Efficient population registration of 3D data
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Abstract

We present a population registration framework that acts on large collections
or populations of data volumes. The data alignment procedure runs in a simul-
taneous fashion, with every member of the population approaching the central
tendency of the collection at the same time. Such a mechanism eliminates the
need for selecting a particular reference frame a priori, resulting in a non-biased
estimate of a digital atlas. Our algorithm adopts an affine congealing framework
with an information theoretic objective function and is optimized via a gradient-
based stochastic approximation process embedded in a multi-resolution setting.
We present experimental results on both synthetic and real images.

1. Introduction and Motivation

The registration of two data sets is the problem of identifying a geometric trans-
formation which maps the coordinate system of one to that of another or, more
generally, establishing a homology among the input images when the number
of input images to be aligned is more than two. In this scenario, it is not one,
but a group of transformations that needs to be identified in order to put all
the inputs into correspondence. We are particularly motivated by the population
registration problem, which includes the registration of collections of images or
volumes, where the number of inputs is greater than twenty or potentially much
greater.

Depending on the nature of the images to be processed, we distinguish be-
tween mono- and multi-modal registration tasks. In the former, the inputs are
acquired by the same, and in the latter case by different, types of imaging de-
vices. A registration problem that lies between these two categories is the so-
called template-to-subject registration which involves the alignment of an image
or a set of images with a template constructed independently from the current
alignment. (The template, as explained below, can be one member of the input
image set or a probabilistic representation of prior knowledge about the imaged
object.) In computer vision, template-registration tasks are common when there
is some prior information about the standard characteristics of the input and
/ or when one wishes to compare a current sample of a group to previously
processed ones. The results can then be further studied to carry out statistical
inference on shape, population characteristics or on abnormal variability. They
could also be used as a pre-processing step for segmentation studies.



In the medical domain the same task has become increasingly important and
is referred to as atlas-to-subject registration. Its prevalence can be explained by
the accessibility of rapidly growing image databases and faster computers that
allow for population studies and various data mining tasks. We were initially
inspired by the availability of such data volumes; thus our examples are all
from the medical domain. Note, however, that the algorithm formulation is very
general and it is not restricted to only medical input data sets.

In this work, we demonstrate a new unbiased and computationally efficient
framework for aligning populations of 3D medical images for the purpose of
digital (anatomical) atlas construction. We believe that defining a robust inter-
subject registration technology that enables the comparison of large numbers of
images will allow us to build better structural atlases, and to further analyze
inter-subject differences.

2. Background and Previous Work

Several approaches exist that propose the alignment of multiple data sets into the
same coordinate frame. Besides the details of the registration algorithm applied,
there is a significant difference in how each method interprets the common coor-
dinate frame (or template). For some specific applications, the desired template
is already established. The input volumes then do not need to be managed as a
set, they can be aligned with the reference frame individually. This approach is
advantageous when single input volumes need to be compared to the template.
If, however, the input volumes are to be treated (simultaneously) as a group,
other mechanisms are required.

For the rest of the applications, the digital template is not available, so
that too has to be generated along with the aligning transformations. In the
medical community, recently, there have been several approaches proposed [3,
6,12,11,14]. One group of algorithms selects a standard coordinate frame (for
example, based upon certain anatomical structures) and requires the algorithm
to position all the inputs into that frame. The mean of the so-aligned images is
then computed. Such methods have been performed, for instance, with the usage
of the Talairach anatomical coordinate system [1,13]. A major disadvantage of
these methods is that the images need to be pre-processed in order to have the
matching landmarks reliably identified in them. That is a time-consuming and
potentially error-prone procedure.

Other approaches select one of the current data volumes to be the common
reference frame [3]. After all the other volumes are aligned to this, their mean
is computed. The problem here is the introduction of bias into the procedure by
claiming that one sample volume can represent the standard reference. Even if
the procedure is re-run several times or the selection of the particular reference
frame is carried out in a more careful manner, we cannot always ensure a non-
biased implementation of this process. In the case of anomalies present in the
input, the registration results could be significantly distorted.

Instead, there is growing interest in generating mean models as a by-product
of a larger-scale registration process. That formulation eliminates the introduc-



tion of a bias into the registration framework by simultaneously evolving the
data sets towards a common reference. According to one approach, the “mean”
is initially defined and the images are aligned to that reference image [5]. The
process is iterated until the optimal alignment is found. Another approach fol-
lows that same scheme, but it performs non-rigid alignment of 2D scans using
a minimum description length criterion [12]. Because of memory limitations,
these algorithms can currently handle only a limited number (< 10) of input
volumes. We note that algorithms in this subgroup are closely related to a max-
imum likelihood framework where each voxel distribution is represented by a
Gaussian with a mean equal to the voxel mean and a fixed variance. When us-
ing our framework - congealing - though, each voxel has a separate, individually
optimized non-parametric distribution. Since the distribution of tissues at a par-
ticular voxel is usually highly non-Gaussian, it would seem that our framework
is more appropriate.

Another approach within this same category defines the image set registration
problem by the generalization of a one-to-one alignment framework [10]. The
authors estimate the joint density function of all the inputs and construct a
maximum likelihood-type similarity metric. For computational ease the input
images are pre-segmented into a handful of anatomical classes. A drawback of
this approach is that that it requires the construction of a joint density function
whose size grows exponentially with the number of input images. While the
amount of data available only grows linearly, the number of samples required for
a good density estimation grows exponentially.

3. Our Method

We are interested in formulating the problem as an analogy to an inter-subject
image set alignment task. We use a technique called congealing as a basis of our
framework. This approach was first introduced in the machine learning and com-
puter vision literature, offering a solution to the hand-written digit recognition
problem [8,9]. There, a model of the central tendency of binary input images
was recovered and used for classification purposes.

The objective function proposed in the congealing framework is the total
voxel-wise entropy of the input image volumes. The entropies are computed at
each coordinate location and then these quantities are added together. This for-
mulation thus models distributions of each voxel conditioned on spatial location
rather than treating each position as equivalent. This is in contrast with the
popular mutual information or joint entropy methods for alignment where en-
tropy is measured within an image and the voxel distribution is assumed to be
i.i.d.([7, 10, 15]). The sum of voxel-wise entropies is approximately equivalent to
finding the maximum likelihood latent image in the population [8], and using it
as an alignment criterion results in a low total entropy joint image. This outcome
represents the underlying shape of the imaged objects and its residual variation.

Warfield et al. have already applied a preliminary version of the congealing
approach to the problem of fusing MRI scans of 22 pre-term infants and pro-
ducing an atlas of the developing white matter [14]. In that implementation, the



intra~cranial cavity (ICC) of all the input volumes was pre-segmented to allow
for binary congealing, and one member of the population was also set to be
stationary (resulting in a biased result). A nine parameter affine transformation
was identified for all the inputs. (A model created by this method on adult brain
scans is referred to as control model in Section 5 and is shown in Fig. 4 (b).)

Our contribution to the congealing framework lies in its adaptation to a
population of grayscale-valued 3D data volumes without introducing any bias
and a computationally efficient implementation via a stochastic gradient-based
optimization procedure in a multi-resolution framework.

3.1. The Objective Function

As mentioned already, our congealing framework adopts the sum of voxel-wise
entropies as a joint alignment criterion. The main intuition behind using such
an objective function is that, when in proper alignment, intensity values at cor-
responding coordinate locations from all the inputs form a low entropy distribu-
tion. That statement holds even if the intensity values are not identical. Hence
noise or bias fields, and what is more, corresponding multi-modal inputs can
also be accommodated. An entropy-based objective function is also appropri-
ate to handle data sets whose intensities form multi-modal distributions. That
property is of great benefit when the population consists of (sufficient number
of representatives of) data volumes with widely varying intensity profiles. For
example, the tissue intensities at a particular voxel location in the cortex would
likely include some white matter voxels, some gray matter voxels, and a small
percentage of other tissue types. The distribution of brightness values in such a
distribution is frequently multi-modal.

If we denote the collection of m input volumes as Z := {Iy, Is, ..., I, }, then
our goal is to identify the set of m transformations, 7 := {1}, T5,..., T} (one
transformation associated with each volume), such that the objective function
f of total voxel-wise entropies is minimized. The objective function is then:

N
FZ,T) = f(Ti(1), oo, Ton(Tm)) = > H(Z(T (x3))),
i=1

where x; € R? indicates a particular coordinate location in the data coordinate
system, H is the Shannon entropy and N is the total number of voxel locations
in the data coordinate system. This measure actually forms an upper bound on
the true entropy of the image distribution. By minimizing this upper bound, we
approximate the minimum of the true entropy [8].

In the current implementation we use 12-parameter affine transformations.
Our convention orders the transformation components as the rotation, scaling
and shearing followed by the displacement. Accordingly, Vj Tj(x;) = (D; +
Sh;S;(R;j(xi))), where D; is the displacement, R; is the rotation, S; is the
anisotropic scaling and Sh; is the shearing component of transformation 7T}.

As both the size and number of our expected image volumes are large,
memory allocation and computational speed are both of serious concern. Con-



sequently, we apply a stochastic sampling framework and the EMMA '-style en-
tropy estimator in our framework [15]. Instead of considering all the locations in
the data coordinate space, we propose a random selection of them. Then an ap-
proximation of the total sum of voxel-wise entropies is computed for a particular
alignment configuration. We write the modified objective function (approximat-
ing expectation with sample average) as:

m

M
FET) =303 lomp(I(Ty(x1))),

i=1 j=1

where M now indicates the number of randomly selected sample points. Note,
that the samples in this reduced set of coordinate locations are not fixed but
re-generated at each iteration of the algorithm. As the experiments show, this
modification enabled us to significantly reduce the overall number of voxel loca-
tions considered in our computations.

3.2. The Optimization

In the original framework of the congealing algorithm, a coordinate descent op-
timization was used to guide the minimization of the objective function. As this
technique is not computationally efficient for our purposes, we have implemented
an iterated stochastic gradient-based update mechanism (similar to that of [15])
that significantly reduces the processing time.

3.3. Transformation Normalization

We have a normalization step included at the end of each iteration, where we
compose each transformation estimate by the inverse of the mean transformation
matrices. This update is necessary as it ensures that the average movement of
points at corresponding coordinate locations is zero, thus preventing the images
from drifting out of the field of view.?

3.4. The Multi-Resolution Framework

It is widely known in the registration literature that optimization functions can
easily become trapped in local minima. Although congealing already mitigates
some problems of local minima [8], we also constructed a multi-resolution reg-
istration framework. This implementation starts the processing of the data sets
at a down-sampled and smoothed level and then refines the results during the
higher resolution iterations. Not only does this framework improve the optimiza-
tion, it also boosts computation speed and memory usage efficiency. The number
of hierarchy levels is mostly dependent on the quality and the original size of
the input images. For the experiments presented in this work, it was sufficient
to use a maximum of three levels of hierarchy.

! The name EMMA refers to “Empirical entropy manipulation and analysis”

2 This normalization criterion is different from the one presented in [8], where the
normalization aimed to maintain a zero mean displacement estimate and a mean
transformation matrix of determinant 1.



4. Medical MRI Experiments

We ran experiments on three different populations of MRI acquisitions. The
first set consisted of 22 baby brain volumes. Each brain volume was 176 by 186
by 110 voxels, with each voxel measuring 1.0 by 1.0 by 2.0 millimeters in size.
The second and third data sets consisted of 28 and 127 adult brain volumes.
These volumes were 256 by 256 by 124 voxels, with each voxel measuring 0.9375
by 0.9375 by 1.5 millimeters. Due to page limitations, we will demonstrate the
results only on the third set of the images. We believe that this is the first report
of simultaneous registration run on such a large collection of input volumes.

The experiments on the 127 medical scans were executed on three different
resolution levels (where the volumes were (32 by 32 by 31), (64 by 64 by 62)
and (128 by 128 by 124) voxels). The largest offset was obtained on the lowest
level and then refinement was computed on the higher hierarchy levels. In our
experiments we only had to select between 800 - 1500 samples, which constitutes
just .05-2.5% of the total voxels, and no more than 250 iterations were necessary.
The total running time for the experiment was approximately six hours.

The results of the experiments are displayed in Fig. 1 (a). This figure por-
trays three orthogonal slices of the mean volumes computed before and after
the experiments. As a qualitative measure, we can establish that following the
population alignment, the data volumes properly line up and the mean volumes
have clean and sharp boundaries.

5. Validation

Validating our results and verifying our alignment is a complex task. In this
section we provide both qualitative and preliminary quantitative results.

Visually we can confirm that the mean volumes computed after the congeal-
ing process have much sharper boundaries than prior to alignment (see Fig. 1
and Fig. 4 (c)). This is an indirect indicator of how good an agreement has been
achieved. Looking at the central slices extracted from all the input volumes after
the congealing process (see Fig. 2 (b) and 3 (b)) also suggests that the algorithm
has managed to find a good quality alignment.

We also provide a quantitative analysis obtained from running our algorithm
both on a synthetic image population and from comparing one of our adult brain
models to an already existing one.

5.1. Synthetic Example

As a control study, we selected one particular medical MRI volume from a group
of adult brain acquisitions and created a database of transformed volumes by
applying affine transformations to it. The magnitude of these transformations
varied between +/ — 10 degrees for rotation, +/ — 10 mm for displacement, be-
tween [.85,1.15] factors for scaling and between +/ — .1 factors of shearing. At
the onset of the algorithm, 40 volumes were randomly generated as inputs. All
the input volumes were 124 by 256 by 256 voxels, with each voxel measuring



.9375 by .9375 by 1.5 mm. The twelve parameters of the affine transformations
were recovered after running our algorithm on two levels of the hierarchy. The
number of samples used was .05% of the total number of voxels and fewer than
400 iterations were necessary to achieve convergence. The total running time
was 2964 seconds. The results of these experiments can be seen in Fig. 1 (b)
and 2 (b). The former illustrates the mean volumes computed before and after
the congealing process, while the latter displays the central slices of each of the
input volumes before and after the alignment. For the initially selected adult
brain scan, we had access to the segmentation of two sub-cortical structures, the
left and right thalamus (LT and RT). After the congealing alignment was exe-
cuted, we applied the resulting transformations to these segmentations and then
computed an overlap measure on the so-aligned binary images. The measure of
our choice was foverlap(A1, A2) = % (A; indicating binary variables),
which can be easily generalized to higher number of inputs.

The overlap scores indicate great improvement, they increased from 0 to .745
and to .75 in the case of LT and RT, respectively. These numbers might seem a bit
low, but as the overlap metric we use is quite conservative, we further interpret
these results. For the left thalamus, .745 means that all 40 input segmentations
agreed 74.5% of the time and 34 inputs are sufficient to reach an 89% score.
Similarly, for the right thalamus, .75 means that all 40 inputs agreed 75% of the
time, and 35 inputs are sufficient to reach a 90% score.

Several factors may influence the magnitude in a decrease of this score. First,
when computing the intersection, even single misaligned voxels can significantly
reduce the metric value. Second, transforming the binary structures introduces
quite a high variation in the size of these relatively small anatomical structures:
the standard deviation of the structure sizes (after the transformations have
been applied with nearest neighbor interpolation) was 149 voxels.

We also analyzed the transformations resulting from the congealing process.
Computing exact error measurements (even when knowing the ground truth
offsetting transformations) is difficult as the transformations recovered by our
alignment process are able to recover the inverse of the offsetting transforma-
tions only up to a common term. Therefore, we recovered both a dispersion and
a bias term of the resulting errors across all the input volumes via an analysis
similar to the consistency measures introduced in [4]. Our dispersion scores (in-
dicating accuracy) were in the range [0.05,0.15] and the bias terms (indicating
the magnitude of the common term) in the [0, 2] voxel range.

5.2. Atlas Comparison

As an additional experiment, we also compared one of our resulting atlases to
a previously generated template. More specifically, we ran our algorithm on 22
adult brain volumes (with the same parameters as indicated in Section 5.1) and

3 We indeed experimented with other interpolation methods, which resulted in lower
standard deviations, but as the minimum component size was also increased in this
manner, the end result did not change significantly from the one that we report here.



compared that to a control model whose generation is explained in details [14].
Qualitatively, we first assess the success of the congealing algorithm (Fig.3) and
then we compare the atlases in Fig.4 (b) and (¢) and establish that they are
highly similar. (Note the 3D view of the mean volume in the original setup is
demonstrated in Fig. 4 (a)).

For a quantitative analysis, we used the same segmentation-overlap study as
in the case of the synthetic experiments. In the case of LT, our overlap measure
was 474027 vs .428483 of the control model and in the case of RT we obtained
439664 vs .496284. Our performance thus is comparable to that of the atlas.

These overlap measures are even lower than in Section 5.1. That is because in
this experiment we process inter-subject scans and the normal variability in their
differences can only be explained to a certain extent by affine transformations.
Currently we are implementing a viscous fluid-based non-rigid warp [2] to add
to our multi-resolution framework. Such a dense deformation model should be
able to eliminate some of the remaining local disagreements in our alignment
results.

6. Summary and Conclusions

In this paper, we introduced a new population registration framework. Without
any pre-processing step, we used a congealing-type alignment method to effi-
ciently put a large collection of data volumes into correspondence. The algorithm
builds on an information theoretic objective function and currently uses fully
parameterized affine transformations. We introduced an approximate stochastic
sampling framework which allowed us to process only a small number of samples
from the inputs. The optimization is implemented in a stochastic gradient-based
optimization framework that enables a substantial increase in speed.
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(a) Data set of 127 MRI volumes (b) Synthetic data set of 40 MRI volumes

Fig. 1. Orthogonal slices of the mean volume of the samples before and after alignment:
(a)adult brain data set of 127 MRI volumes (b) synthetic data set of 40 MRI volumes.
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Fig. 2. Synthetic data set of 40 MRI volumes. Central slices of the input images (a
before and (b) after the population alignment.
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(a) Before alignment (b) After alignment

Fig. 3. The adult brain data set of 22 MRI volumes used to make our atlas. Central
slices of the input images (a) before and (b) after the population alignment.

(a) Before alignment (b) Control model (c) Our atlas

Fig. 4. 3D views of the mean volume created from the adult brain data population of
22 images: (a) before population alignment (b) the control model and (c) the model
estimate of our algorithm.



