Convolution and
Non-parametric Density Estimation



Correlation vs Convolution

* Correlation:
— Primary use: matching

e Convolution:

— Models perturbations in the image generation
process.



Visualizing Image Filtering
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https://developer.apple.com/library/ios/DOCUMENTATION/Performance/Conceptual/vimage/ConvolutionOperations/ConvolutionOperations.html



Point Spread Functions
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A Pachinko Machine




There goes the family fortune




Maximum Likelihood

Parameter Estimation

e To the board!

 Worked through how to find the maximum likelihood
mean for a sample from a Gaussian distribution with
unit variance and unknown mean.
— Write down expression for likelihood of all the data points.

— Take derivative (of log likelihood) with respect to unknown
mean.

— Set to 0 and solve.

e Result: maximum likelihood mean is the empirical
mean of the sample!



Histogram dependence on bin position
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http://www.mvstat.net/tduong/research/seminars/seminar-2001-05/



Gaussian Density Function
(you might as well learn it now!)

p(z; p,0%) = exp —

2mo 202



Likelihood of a new point x under a
particular sample’s Gaussian




Kernel Density Estimate built from 12
samples.
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Kernel Density Estimate




KDE as convolution

* The density is the convolution of the sample
with the kernel:

* p(x) = conv(S,kernel).



Kernel Density Estimation
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Kernel Density Estimation

Oversmoothed
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Kernel Density Estimation

Optimally smoothed
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Comparison of the histogram (left) and kernel density estimate (right) constructed

using the same data. The 6 individual kernels are the red dashed curves, the kernel

density estimate the blue curves. The data points are the rug plot on the horizontal

axis. (WIKIPEDIA)
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randn('seed',8192);
x = [randn(50,1); randn(50,1)+3.5];

[h, fhat, xgrid] = kde(x, 401); a1
figure; :
hold on; 2 g
plot(xgrid, fhat, 'linewidth’, 2, ‘color’, 'black’); g
plot(x, zeros(100,1), 'b+'); .
xlabel('x")

ylabel('Density function')
hold off;



Estimating the kernel “bandwidth”

Use leave-one-out cross validation.

For each point, calculate probability under
density estimate with all the other points. This
is the “leave-one-out estimate” of that point.

Now consider the product of the probabilities
of each point under its leave-one-out
estimate.

Find the variance of the Gaussian kernel which
maximizes the leave-one-out product.



