PROJECT 2 - MEMORY ALLOCATOR
Computer Systems Principles

Emery Berger Mark Corner
October 1, 2010

1 Overview

The purpose of this project is to acquaint you with how memory allocators
provide virtual memory to programs.
Your assignment consists of two parts.

e Write a BiBOP-style memory allocator, which you will compile into a
shared library that can be used with any existing program. You will need
to implement the basic malloc API (malloc and free).

e Compare your allocator against the system allocator, comparing perfor-
mance and space consumption for two benchmarks we will provide.

2 Allocator

2.1 Input

Your allocator will run as a layer between any program and the operating sys-
tem. The program will attempt to allocate heap memory using calls such as
new, delete, malloc, and free. These calls will be handled by your layer,
which will in turn request memory from the operating system, using mmap.

The input to your program will be a sequence of calls tomalloc and free,
or new and delete. These calls will be intercepted by a “shim” layer that
will then call your allocator. This shim will handle all memory allocation calls
(new, delete, malloc, callog, etc) and call your allocator. Note that it will
only callmalloc and free, as it will translate new, delete, etc. into calls to
malloc and free.

2.2 Output

Your allocator should produce no output. If your allocator generates any out-
put, the autograder will mark your solution as incorrect.



2.3 Implementing the Allocator

A BiBoP allocator manages memory in chunks of one page in size. The alloca-
tor must use segregated lists of different size objects (free and allocated). The
objects themselves will not contain any headers—all metadata must appear at
the start of each page, in a BibopHeader.

Your allocator will allocate memory in units of pages (4K) for small objects
(segregated by different sizes, in powers of two from 8 to 1024), with all object
metadata (like the size of all these objects) placed at the start of each page. Each
page (4K chunk) should only contain objects of the same size. For objects larger
than 1024 bytes, you should allocate a separate chunk of memory directly via
mmap ().

To allocate memory from the operating system, you will use the following
code (note: this will not work on a non-Unix system).

#include <fcntl.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <string.h>
#include <new>
#include "allocator.h"
using namespace std;

int fd = open("/dev/zero", O_RDWR);

void * ptr = mmap (NULL, sz, PROT_READ | PROT_WRITE, MAP_PRIVATE,

Refer to the man pages on the use of mmap. mmap requests will return page-
aligned allocations, i.e., every mmap’ed area is guaranteed to start on some
multiple of 4096.

To return memory to the operating system (when freeing a large object), call
munmap. Please see the man page on how to use munmap.

The BiBop header needs to be located at the beginning of a page/area that
you allocated with mmap. To do this you can use a “placement new”:

bibop_ptr = new (page_ptr) BibopHeader;

which allocates a BibopHeader starting at the address given by page_ptr.
You do not need to delete this header, as your munmap will take care of that
for you.

Your allocator will be implemented as a C++ class conforming to the Al-
locator class in allocator.h. The header for the BiBop pages is also defined in
allocator.h. The autograder will compile your project using our copy of alloca-
tor.h and you may not change any of the class or struct definitions.

2.4 Allocating Memory Inside the Allocator

Your allocator may not allocate any other memory from the operating system,
except for giving to the user’s program. This means that your allocator cannot

fd,

0);



call new or malloc directly, or indirectly. This also means that your allocator
may not use the STL, which allocates memory from the heap.

Your allocator may use some global variables of reasonable size to imple-
ment the allocator. The storage for global variables is not in the heap.

You may not allocate extra memory for your allocator (other than that needed
for the BiBop pages) using mmap. Part of getting this project right is making
it space efficient and the autograder will count the number of times (and how
large) your allocator calls mmap. Extra, or out-of-order calls will be marked
as wrong. This specification is exact enough that any correct solution will call
mmap and munmap the same number of times and in the same sequence.

Note that you can count calls to mmap and munmap yourself to try to de-
termine if the allocator is space efficient.

2.5 Choosing Space to Allocate

In many cases there is more than one free object to choose to allocate. For
instance, if two pages have free space you must choose one of the two pages
at the next allocation. You must use the following algorithm for picking which
page to allocate free space from:

e When allocating a new page, place it at the head of the list of pages of that
size. The next allocation will occur from that page, even if other objects
from pages in that list are freed before then.

e When a page becomes full, move it to the head of a separate list of pages
that are full.

e When a page that was full has an object freed, move it to the head of the
list of pages with space available. The next allocation will occur from that
page. Leave it there until it becomes full again.

e You can choose any object inside the page to allocate.

e Using two lists is not necessary for large objects, as when they are freed
you remove the entire object and header.

3 Compiling and Using Your Allocator
3.1 Compiling a shared library

Your will compile and run your code on Edlab Linux machines. To build your
allocator as a shared library, you need to compile your code like this (the “-
02”7 and “-DNDEBUG” are optimization flags and should be used for timing
experiments).

% g++ —g —-02 -DNDEBUG -Wall -shared allocator.cc -o libmymalloc.so libshim.a -1d1



3.2 Running Your Allocator with a Shared Library

Using the shared library you may run precompiled programs.
% LD_PRELOAD=./libmymalloc.so ./test

Your allocator will only work on relatively simple programs (for instance,
single-threaded programs), so don't try this on Firefox.

3.3 Compiling Your Allocator as Part of a Program

If you want to debug your allocator, it is handy to compile it as part of a pro-
gram, rather than as a shared library.
For instance:

o)

% g++ -Wall -g -o test_alloc allocator.cc test.cc libshim.a -1d1l

The “-g” tells the compiler to include debugging symbols. You may then
run your program with gdb, valgrind, or other debuggers and profilers.
Please see the TA for information on how to use these tools.

3.4 Testing your allocator

You should test your program against a number of real programs (things like
df and pwd are at least sanity checkers). The example below shows how to run
a benchmark and get timing and memory consumption results.

o\

export LD_PRELOAD=/your/directory/goes/here/libmymalloc.so
/usr/bin/time benchmark
.] (output omitted)
.00user 0.00system 0:00.00elapsed 50%CPU (Oavgtext+0avgdata Omaxresident)k
inputs+0outputs (Omajor+274minor)pagefaults Oswaps

O O — o°

Note that this will run t ime with your allocator as well, so you shouldn’t
do this until your allocator is really working.

The first set of results indicates how much time your program took (CPU
time by your program, kernel time on behalf of your program, and total wall
clock time). The second set indicates the number of page faults—the larger the
number, the more pages of memory your program visited.

To run a benchmark using the default library, do this:

% export LD_PRELOAD=
% /usr/bin/time benchmark
4 Performance hints

¢ Finding a BibopHeader for a previous allocation should take constant
time. (Hint: recall that mmap returns page aligned addresses).



¢ Finding a free page to allocate for any particular size should occur in
constant time.

o If your allocator is no longer using a page, it should be returned to the
operating system.

e Only open /dev/zero once.

My advice is to get the allocator to work, then optimize it.

5 Handing Project In

All of the files you need (allocator.h, libshim.a) can be found on the
edlab in:

/courses/cs200/cs291sp/cs291sp/malloc/

Your project will be handed in using the autograding system. The auto-
grader is checking for correctness and performance. Currently, the autograder
will deem any allocator that is only three times slower than the solution allo-
cator as “fast enough”. Please see the web page for details on how to submit
your solution.



	Overview
	Allocator
	Input
	Output
	Implementing the Allocator
	Allocating Memory Inside the Allocator
	Choosing Space to Allocate

	Compiling and Using Your Allocator
	Compiling a shared library
	Running Your Allocator with a Shared Library
	Compiling Your Allocator as Part of a Program
	Testing your allocator

	Performance hints
	Handing Project In

