Introduction to Computer Vision

Michael J. Black Sept 2009

Lecture 8: Pyramids and image derivatives

Goals

- Images as functions
- Derivatives of images
- Edges and gradients
- Laplacian pyramids

Code for lecture

- <u>http://www.cs.brown.edu/courses/cs143/</u> <u>Matlab/lecture5Script.m</u>
- <u>http://www.cs.brown.edu/courses/cs143/</u> Matlab/lecture6featureScript.m

Next week

- I'm at ICCV in Japan
- Monday: Deqing Sun features and correlation (assignment 1)
- Wednesday: data for assignment 2. important that you attend.
- Friday: Silvia Zuffi color

Image Filtering

Smoothing and sharpening

Source: T. Darrell

Edge detection

Feature detection/search

Images as functions

- Image is a function, f, from R^2 to R:
 - f(x, y) gives the image intensity at position (x, y)
 - Realistically, we expect the image only to be defined over a rectangle, with a finite range:

 $-f: [a,b] \times [c,d] \rightarrow [0, 1.0]$

Images as functions

 A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

Images as Functions

• Images are a discretely sampled representation of a continuous signal

Images as Functions

• Images are a discretely sampled representation of a continuous signal

Images as Functions

What if I want to know $I(x_0+dx)$ for small dx < 1?

Taylor Series Approximation

$$I(x_0 + dx) \approx I(x_0) + dx \frac{\mathrm{d}}{\mathrm{d}x} I(x_0) + \varepsilon$$

Locally linear approximation to the function using an estimate of the slope.

How do we compute the partial derivatives of an image?

Discontinuous

Smoothed with Gaussian

CS143 Intro to Computer Vision

Actual 1D profile

Smoothed with a Gaussian

Edges

- Correspond to fast changes
 - Where the magnitude of the derivative is large

Compute Derivatives

$$I_{x}(x) = \lim_{dx \to 0} \frac{I(x + dx) - I(x)}{dx} \approx I(x + 1) - I(x)$$

We can implement this as a linear filter:

Partial Derivatives
$$\frac{\partial}{\partial x}I(x,y) = I_x \approx I \otimes D_x, \quad \frac{\partial}{\partial y}I(x,y) = I_y \approx I \otimes D_y$$

• Often approximated with simple filters:

$$D_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad D_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Finite differences

Barbara signal and derivatives

Derivatives and Smoothing

Derivatives and Smoothing $D_x \otimes (G \otimes I) = (D_x \otimes G) \otimes I$

Compare with [-1 0 1] filters.

CS143 Intro to Computer Vision

1D Barbara signal

Smoothed Signal

First Derivative

Note the "amplification" of small variations.

How can we "detect" edges?

Find the peak in the derivative. Two issues:

- Should be a local maximum.
- Should be "sufficiently" high.

Finite differences

Finite differences responding to noise

Increasing noise \rightarrow (this is zero mean additive Gaussian noise)

Ponce & Forsyth

CS143 Intro to Computer Vision

1 pixel

3 pixels

7 pixels

The scale of the smoothing filter affects derivative estimates, and also the semantics of the edges recovered.

Note: strong edges persist across scales.

Ponce & Forsyth

CS143 Intro to Computer Vision

Barbara signal and derivatives

What happens if we now take the derivative of the derivative?

$$I''(x) = \lim_{dx \to 0} \frac{I'(x+dx) - I'(x)}{dx} \approx I'(x+1) - I'(x)$$

$$= I(x+2) - 2I(x+1) + I(x)$$

Filter kernel?

The zero-crossings of the second derivative tell us the location of edges.

The Laplacian

$$\nabla^2 I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

Just another linear filter.

$$\nabla^2(I(x,y)\otimes G(x,y)) = \nabla^2 G(x,y) \otimes I(x,y)$$

Approximating the Laplacian

• Difference of Gaussians at different scales.

Approximating the Laplacian

• Difference of Gaussians at different scales.

DoG=fspecial('gaussian',15,2)-... fspecial('gaussian',15,1); surf(DoG)

The Laplacian Pyramid

 $L_i = G_i - \operatorname{expand}(G_{i+1})$

Gaussian Pyramid $G_i = L_i + expand(G_{i+1})$

Laplacian Pyramid

 $\Box L_n = G_n$ G_n expand G_2 L_2 expand G_1 L_1 expan, G_0 L_0

LoG zero crossings (where the filter response changes sign)

Ponce & Forsyth

CS143 Intro to Computer Vision

© 2006 Aude Oliva and Antonio Torralba

http://cvcl.mit.edu/hybridimage.htm

CS143 Intro to Computer Vision

http://cvcl.mit.edu/hybridimage.htm

CS143 Intro to Computer Vision

Copyright © 2007 Aude Oliva, MIT