 

  For some pairs of images, the human notion of 
similarity is nearly opposite to common notions 
of similarity used in computer vision.  
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How similar are these images... 
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How about these? 
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or these 
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or these? 
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Observation 

  It would appear that humans don’t care about 
precise alignment (in all cases). 
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Pixel representations 
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Pixel representations 

Squared  
differences!
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Conclusions 

1.  Pixelwise representations: 
 overly sensitive to position 
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Conclusions 

1.  Pixelwise representations: 
 overly sensitive to position 

2.  Histogram representations: 
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Gray value histogram comparisons 
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Gray value histogram comparisons 
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Gray value histogram comparisons 

They’re equal!



40 The Sharpening Match 

Conclusions 

1.  Pixel representations: 
 overly sensitive to position 

2.  Histogram representations: 
 under-sensitive to position 
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The Standard Compromise 

A separate histogram for each region.!
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Spatial invariance 

  Usually achieved by integrating, averaging, or 
taking a max over a neighborhood 
•  Binning (SIFT, HOG, histograms) 
•  “max pooling” (deep belief nets) 

  Array of histogram descriptors (non-
overlapping) 
•  SIFT, HOG, generalized shape contexts, … 
•  Dominate vision apps 
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Quick SIFT/HOG tutorial/Shape Context tutorial 
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The fundamental dilemma 

  Larger bins 
•  more spatial invariance 
•  more fundamentally different images map to the same 

descriptor 

  Smaller bins 
•  higher specificity 
•  less invariance 
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The fundamental dilemma 

  Larger bins 
•  more spatial invariance 
•  more fundamentally different images map to the same 

descriptor 

  Smaller bins 
•  higher specificity 
•  less invariance 

  What bin size should we use? 
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Suppose we are given the optimal bin size… 
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Suppose we are given the optimal bin size… 

  Claim: the descriptor still stinks! 
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Suppose we are given the optimal bin size… 

  Claim: the descriptor still stinks! 

  We define two properties that similarity functions 
should have, and show that no similarity function 
based on an array-of-bins descriptor can have 
both properties. 
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Minimal descriptor requirements 

  Property 1:  “norm-like” 
•  Build an image distance function using the descriptor 

and any standard vector distance (L1, L2, L_inf). 
•  Minimum distance should be attained  

only when I=J. 
•  We call the behavior of such an image comparison 

function “norm-like”.  
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Minimal descriptor requirements 

  Property 1:  “norm-like” 
•  Build an image distance function using the descriptor 

and any standard vector distance (L1, L2, L_inf). 
•  Minimum distance should be attained  

only when I=J. 
•  We call the behavior of such an image comparison 

function “norm-like”.  
•  Not satisfied by ANY histogram descriptor, since 

multiple images can map to the same descriptor. 
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Minimal descriptor requirements 

  Property 2:  weak invariance to position 
•  Goal: “small” translations of an image, or portion of an 

image, should have “small” impact on similarity function 
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Minimal descriptor requirements 

  Property 2:  weak invariance to position 
•  Suppose D(I,J) = 0 
•  Let K be a the image J translated by a single pixel. 
•  Now suppose that D(I,K)= MAX 

•  MAX = maximum possible value of distance function. 
•  In this case, we say that the distance function  

fails to exhibit weak invariance to position  
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Weak Invariance to Position: Failure 

  Under L2 metric on pixel values: 

D(! ,! )=0!

)=MAX!D(! ,!
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Shocking Result! 

  No image distance based on an array-of-
histogram descriptor can satisfy BOTH properties 
1 and 2. 
•  If bin size > 1, property 1 fails 

•  Why? Multiple images map to same descriptor. Not 
norm-like. 

•  If bin size = 1, property 2 fails 
•  Fails weak invariance test for checkerboard image. 
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Implications 

  Using these descriptors we can either 
•  A) Not tell when images are the same, or 
•  B) Not consider images that are virtually equivalent (up 

to a 1 pixel translation) to be even remotely similar. 

  What’s the resolution of this problem? 
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Implications 

  Using these descriptors we can either 
•  A) Not tell when images are the same, or 
•  B) Not consider images that are virtually equivalent (up 

to a 1 pixel translation) to be even remotely similar. 

  What’s the resolution of this problem? 
•  Adaptive bin sizes... 
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Outline 

  Similarity measures in vision—general remarks 
  Piece 1: Sensitivity to position in image 

comparison 
•  What’s the right histogram bin size? 

  Piece 2: Image matching with gradient descent 
•  Overcoming problems with traditional blurring 

approaches using distribution fields. 

  Putting the pieces together:  
 the sharpening match. 

  Some results 
•  Basin of attraction studies 
•  Tracking experiments 
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Finding the optimum alignment 

  Exhaustive search 
  Gradient descent 
  Keypoint methods 
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Exhaustive search 

  Matching a 10x10 patch to a 100x100 image with 
256 pixel values: 
•  Integer-valued translations: 90x90 = 8100 
•  Sub-pixel translations: 8100*256*256 = 2^29  
•  Translations and rotations: about 2^40 
•  Similarity: 2^50 
•  Affine: 2^70 
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Keypoint methods 

  Define “special” locations in image.  
•  Local brightness extremum 
•  Local edge energy extremum 
•  “reddest” point locally 
•  etc. 

  Find all such special points in patch and image. 
  Try to find a mapping from patch points to image 

points. 
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Keypoints 
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Keypoint matching 



63 The Sharpening Match 

Finding the optimum alignment 

  Exhaustive search - too slow for large sets of 
transformations 

  Keypoints: not repeatable for far-field tracking, 
tracking with occlusion, or tracking low-texture 
objects 
•  Many features are not “dense” 

  Gradient descent 
•  Often can’t tolerate large displacements,  

but good for many low level vision problems. 
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Finding the optimum alignment 

  Exhaustive search - too slow for large sets of 
transformations 

  Keypoints: not repeatable for far-field tracking, 
tracking with occlusion, or tracking low-texture 
objects 
•  Many high level features are not “dense” 

  Gradient descent 
•  Often can’t tolerate large displacements,  

but good for many low level vision problems. 
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Gradient descent and human vision 

  Human vision has two basic modes of object 
search: 
•  Iterative saccades 
•  Smooth pursuit 

  Gradient descent is analogous to smooth pursuit, 
which most intelligent animals are very good at. 
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Gradient Descent Alignment 

patch I!
image J!

Find best match of patch I to image J, 
for some set of transformations.!
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Difficulties with gradient descent (minimizing distance) 

  Zero gradient problem: 
•  Moving patch I doesn’t change similarity function. 

  Local optima: 
•  We’re at a minimum, but it’s the wrong one. 
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Local optimum problem in alignment 

Unaligned! Stuck in a local!
optimum!
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Common solution to gradient descent matching 

  Blur images? 
•  “Spreads information” 
•  Also destroys information through averaging 
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Image Pyramids 

  Basic pyramid: 
•  Half the resolution (via sampling or interpolation) at 

each level. Number of levels: Log(n). 

  Gaussian pyramid: 
•  Gaussian blur the image, then subsample. 
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Gaussian Pyramid 
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Gaussian Pyramid 
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Gaussian Pyramid 
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Sampling!
without!
smoothing!

Sampling!
after!
smoothing!
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When does blurring lose the target? 
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What happens to this under blurring?  
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What happens to this under blurring?  
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Observation 

  Changing the representation to help find the 
optimum can make the representation 
significantly worse. 
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Observation 

  Changing the representation to help find the 
optimum can make the representation 
significantly worse. 

  Question: Can we smooth the optimization 
landscape without destroying image information? 
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Congealing (CVPR 2000) 
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Properties of Congealing 

  Smooths the optimization landscape without 
smoothing individual images. 

  Has large “basin of attraction”.  
•  Few images get stuck in local minima 
•  Few images have zero-gradient problem 
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Congealing with 2 images? 

  How can we get the benefits of congealing 
without a large stack of images? 
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Exploding an image 
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Exploding an image 

Why?!
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Spatial Blur: 3d convolution with 2d Gaussian 
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Spatial Blur: 3d convolution with 2d Gaussian 

KEY PROPERTY: doesn't destroy 
information through averaging !
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Benefits of congealing without all the images 

  Instead of having hundreds of images, just 
"invent" hundreds of images by perturbing a 
couple of images. 

  SAME as convolving an exploded distribution field 
with a 2D Gaussian. 

  Produces smooth landscape for alignment! 
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Similar representations 

  SIFT (Lowe) 
Generalized Shape Context (Belongie) 
•  integrates sparse feature information over blocks 

  Geometric blur (Berg) 
•  spreads edge information in sparse feature space 
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Blurring while preserving information 
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Feature space blur 

Delta function at!
one pixel! Spatial blur! Spatial and !

feature-space!
blur!
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How to compare? 
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How to compare? 

•  L1 distance?!
•  L2 distance?!
•  KL divergence?!
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Outline 

  Similarity measures in vision—general remarks 
  Piece 1: Sensitivity to position in image 

comparison 
•  What’s the right histogram bin size? 

  Piece 2: Image matching with gradient descent 
•  Overcoming problems with traditional blurring 

approaches using distribution fields. 

  Putting the pieces together:  
 the sharpening match. 

  Some results 
•  Basin of attraction studies 
•  Tracking experiments 
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Distribution Fields:  Invariance through blurring 

Each pixel location becomes a distribution of the local  
distribution of brightness values.  
 
The width of the blur kernel determines how wide 
the neighborhood is.!
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Comparing Images with Dist. Fields 

Given two images I                  and J:!

(!)!
1.!

2.!
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The Likelihood match 
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The Likelihood match 
ith distribution in  
distribution field !

ith pixel in  
image J!
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The Sharpening Match 
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The Sharpening Match 

Pop Quiz: What happens when I = J?!
!
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Understanding the sharpening match 

What standard deviation maximizes the likelihood of!
a single point x under a zero-mean Gaussian?!
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Intuition behind sharpening match 

  Increase standard deviation until it matches 
“average distance” to matching points. 
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Properties of the sharpening match 

  An image has sigma = 0 under its own 
distribution field.  
•  Satisfies property 1  (!!!) 

  Probability of an image patch degrades gracefully 
as it is translated away from best position. 
•  Satisfies property 2 (!!!) 

  Optimum sigma value gives a very intuitive 
notion of the quality of the image match. 
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The likelihood match 

  Recall image I and patch J. 
  Make a distribution field out of I and evaluate the 

likelihood of J under the field. 

Patch J!

Image I!
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What happens in gradient descent 

  1) Build DF with one image 
  2) Expand kernel until patch likelihood is 

maximized: tends to be a big kernel 
  3) Update position of patch 
  4) Adjust kernel size to match likelihood again 

•  Tends to be a smaller kernel 

  5) When you’re done, the remaining kernel size 
gives you the quality of the match! 
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Intuition behind sharpening match 

  Increase standard deviation until it matches 
“average distance” to matching points. 
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Properties of the sharpening match 

  A patch has probability of 1.0 under its own 
distribution field. 

  Probability of an image patch degrades gracefully 
as it is translated away from best position. 

  Optimum “sigma” value gives a very intuitive 
notion of the quality of the image match. 
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Outline 

  Similarity measures in vision—general remarks 
  Piece 1: Sensitivity to position in image 

comparison 
•  What’s the right histogram bin size? 

  Piece 2: Image matching with gradient descent 
•  Overcoming problems with traditional blurring 

approaches using distribution fields. 

  Putting the pieces together:  
 the sharpening match. 

  Some results 
•  Basin of attraction studies 
•  Tracking experiments 
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Basin of attraction studies 
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Basin of attraction studies 

GIVEN A RANDOM PATCH...!
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Basin of attraction studies 

AND A RANDOM DISPLACEMENT...!
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Basin of attraction studies 

CAN WE FIND OUR WAY HOME?!
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Basin of attraction studies 



113 The Sharpening Match 

Basin of attraction results (CVPR 2012) 
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Lukas-Kanade etc.. 
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Distribution Field alignment 
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Tracking results 

  State of the art results on tracking with standard 
sequences 
•  Very simple code 
•  Trivial motion model 
•  Simple memory model 
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It’s not perfect… 
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Conclusion 

  The sharpening match addresses 
•  The difficulties in developing a matching function which 

can tolerate positional differences 
•  The difficulties of doing gradient descent alignment 
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Related work 

  Mixture of Gaussian backgrounding (Stauffer...) 
  Shape contexts (Belongie and Malik) 
  Congealing (me) 
  Bilateral filter 
  SIFT (Lowe), HOG (Dalal and Triggs) 
  Geometric Blur (Berg) 
  Rectified flow techniques (Efros, Mori) 
  Mean-shift tracking 
  Kernel tracking 
  and many others... 
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Thanks! 


