
©Michael J. Black CS143 Intro to Computer Vision 

Introduction to Computer Vision 

Michael J. Black 

Sept 2009 

Lecture 8:  

Pyramids and image derivatives 



©Michael J. Black CS143 Intro to Computer Vision 

Goals 

• Images as functions 

• Derivatives of images 

• Edges and gradients 

• Laplacian pyramids 
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Code for lecture 

• http://www.cs.brown.edu/courses/cs143/

Matlab/lecture5Script.m 

• http://www.cs.brown.edu/courses/cs143/

Matlab/lecture6featureScript.m 

CS143 Intro to Computer Vision 
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Next week 

• I’m at ICCV in Japan 

• Monday: Deqing Sun – features and 

correlation (assignment 1) 

• Wednesday: data for assignment 2.  

important that you attend. 

• Friday: Silvia Zuffi – color  

CS143 Intro to Computer Vision 
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Image Filtering 

Source: T. Darrell 

Smoothing and sharpening Edge detection Feature detection/search 
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Images as functions 

Source: S. Seitz 

x

y
f(x,y)

• Image is a function, f, from R2 to R: 
• f( x, y ) gives the image intensity at position ( x, y )  

• Realistically, we expect the image only to be defined over a 

rectangle, with a finite range: 

– f: [a,b] x [c,d]  [0, 1.0] 
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Images as functions 

• A color image is just three functions pasted 

together.  We can write this as a “vector-valued” 

function:  

Source: S. Seitz 
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Images as Functions 

• Images are a discretely sampled 

representation of a continuous signal 

I(x) 

x 
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Images as Functions 

• Images are a discretely sampled 

representation of a continuous signal 

I(x) 

x 
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Images as Functions 

What if I want to know I(x0+dx) for small 

dx<1? 

I(x) 

x x0 
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Taylor Series Approximation 

I(x) 

x x0 

Locally linear approximation to the function using an estimate of 
the slope.   
How do we compute the partial derivatives of an image? 
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Simple Signal 

Discontinuous Smoothed with Gaussian 
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Extrema of first 

derivative 
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What are “edges” (1D) 

step 

ramp 

line or bar 

roof 

Idealized: 
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Actual 1D profile 



©Michael J. Black CS143 Intro to Computer Vision 

Smoothed with a Gaussian 
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Edges 

• Correspond to fast 

changes 

– Where the magnitude 

of the derivative is 

large 
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Compute Derivatives 

We can implement this as a linear filter: 

0 1 -1 

1.0 

0 1 -1 

1.0 

- 
[ -1   1] 

Or   [-1  0  1] 

symmetric 
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Partial Derivatives 

• Often approximated with simple filters: 

Dx =

1 0 1
1 0 1
1 0 1

Dy =

1 1 1
0 0 0
1 1 1

Finite differences 
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Barbara signal and derivatives 
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Derivatives and Smoothing 

G 

? 
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Derivatives and Smoothing 

G dG 
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In 2D 

Compare with [-1 0 1] filters. 
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1D Barbara signal 

Smoothed Signal First Derivative 

Note the “amplification” of small variations. 
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How can we “detect” edges? 

Find the peak in the derivative. 

Two issues: 

– Should be a local maximum. 

– Should be “sufficiently” high. 
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Thresholding the  

Derivative? 
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Finite differences 

Is this Ix or Iy 

Is the sign right? 
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Finite differences responding to 

noise 

Increasing noise 
(this is zero mean additive Gaussian noise)

Ponce & Forsyth 
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The scale of the smoothing filter affects derivative estimates, and also
the semantics of the edges recovered.

Note: strong edges persist across scales.

1 pixel 3 pixels 7 pixels

Ponce & Forsyth 
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Barbara signal and derivatives 

What happens if we now take the derivative of the 

derivative? 
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Second Derivative 

Filter kernel? 

[1   -2   1] 
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Maxima of first 

derivative 

“zero crossings” 

of second 

derivative 
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Step Edge 

The zero-crossings of the second derivative tell us the 

location of edges. 
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The Laplacian 

Just another linear filter. 
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The Laplacian 

“center-surround” “Mexican hat” 
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Approximating the Laplacian 

• Difference of Gaussians at different 

scales. 
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Approximating the Laplacian 

• Difference of Gaussians at different 

scales. 

DoG=fspecial('gaussian',15,2)-… 

 fspecial('gaussian',15,1); 

surf(DoG) 
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expand 

Gaussian Pyramid Laplacian Pyramid 

The Laplacian Pyramid 

- = 

- = 

- = 
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sigma=2sigma=4

LoG zero crossings 
(where the filter response changes sign)

Ponce & Forsyth 
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http://cvcl.mit.edu/hybridimage.htm 
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http://cvcl.mit.edu/hybridimage.htm 
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