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ABSTRACT
Congealing is a flexible nonparametric data-driven frame-
work for the joint alignment of data. It has been successfully
applied to the joint alignment of binary images of digits,
binary images of object silhouettes, grayscale MRI images,
color images of cars and faces, and 3D brain volumes. This
research enhances congealing to practically and effectively
apply it to curve data. We develop a parameterized set of
nonlinear transformations that allow us to apply congealing
to this type of data. We present positive results on aligning
synthetic and real curve data sets and conclude with a discus-
sion on extending this work to simultaneous alignment and
clustering.

Index Terms— Curve alignment, nonparametric statis-
tics, entropy, classification

1. INTRODUCTION

Joint alignment is the operation which transforms data to in-
crease an application-specific measure of their mutual simi-
larity. Its purpose is to remove unwanted variability in the
data. For example, multiple realizations of any stochastic pro-
cess contain variations in time and amplitude. The resulting
curves 1 can be aligned to remove this variability by allowing
certain transformations on the data. This is useful for recov-
ering the underlying data needed for a task (e.g. for speech
processing [2, 3]) or for obtaining a representation invariant
to unmodeled factors (e.g. for dimensionality reduction [4]).

While several models have been proposed for alignment
of curve data [3, 5, 6, 2], all make significant assumptions
about their form (a single underlying curve [3, 5] or para-
metric assumptions [2]) or the transformations they can un-
dergo [2, 6]. On the other hand, congealing is a nonparametric
framework for joint alignment that makes very few assump-
tions about the data and can accommodate any continuous
family of transformations, making it more widely applicable.

Congealing iteratively optimizes a set of transformation
parameters (associated with the data) using an information-
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1Here, a curve is simply any 1-D function and may be alternatively re-
ferred to as time series or signal.

theoretic objective function as a measure of joint alignment.
Each data point (in our case a single curve,

���
) is associ-

ated with a transformation parameter, � � . Congealing si-
multaneously searches over the space of all the data points’
transformation parameters to find those that maximize a mea-
sure of the joint alignment. More formally, when aligning �
curves, congealing searches for the transformation parameters� �	��

������
��	��� that maximizes a measure of the transformed
curves, ��� ��� � � ��
����
��

������
 � � � ��
��	������� , where

� ����
 �!� is the
transformation function and ��� � �"��� measures the joint align-
ment of a set of curves.

The freedom to use any set of transformations, transfor-
mation parameterization, optimization procedure and similar-
ity function makes congealing more of a framework than a
specific algorithm. Different choices of these factors result in
different algorithms (e.g. [7, 8, 9, 10]). This paper derives a
congealing algorithm for the joint alignment of curve data by
specifying a parameterized set of useful nonlinear alignment
transformations. Section 2 describes the algorithm, Section 3
presents positive results on aligning synthetic and real curve
data sets and Section 4 analyzes the algorithm’s performance
and concludes with a discussion on extending it to simultane-
ous alignment and clustering.

2. ALGORITHM

In this section we address each of the congealing design
choices and present what we found to work well in practice.
Although we present congealing as an optimization frame-
work, it has an intuitive probabilistic interpretation [7, 1].

Allowable transformations. The algorithm allows non-
linear scaling in time, linear scaling in amplitude and ampli-
tude translation. Nonlinear scaling implies that different re-
gions in a curve are scaled by different amounts. Because we
assume the curves have the same length,2 linear time scaling
and time translation are invalid transformations. In Section 4
we consider nonlinear amplitude scaling.

Measure of joint alignment. The algorithm measures
joint alignment using the sum of location-wise differential en-
tropies. Each time step’s entropy is independently calculated,

2This is a common assumption for curve alignment and can easily be
relaxed in our algorithm to allow translation and/or linear scaling in time.



treating the set of values from all curves at each time step as
samples from a probability density function. Those samples
are used to compute the entropy at each time step and then are
summed across all the time steps to estimate the total entropy
of the data. Ideally the algorithm would compute the joint en-
tropy of all curves by treating each one as a sample from an#

-dimensional density, where
#

is the curve length. How-
ever, this estimation problem is infeasible because most curve
data sets have more time steps than curves. Instead, the algo-
rithm adds entropies at each time step, which corresponds to
an implicit assumption that the time steps are independent af-
ter alignment [7]. The entropy of each time step is calculated
using the efficient distribution-free Vasicek estimator [11].

Entropy is a measure of spread that does not make any
assumptions about the form of the underlying distribution (as
opposed to variance, for example, which is more appropri-
ate for a unimodal distribution). By maximizing negative en-
tropy, the algorithm can align multi-modal data sets by auto-
matically discovering the modes via the alignment procedure.

Optimization procedure. We found that the stan-
dard congealing gradient descent [7] converged quickly and
avoided local minima. In each iteration this procedure iter-
ates over all the transformation parameters for all the curves
and updates their parameters by a small random amount so
as to decrease the sum of entropies. It stops when several
consecutive iterations do not change the objective function.

Transformation parameterization. One of the biggest
difficulties in developing alignment algorithms is in param-
eterizing the transformations. Some parameterizations are
obvious, such as those for linear scaling and translations, but
others, such as those for nonlinear time scaling, are more
challenging. Therefore, several algorithms, including dy-
namic time warping, do not parameterize nonlinear scaling
in time, and attempt to search all possible monotonic scal-
ing functions. Other approaches exclude nonlinear scalings
(e.g. [2]) or take a local approach to alignment (e.g. [3])
which can arbitrarily warp the curves. These approaches miss
the benefits of good parameterizations, including low dimen-
sionality, high modeling capacity and efficient computation.

Our algorithm allows changes in amplitude of the form$&%('*) , where % is the original amplitude. Hence, amplitude
can be shifted or scaled linearly. It parameterizes nonlinear
time scaling as a monotonic warping function, +,�.-�� , that maps
the time steps of the original curve to the time steps of the
aligned curve. The aligned curve is then generated via bilinear
interpolation,

�0/�1"2�3�465�7 �.-��98 �;:�<=2�3�2�4�/>1 �?+,�.-��=� .
There are several ways to parameterize +,�.-�� (e.g. [12]).

We found that Ramsay’s method [13] using a Fourier ba-
sis (as opposed to the recommended b-splines) was the
most efficient and compact — only 4 basis functions were
needed. Ramsay’s method is based on the fact that mono-
tone functions are a family of functions defined by @ A�B@ CEDF �.-��G@�B@ C , where F �?-�� is an unconstrained coefficient func-
tion. This equation has the following solution, +&�?-�� D

�HJI CK0L>MONQP I <=R CK F �TS��OUVSXWYU6Z�
 where [ is the normalizing

constant, [ D I �K\L>MON P I �K F �TSX�]UVS W . Using this equation, the
algorithm can calculate a monotone warping function +&�?-��
from any F �?-�� , which represents the relative curvature of+,�.-�� . We used a linear combination of sine and cosine func-
tions at varying frequencies to parameterize the coefficient
function. Thus F �?-�� D_^a`��R �cb �edgfih �Tj�k&lO-�� 'nm �po>qVd �?j�k&lO-�� ,
where the weights � b � 
 ������
 b � 
 m � 

������
 m � � are the parameters
for nonlinear time scaling. Using only two frequencies � �r 
 sX�
provided sufficient modeling capacity.

Summary. These design choices resulted in an efficient
and flexible algorithm for the joint alignment of curve data. It
employs a search procedure that makes no assumptions about
the form of the curves and only weak assumptions about the
structure of transformations. Furthermore, each curve’s trans-
formation is parameterized by only six parameters.

3. EXPERIMENTAL RESULTS

It is difficult to quantitatively evaluate the performance of
alignment algorithms and qualitative evaluations are only
meaningful if they are performed by an expert who under-
stands the nature of the data set. In practice, the quality of
alignment depends on the application. Measuring the sum
of squared differences, for example, could be misleading be-
cause a collection of curves can always be trivially aligned
— by setting them all to zero, for example — and even many
non-trivial “perfect” alignments might be removing useful
data. Therefore, we performed a series of alignment and
classification experiments on synthetic and real data sets to
evaluate our algorithm. Using classification results to mea-
sure alignment quality allows us to determine if the algorithm
is providing a tangible benefit.

Aligning synthetic data sets. The purpose of the first se-
ries of experiments was to evaluate the effectiveness of the al-
gorithm’s parameterization and search techniques using syn-
thetic data sets. We selected five curves from the UCR time-
series repository and for each curve created five synthetic data
sets of increasing difficulty. Each data set was created by ran-
domly transforming the original curve t�u times. We created
three groups of these j6t data sets and in each group only one
of the three transformations (linear amplitude scaling, ampli-
tude translation, nonlinear time scaling) was performed. This
allowed us to study each transformation independently, and
provided us with the ground-truth underlying curves.

We aligned each of the v�t data sets using our algorithm,
but in each case we restricted the algorithm to using the type
of transformation that created that data set. For these syn-
thetic data experiments we used variance instead of entropy
in the objective function. This allowed us to more accurately
assess our transformation parameterization given that the data
sets are unimodal. In v6j of the v�t experiments, our algorithm
perfectly aligned the data set to the original curve that gen-
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Fig. 1. Alignment results on three synthetic data sets. Origi-
nal curves are in the first column and aligned curves are in the
second. The black curve in each plot is the mean curve.

erated it. Figure 1 presents an alignment result from each of
three transformations on the most difficult data sets we gen-
erated. These results suggest our algorithm has the capacity
to align curve data corrupted by large transformations while
avoiding local minima.

Curve classification via alignment. Because the purpose
of alignment is to eliminate undesirable variation, the perfor-
mance of an alignment procedure can be assessed by investi-
gating whether it improves the performance of a classifier [9].
Often, bringing the curves into correspondence simplifies the
classification problem and improves the classifier’s perfor-
mance. We performed two types of classification experiments
(using entropy in the objective function), the first based on
supervised alignment and the second based on unsupervised
alignment. We used six data sets from the UCR time-series
repository: Beef, Coffee, ECG200, FaceFour, GunPoint, and
Trace. In all cases we used a simple K-nearest neighbor clas-
sifier ( w D s u ) so that it would be more sensitive to the ef-
fects of the data alignment process. The classification accura-
cies are plotted in Figure 2.

Classification based on supervised alignment involves
aligning the (train and test) curves from each category inde-
pendently and then performing classification. We used the
same train and test splits specified in the repository [14]. We
compared these results to performing classification without
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Fig. 2. Classification results. Each data point represents an
experiment outcome, its abscissa denotes accuracy without
alignment and its ordinate denotes accuracy with alignment.

alignment. As Figure 2 shows, the accuracies for aligned data
were higher than those for unaligned data. These improve-
ments show that the aligned data still had enough information
to distinguish classes and removed irrelevant variation. Fig-
ure 3 shows a sample alignment result. However, it is possi-
ble, since alignments were done separately on each class,
that the alignment algorithm itself introduced information
allowing the separation of classes. To address this issue, we
turn to “unsupervised alignment” experiments.

Classification based on unsupervised alignment involves
aligning the train and test curves from all the categories si-
multaneously, without knowing the class label for each curve,
and then performing classification. Hence it represents a
more realistic application scenario. In these experiments we
only used nonlinear time scaling because our goal was to
bring the curves into locational correspondence to simplify
classification. We performed s u -fold stratified cross valida-
tion and compared the results to performing classification
without alignment (using the same folds). As Figure 2 shows,
the mean accuracies with alignment were higher than the
mean accuracies without alignment in most cases. Figure 4
illustrates the one data set for which alignment substan-
tially harmed classification performance. This data set was
a special case in which curve amplitudes were similar across
both categories and the most discriminating feature was time
displacement. The alignment procedure eliminated this dis-
placement, making the classification problem harder.

4. DISCUSSION AND FUTURE WORK

We have presented an efficient joint alignment algorithm for
curve data, which demonstrated the utility of an efficient pa-
rameterization for nonlinear transformations. We tested our
algorithm on a wide range of complex curve data sets and in
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Fig. 3. Alignment result on OSULeaf (category 1) data set
with mean curves overlaid.
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Fig. 4. Alignment result on ECG200 (both classes, color-
coded) data set.

almost all the cases it improved the correspondence across the
curves and improved the performance of a classifier on those
data sets. Compared to existing algorithms, it makes fewer
assumptions about the distribution of the curves and the trans-
formations, making it more widely applicable.

It is interesting to note that the behavior of our algorithm
using a location-wise variance objective function and incor-
porating nonlinear amplitude scaling is similar to the contin-
uous profile model (CPM) [3]. CPM uses an HMM-based
alignment procedure that allows each observation to move
in time or amplitude and assumes a single underlying curve.
Figure 5 shows the alignment result of our slightly modified
algorithm on the same data presented in [3]. These alignment
results are very similar to those generated by CPM. This high-
lights a desirable characteristic of our algorithm: It can be
easily tuned to handle specific cases of interest. Our software
implementation reflects this property.

Future work will include extending the algorithm to si-
multaneous alignment and clustering. This will allow us to
overcome the limitations of the independence assumption in
our current algorithm which can fail when presented with
complex data sets arising from multiple modes. The use of
Dirichlet process priors will allow us to maintain the nonpara-
metric nature of our approach.
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