
PROJECT 4 - PSOOGLE
Computer Systems Principles

Emery Berger Mark Corner

November 23, 2010

1 Overview

Goals of this assignment: understanding networking and client server systems.
In this assignment, you will write a simple http web server that handles

conjunctive search queries (like Google - searching for documents that match
all of the query terms) and returns a list of hits.

2 Server

This server builds on the results of the first and second projects. Generally,
your server will spider a set of web pages, build an inverted index of the pages,
accept requests for conjunctive searches, and return results.

2.1 Input

Your program, to be called server, will take four command-line inputs:

1. The root URL to start from;

2. The maximum depth to crawl;

3. The number of worker threads to spawn;

4. The port number your server will run on.

(1)-(3) are exactly as in the spider project.
(4) is the port number the server will run on. Pick a large random number,

such as the last 4 digits of your student id, to make sure you don’t collide with
someone else.

1

2.2 Output

Your program should print the inverted map to the screen (using a format sim-
ilar to the inverter project, but you will print out the url values instead of doc-
ument IDs). You can print the inverted map by modifying the print method.
This output shows that you are spidering and inverting correctly. Apart from
being useful for you in debugging your code, getting your code working until
this stage properly accounts for 20% of the grade in this project.

Your program should then produce another line of output to the console:
“indexing complete” and then start the server.

The rest of the interaction will take place through the web server itself.
The user will ask the server for one of two things, a file or a query. If it

asks for a file (either index.html or the image file), the server will return it to
the client. All other requests for files should cause the server to terminate the
connection. In response to queries, the web server will return a set of web
pages that contain all of the search terms.

Please use this code snippet to output the search results:

sprintf (buf2, "%s %s</br>",
host.c_str(), file.c_str(), host.c_str(), file.c_str());

3 Spidering and Indexing

All of the spidering is done exactly as described in the previous projects. Only
grab the first MAX READ bytes of each page as before, and only build an index
from the words as described in the inverter project.

4 Interacting Over the Network

See simplesocket.h for the interface to the networking components.
The server should instantiate a new socket to accept requests from:

serversocket sock (port);

This completes all of the necessary binding and listening. After setting up
the socket, your server can accept new requests from clients:

new_sock = sock.accept();

Note that accept returns a pointer to a new simplesocket. This is the
socket you will use to communicate with this newly accepted client. Remem-
ber that eventually, you will need to close and delete this socket:

new_sock->close();
delete new_sock;

After accepting a connection, you can spawn a new thread to receive mes-
sages from this client:

2

HttpMessage http_msg = new_sock->ReceiveHttpMessage();

The type of message is contained in http msg.MessageType, but you
will only be concerned with GET messages; ignore everything else.

The message itself is parsed into http msg.Resource.
Parse the HTTP request into either (1) a GET query for ”/” or ”/index.htm”

whereupon you will read in the provided index.htm file from disk, send it
over to the client and close the connection (this is fairly important) or (2) a
GET query that encapsulates a search query. Search queries look a lot like GET
queries. When conjunctively searching for the query ”hello seeking world” this
is how the requests look:

GET /?word1=hello&word2=seeking&word3=world HTTP/1.1

/? will precede every search query. The ’&’ delimits every query besides
the first.

5 Compiling, Testing and Hints

5.1 Compiling

Use the following command to compile your server:

g++ -Wall -g -o server server.cc libspider.a -lpthread

Note that you need to copy libspider.a, url.h, and simplesocket.h to your
current working directory (you should already have these files from the spider
project).

Create a client that sends GET messages to your server. You can do one of
two things:

1. Create a html page with forms, a submit button, and some javascript
to submit your GET message to a hostname and portnumber. This will
require you to open a web browser on the edlab machines and you may
have issues from non-CS networks.

2. Use TELNET to send short http messages to your client. You can use TEL-
NET to connect to your server’s hostname and portnumber. Use com-
mand ’hostname’ on your server machine if you are not sure what the
hostname is. The following command connects to port number 2387 on
hostname elnux2.cs.umass.edu: telnet elnux2.cs.umass.edu 2387.
You will then get a telnet prompt: telnet>.

You can send a get query by typing

telnet>GET /?Word1=hello&word2=world HTML/1.0 <enter> <enter>

Now telnet has sent the above GET message to your server. You can thus
debug your server to ensure it handles different messages properly.

3

5.2 Testing and Grading

The code that will be used to test your server will send queries in the following
format:

GET /?word1=hello&word2=seeking&word3=world HTTP/1.1
(the query terms are ”hello”, ”seeking” and ”world”).
Note that the following is a valid query message:
GET /?word1=hello&word2=&word3=world HTTP/1.1.
This query means that the second and third query terms are blank. In gen-

eral, your code should be able to handle queries of 1 term, 2 terms, or 3 terms.
The code that will be used to test your server will send file requests in the for-
mat GET absolute path of file on the server/filename HTTP/1.1.

Make sure your code is able to parse the above message formats to read the
query words and filename arguments properly.

6 Handing Project In

For now, you will be handing in your project manually. Grading will be similar
to the autograder, so if it doesn’t compile, follow the input spec exactly, or
produce the right input, it will be a 0.

Please mail your program (just server.cc) by the due date.

6.1 Email submission policy

• Please name your server C++ code server edlabID.cc. For example,
if your edlab ID is joel, your server file should be called server joel.cc.

• Please email your solution only once, only when you are sure of your
solution/

• We will not consider second submissions because these submissions are
by email. Once a solution has been received, it will be treated as final.

4

	Overview
	Server
	Input
	Output

	Spidering and Indexing
	Interacting Over the Network
	Compiling, Testing and Hints
	Compiling
	Testing and Grading

	Handing Project In
	Email submission policy

