
PROJECT 3 - MULTITHREADED WEB SPIDER
Computer Systems Principles

Emery Berger Mark Corner

October 28, 2010

1 Overview

Goals of this assignment: understanding threads; understanding mutual ex-
clusion; using concurrency to hide I/O latency; using the work-queue model.

For this assignment, you will write a mini web spider. Search engines use
web spiders (also called crawlers) to retrieve documents recursively from the
Internet.

2 Spider

2.1 Input

Your program, to be called spider, will take three command-line inputs:

• The root URL to start from;

• The maximum depth to crawl;

• The number of worker threads to spawn.

2.1.1 Root URL

The root website will be specified in the following form:
http://www.cs.umass.edu

OR
http://www.cs.umass.edu/
OR
http://www.cs.umass.edu/index.html

See the section on the helper functions for using parse single URL() to
parse this.

1

http://www.cs.umass.edu
http://www.cs.umass.edu/
http://www.cs.umass.edu/index.html


2.1.2 Depth

The maximum depth tells your crawler how far to recurse.
A depth of zero means that the root URL should be retrieved, but no others.
A depth of one indicates that the root URL should be retrieved, and all

pages that it links to, but no others.

2.1.3 Threads

This is the number of worker threads to spawn for crawling web pages. You
will have one additional thread that will do the parsing of pages to find new
URLs.

2.2 Crawling Web Pages

Your program will use a work queue style of concurrency, where multiple
threads pull work off of a single queue.

Each worker thread will pull a URL off the from of a queue, retrieve that
web page into a buffer, then insert that buffer into another queue for parsing.

A separate thread will pull the buffers off of the parsing work queue, parse
them for new URLs, insert those URLs back onto the work queue and so on.

The worker thread may not retrieve another web page until the previous
page has been processed. This implies an ordering constraint!

No page should be crawled more than once. Your program should track
which pages have been visited. A host and file is unique, so if a file is on more
than one host, you should crawl each of them.

3 Threading, Retrieving and Parsing Pages

3.1 Retrieving Web Pages

You will be provided with a simple socket library that will make it easy to
connect up to a given web server and read the contents of a particular file. The
interface to that library is contained in simplesocket.h.

The following code provides the basics of retrieving a page:

clientsocket sock (host.c_str(), 80, 0, false);
if (sock.connect()){
sprintf (buf, "GET /%s HTTP/1.0\r\nHost: %s\r\n\r\n", file.c_str(),host.c_str());
sock.write (buf, strlen(buf));

int ret;
int size = 0;
sock.setTimeout(5);
while ((ret = sock.read(buf+size, MAX_READ-1-size)) > 0){
size += ret;

}

2



}
sock.close();

This code will timeout after 5 seconds if it fails to retrieve any data. The
return value contains the number of bytes have been read from the socket.
Multiple reads may be required to retrieve the page up to the MAX READ size.
(Note: because we are using HTTP 1.0, the server should close the connection
after sending the data)

Your code should not read any more than MAX READ size, so it will only get
URLs that are in the first MAX READ bytes of the page.

The code is also set to fail connecting if it doesn’t complete after 5 seconds.

3.2 Parsing Web Pages for URLs

We have written a simple URL parser for you (see url.h) that can be called
using:

parse_URLs(buf, size, urls);

where buf is the buffer you read from the web server, the size is the size of
the buffer and urls is a set containing url t structs (see url.h).

This isn’t the smartest parser ever, so don’t expect it to get every URL, just
the simpler ones. It should find plenty of URLs in most web pages to crawl.

3.3 Starting Threads

You should get your program to work as a single threaded program first, then
make it multi-threaded. This is the hard part.

You will be using the popular pthreads threading package to complete your
spider.

The types and functions you should be concerned with are

• mutexes: pthread mutex t

• condition variables: pthread cond t

• pthread identifiers: pthread t

• pthread attributes: pthread attr t

• initialization for mutexes: pthread mutex init

• initialization for condition variables: pthread cond init

• thread join: pthread join

• thread create: pthread create

• lock: pthread mutex lock

• unlock: pthread mutex unlock

3



• cv signal: pthread cond signal

• cv broadcast: pthread cond broadcast

• cv wait: pthread cond wait

3.3.1 Limiting Stack Sizes

For all of your threads, please limit their stack sizes

status = pthread_attr_init(&attr);
if (status) {

cout << "pthread_attr_init returned " << status << endl;
exit(1);

}

status = pthread_attr_setstacksize(&attr, 5*1024*1024);
if (status) {
cout << "pthread_attr_setstacksize returned " << status << endl;
exit(1);

}

3.3.2 Starting Threads

status = pthread_create(&thread_id[i], &attr, (void * (*)(void *)) worker_thread, (void *) i);

Assuming that the worker thread is declared as:

void worker_thread (void *arg)

Note that you can “cheat” and use arg to pass integers: For instance: int
thread id = (int) arg;.
3.3.3 Joining Threads

You may need to wait for a thread to complete using join:

pthread_join(parse_thread_id, NULL);

4 Output

You program should only create two pieces of output. Your output must be
identical.

The requester (worker thread) should output this:

cout << "requester " << thread_id << " url " << host << "/" << file << endl;

right before adding a buffer to the parser’s work queue.
The parsing thread should output:

cout << "service requester " << thread << " url " << url.host << "/" << url.file << endl;

4



after parsing the page, and before adding the new urls to the work queue.
Note that when using cout, you should be carefully about mutual exclusion,

as you don’t want two pieces of output corrupting one another.

5 Compiling, Testing and Hints

5.1 Compiling

Use the following command to compile your spider:

g++ -Wall -g -o spider spider.cc libspider.a -lpthread

5.2 Debugging

Notice that your program should be much faster when running with a number
of threads than when it runs with just one thread. Verify this by running it
with /usr/bin/time. Make sure you link your program with -lpthread, or it
won’t actually spawn any threads (thanks, GNU libc).

You should not be holding any locks when connecting or retrieving a web
page.

We have set up a tree structure web page here: http://www.cs.umass.
edu/∼mcorner/cs377/root tree 1000.html

It has 3 levels, with a branching factor of 10. This might be helpful in de-
bugging your spider.

5.3 Hints

The stack size in for each thread is limited to STACK SIZE in thread.h. You
will get odd segfaults if you go over this size, so be careful of creating a huge
numbers, or sizes, of stack variables.

The hardest part may be deciding when to quit! One way is to track how
many pages are currently in the work queue, plus the number that have been
removed from the work queue and are currently being retrieved. If the sum of
those two things is zero, and the parser is not parsing anything, the program is
done.

6 Handing Project In

Your project will be handed in using the autograding system. The autograder is
checking for correctness and performance. Please see the web page for details
on how to submit your solution.

5

http://www.cs.umass.edu/~mcorner/cs377/root_tree_1000.html
http://www.cs.umass.edu/~mcorner/cs377/root_tree_1000.html

	Overview
	Spider
	Input
	Root URL
	Depth
	Threads

	Crawling Web Pages

	Threading, Retrieving and Parsing Pages
	Retrieving Web Pages
	Parsing Web Pages for URLs
	Starting Threads
	Limiting Stack Sizes
	Starting Threads
	Joining Threads


	Output
	Compiling, Testing and Hints
	Compiling
	Debugging
	Hints

	Handing Project In

