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Abstract 

Su erscalar machines can issue several instructions 
per Ip cyc e. Superpipelined machines can issue only one 
instruction per cycle, but they have cycle times shorter 
than the latency of any functional unit. In this paper 
these two techniques are shown to be roughly equivalent 
ways of exploiting instruction-level parallelism. A 
parameterizable code reorganization and simulation sys- 
tem was developed and used to measure instruction-level 
parallelism for a series of benchmarks. Results of these 
simulations in the presence of various compiler optimiza- 
tions are presented. The average degree of 
superpipelining metric is introduced. Our simulations 
suggest that this metric is already high for many 
machines. These machines already exploit all of the 
instruction-level parallelism available in many non- 
numeric applications, even without pa.raIlel instruction 
issue or higher degrees of pipelining. 

1. Introduction 
Computer designers and computer architects have 

been striving to improve uniprocessor computer perfor- 
mance since the first computer was designed. The most 
significant advances in uniprocessor performance have 
come from exploiting advances in implementation tech- 
nology. Architectural innovations have also played a 
part, and one of the most significant of these over the last 
decade has been the rediscovery of RISC architectures. 
Now that RISC architectures have gained acceptance 
both in scientific and marketing circles, computer ar- 
chitects have been thinking of new ways to improve 
uniprocessor performance. Many of these proposals 
such as VLIW [12], superscalar, and even relatively old 
ideas such as vector processing try to improve computer 
performance by exploiting instruction-level parallelism. 
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They take advantage of this parallelism by issuing more 
than one instruction per cycle explicitly (as in VLlW or 
superscalar machines) or implicitly (as in vector 
machines). In this paper we will limit ourselves to im- 
proving uniprocessor performance, and will not discuss 
methods of improving application performance by using 
multiple processors in parallel. 

As an example of instruction-level parallelism, con- 
sider the two code fragments in Figure l-l. The three 
instructions in (a) are independent; there are no data 
dependencies between them, and in theory they could all 
be executed in parallel. In contrast, the three instructions 
in (b) cannot be executed in parallel, because the second 
instruction uses the result of the first, and the third in- 
struction uses the result of the second. 

Load Cl<-23(R2) Add R3<-R3+1 
Add R3<-R3+1 Add R4<-R3+R2 
FPAdd c4<-c4+c3 Store O[R4]<-RO 

(a) parallelism=3 (b) parallelism=1 

Figure l-l: Instruction-level parallelism 

The amount of instruction-level parallelism varies 
widely depending on the type of code being executed. 
When we consider uniprocessor performance improve- 
ments due to exploitation of instruction-level parallelism, 
it is important to keep in mind the type of application 
environment. If the applications are dominated by highly 
parallel code (e.g., weather forecasting), any of a number 
of different parallel computers (e.g., vector, MIMD) 
would improve application performance. However, if 
the dominant applications have little instruction-level 
parallelism (e.g., compilers, editors, event-driven 
simulators, lisp interpreters), the performance improve- 
ments will be much smaller. 

In Section 2 we present a machine taxonomy helpful 
for understanding the duality of operation latency and 
parallel instruction issue. Section 3 describes the com- 
pilation and simulation environment we used to measure 
the parallelism in benchmarks and its exploitation by dif- 
ferent architectures. Section 4 presents the results of 
these simulations. These results confirm the duality of 
superscalar and superpipelined machines, and show 
serious limits on the instruction-level parallelism avail- 
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able in most applications. They also show that most 
classical code optimizations do nothing to relieve these 
limits. The importance of cache miss latencies, design 
complexity, and technology constraints are considered in 
Section 5. Section 6 summarizes the results of the paper. 

2. A Machine Taxonomy 
There are several different ways to execute instruc- 

tions in parallel. Before we examine these methods in 
detail, we need to start with some definitions: 
operation latency 

The time (in cycles) until the result of an in- 
struction is available for use as an operand in 
a subsequent instruction. For example, if the 
result of an Add instruction can be used as an 
operand of an instruction that is issued in the 
cycle after the Add is issued, we say that the 
Add has an operation latency of one. 

simple operations 
The vast majority of operations executed by 
the machine. Operations such as integer add, 
logical ops, loads, stores, branches, and even 
floating-point addition and multiplication are 
simple operations. Not included as simple 
operations are instructions which take an order 
of magnitude more time and occur less fre- 
quently, such as divide and cache misses. 

instruction class 
A group of instructions all issued to the same 
type of functional unit. 

issue latency 
The time (in cycles) required between issuing 
two instructions. This can vary depending on 
the instruction classes of the two instructions. 

2.1. The Base Machine 
ln order to properly compare increases in perfor- 

mance due to exploitation of instruction-level paral- 
lelism, we define a base machine that has an execution 
pipestage parallelism of exactly one. This base machine 
is defined as follows: 

l Instructions issued per cycle = 1 

l Simple operation latency measured in cycles = 1 

l Instruction-level parallelism required to fully utilize 
= 1 

The one-cycle latency specifies that if one instruc- 
tion follows another, the result of the first is always 
available for the use of the second without delay. Thus, 
there are never any operation-latency interlocks, stalls, or 
NOP’s in a base machine. A pipeline diagram for a 
machine satisfying the requirements of a base machine is 
shown in Figure Z-l. The execution pipestage is cross- 
hatched while the others are unfilled. Note that although 
several instructions are executing concurrently, only one 
instruction is in its execution stage at any one time. 
Other pipestages, such as instruction fetch, decode, or 

write back, do not contribute to operation latency if they 
are bypassed, and do not contribute to control latency 
assuming perfect branch slot filling and/or branch predic- 
tion. 

f I Dooa J 
1RW --wr- 

Time in Base Cycles 

Figure 2-1: Execution in a base machine 

2.2. Underpipelined Machines 
The single-cycle latency of simple operations also 

sets the base machine cycle time. Although one could 
build a base machine where the cycle time was much 
larger than the time required for each simple operation, it 
would be a waste of execution time and resources. This 
would be an underpipelined machine. An under- 
pipelined machine that executes an operation and writes 
back the result in the same pipestage is shown in Figure 
2-2. 

0123456789 10 11 12 id 
Time in Base Cycles 

Figure 2-2: Underpipelined: cycle 2 operation latency 

The assumption made in many paper architecture 
proposals is that the cycle time of a machine is many 
times larger than the add or load latency, and hence 
several adders can be stacked in series without affecting 
the cycle time. If this were really the case, then some- 
thing would be wrong with the machine cycle time. 
When the add latency is given as one, for example, we 
assume that the time to read the operands has been piped 
into an earlier pipestage, and the time to write back the 
result has been pipelined into the next pipestage. Then 
the base cycle time is simply the minimum time required 
to do a fixed-point add and bypass the result to the next 
instruction. In this sense machines like the Stanford 
MIPS chip [8] are underpipelined, because they read 
operands out of the register file, do an ALU operation, 
and write back the result all in one cycle. 

Another example of underpipelining would be a 
machine like the Berkeley RISC 11 chip [lo], where 
loads can only be issued every other cycle. Obviously 
this reduces the instruction-level parallelism below one 
instruction per cycle. An underpipelined machine that 
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can only issue an instruction every other cycle is il- 
lustrated in Figure 2-3. Note that this machine’s perfor- 
mance is the same as the machine in Figure 2-2, which is 
half of the performance attainable by the base machine. 

Successive 
Key: 

Instructions I - 
Fslch - EXOCUle writosnck 

0123456769 10 11 12 13/ 
Time in Base Cycles 

Figure 2-3: Underpipelined: issues < 1 iustr. per cycle 

In summary, an underpipelined machine has worse 
performance than the base machine because it either has: 

l a cycle time greater than the latency of a simple 
operation, or 

l it issues less than one instruction per cycle. 
For this reason underpipelined machines will not be con- 
sidered in the rest of this paper. 

2.3. Superscalar Machines 
As their name suggests, superscalar machines were 

originally developed as an alternative to vector 
machines. A superscalar machine of degree n can issue )2 
instructions per cycle. A superscalar machine could is- 
sue all three parallel instructions in Figure l-l(a) in the 
same cycle. Superscalar execution of instructions is il- 
lustrated in Figure 2-4. 

0 12 3 4 5 6 7 8 9 10 11 12 13/ 
Time in Base Cycles 

Figure 2-4: Execution in a superscalar machine (n=3) 

In order to fully utilize a superscalar machine of 
degree 12, there must be 12 instructions executable in 
parallel at all times. If an instruction-level parallelism of 
12 is not available, stalls and dead time will result where 
instructions are forced to wait for the results of prior 
instructions. 

Formalizing a superscalar machine according to our 
definitions: 

. Instructions issued per cycle = IZ 

l Simple operation latency measured in cycles = 1 

l Instruction-level parabelism required to fully utilize 
=Iz 

A superscalar machine can attain the same perfor- 
mance as a machine with vector hardware. Consider the 

operations performed when a vector machine executes a 
vector load chained into a vector add, with one element 
loaded and added per cycle. The vector machine per- 
forms four operations: load, floating-point add, a fixed- 
point add to generate the next load address, and a com- 
pare and branch to see if we have loaded and added the 
last vector element. A superscalar machine that can is- 
sue a fixed-point, floating-point, load, and a branch all in 
one cycle achieves the same effective parallelism. 

2.3.1. VLIW Machines 
VLIW, or very long instruction word, machines 

typically have instructions hundreds of bits long. Each 
instruction can specify many operations, so each instruc- 
tion exploits instruction-level parallelism. Many perfor- 
mance studies have been performed on VLIW machines 
[12]. The execution of instructions by an ideal VLIW 

machine is shown in Figure 2-5. Each instruction 
specifies multiple operations, and this is denoted in the 
Figure by having multiple crosshatched execution stages 
in parallel for each instruction. 

0 12 3 4 5 6 7 8 9 10 11 12 1 
Time in Base Cycles 

Figure 2-5: Execution in a VLIW machine 

VLIW machines are much Iike superscalar 
machines, with three differences. 

First, the decoding of VLIW instructions is easier 
than superscalar instructions. Since the VLIW instruc- 
tions have a fixed format, the operations specifiable in 
one instruction do not exceed the resources of the 
machine. However in the superscalar case, the instruc- 
tion decode unit must look at a sequence of instructions 
and base the issue of each instruction on the number of 
instructions already issued of each instruction class, as 
well as checking for data dependencies between results 
and operands of instructions. In effect, the selection of 
which operations to issue in a given cycle is performed at 
compile time in a VLIW machine, and at run time in a 
superscalar machine. Thus the instruction decode logic 
for the VLIW machine should be much simpler than the 
superscalar. 

A second difference is that when the available 
instruction-level parallelism is less than that exploitable 
by the VLIW machine, the code density of the super- 
scalar machine will be better, This is because the fixed 
VLIW format includes bits for unused operations while 
the superscalar machine only has instruction bits for use- 
ful operations. 
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A third difference is that a superscalar machine 
could be object-code compatible with a large family of 
non-parallel machines, but VLIW machines exploiting 
different amounts of parallelism would require different 
instruction sets. This is because the VLIW’s that are 
able to exploit more parallelism would require larger in- 
structions. 

In spite of these differences, in terms of run time 
exploitation of instruction-level parallelism, the super- 
scalar and VLIW will have similar characteristics. Be- 
cause of the close relationship between these two 
machines, we will only discuss superscalar machines in 
general and not dwell further on distinctions between 
VLIW and superscalar machines. 

2.3.2. Class Conflicts 
There are two ways to develop a superscalar 

machine of degree n from a base machine. 
1. Duplicate all functional units n times, including 

register ports, bypasses, busses, and instruction 
decode logic. 

2. Duplicate only the register ports, bypasses, busses, 
and instruction decode logic. 

Of course these two methods are extreme cases, and one 
could duplicate some units and not others. But if all the 
functional units are not duplicated, then potential class 
conflicts will be created. A class conflict occurs when 
some instruction is followed by another instruction for 
the same functional unit. If the busy functional unit has 
not been duplicated, the superscalar machine must stop 
issuing instructions and wait until the next cycle to issue 
the second instruction. Thus class conflicts can substan- 
tially reduce the parallelism exploitable by a superscalar 
machine. (We will not consider superscalar machines or 
any other machines that issue instructions out of order. 
Techniques to reorder instructions at compile time in- 
stead of at run time are almost as good [6,7,17], and are 
dramatically simpler than doing it in hardware.) 

2.4. Superpipelined Machines 
Superpipelined machines exploit instruction-level 

parallelism in another way. In a superpipelined machine 
of degree m, the cycle time is l/m the cycle time of the 
base machine. Since a fixed-point add took a whole 
cycle in the base machine, given the same implemen- 
tation technology it must take m cycles in the super- 
pipelined machine. The three parallel instructions in 
Figure l-l (a) would be issued in three successive cycles, 
and by the time the third has been issued, there are three 
operations in progress at the same time. Figure 2-6 
shows the execution of instructions by a superpipelined 
machine. 

Formalizing a superpipelined machine according to 
our definitions: 

l Instructions issued per cycle = 1, but the cycle time 
is I/m of the base machine 

l Simple operation latency measured in cycles = m 

l Instruction-level parallelism required to fully utilize 
=m 

Key: 

r I ww I 
I- Dud9 -w-k 

\11 
0 12 3 4 5 6 7 6 9 10 11 12 18 

Time in Base Cycles 

Figure 2-6: Superpipelined execution (m=3) 

Superpipelined machines have been around a long 
time. Seymour Cray has a long history of building su- 
perpipelined machines: for example, the latency of a 
fixed-point add in both the CDC 6600 and the Cray-1 is 
3 cycles. Note that since the functional units of the 6600 
are not pipelined (two are duplicated), the 6600 is an 
example of a superpipelined machine with class con- 
flicts. The CDC 7600 is probably the purest example of 
an existing superpipelined machine since its functional 
units are pipelined. 

2.5. Superpipelined Superscalar Machines 
Since the number of instructions issued per cycle 

and the cycle time are theoretically orthogonal, we could 
have a superpipelined superscalar machine. A super- 
pipelined superscalar machine of degree (m,n) has a 
cycle time l/m that of the base machine, and it can ex- 
ecute n instructions every cycle. This is illustrated in 
Figure 2-7. 

0 12 3 4 5 6 7 6 9 10 11 12 1 
Time in Base Cycles 

Figure 2-7: A superpipelined superscalar (n=3,m=3) 

Formalizing a superpipelined superscalar machine 
according to our definitions: 

l Instructions issued per cycle = n, and the cycle time 
is l/m that of the base machine 

l Simple operation latency measured in cycles = m 

l Instruction-level parallelism required to fully utilize 
= n*m 

2.6. Vector Machines 
Although vector machines also take advantage of 

(unrolled-loop) instruction-level parallelism, whether a 
machine supports vectors is really independent of 

275 



whether it is a superpipelined, superscalar, or base 
machine. Each of these machines could have an attached 
vector unit. However, to the extent that the highly paral- 
lel code was run in vector mode, it would reduce the use 
of superpipelined or superscalar aspects of the machine 
to the code that had only moderate instruction-level 
parallelism. Figure 2-8 shows serial issue (for diagram 
readability only) and parallel execution of vector instruc- 
tions. Each vector instruction results in a string of opera- 
tions, one for each element in the vector. 

Time in Base Cycles 

Figure 2-8: Execution in a vector machine 

2.7. Supersymmetry 
The most important thing to keep in mind when 

comparing superscalar and superpipelined machines of 
equal degree is that they have basically the same perfor- 
mance. 

A superscalar machine of degree three can have 
three instructions executing at the same time by issuing 
three at the same time. The superpipelined machine can 
have three instructions executing at the same time by 
having a cycle time l/3 that of the superscalar machine, 
and issuing three instructions in successive cycles. Each 
of these machines issues instructions at the same rate, so 
superscalar and superpipelined machines of equal degree 
have basically the same performance. 

So far our assumption has been that the latency of all 
operations, or at least the simple operations, is one base 
machine cycle. As we discussed previously, no known 
machines have this characteristic. For example, few 
machines have one cycle loads without a possible data 
interlock either before or after the load. Similarly, few 
machines can execute floating-point operations in one 
cycle. What are the effects of longer latencies? Con- 
sider the MultiTitan [9], where ALU operations are one 
cycle, but loads, stores, and branches are two cycles, and 
all floating-point operations are three cycles. The Mul- 
tiTitan is therefore a slightly superpipelined machine. If 
we multiply the latency of each instruction class by the 
frequency we observe for that instruction class when we 
perform our benchmark set, we get the uverage degree of 
superpipelining. The average degree of superpipelining 
is computed in Table 2-l for the MultiTitan and the 
CRAY-1. To the extent that some operation latencies are 
greater than one base machine cycle, the remaining 
amount of exploitable instruction-level parallelism will 
be reduced. In this example, if the average degree of 
instruction-level parallelism in slightly parallel code is 

around two, the MultiTitan should not stall often because 
of data-dependency interlocks, but data-dependency in- 
terlocks should occur frequently on the CRAY-1. 

Instr. Fre- MultiTitan CRAY- 1 
class quency latency latency 
_--_-_----_~-~~~~~~~-~-~~-~~~~~~~~--~- 

logical 10% x 1 = 0.1 x 1 = 0.1 
shift 10% x 1 = 0.1 x 2 = 0.2 
add/ sub 20% x 1 = 0.2 x 3 = 0.6 
load 20% x 2 = 0.4 xl1 = 2.2 
store 15% x 2 = 0.3 x 1 = 0.15 
branch 15% x 2 = 0.3 x 3 = 0.45 
FP 10% x 3 = 0.3 x 7 = 0.7 
---_-______--------_------------------ 

Average Degree 
of Superpipelining 1.7 4.4 

Table 2-1: Average degree of superpipelining 

3. Machine Evaluation Environment 
The language system for the MultiTitan consists of 

an optimizing compiler (which includes the linker) and a 
fast instruction-level simulator. The compiler includes 
an intermodule register allocator and a pipeline instruc- 
tion scheduler [16, 171. For this study, we gave the sys- 
tem an interface that allowed us to alter the characteris- 
tics of the target machine. This interface allows us to 
specify details about the pipeline, functional units, cache, 
and register set. The language system then optimizes the 
code, allocates registers, and schedules the instructions 
for the pipeline, all according to this specification. The 
simulator executes the program according to the same 
specification. 

To specify the pipeline structure and functional 
units, we need to be able to talk about specific instruc- 
tions. We therefore group the MultiTitan operations into 
fourteen classes, selected so that operations in a given 
class are likely to have identical pipeline behavior in any 
machine. For example, integer add and subtract form 
one class, integer multiply forms another class, and 
single-word load forms a third class. 

For each of these classes we can specify an opera- 
tion latency. If an instruction requires the result of a 
previous instruction, the machine will stall unless the 
operation latency of the previous instruction has elapsed. 
The compile-time pipeline instruction scheduler knows 
this and schedules the instructions in a basic block so 
that the resulting stall time will be minimized. 

We can also group the operations into functional 
units, and specify an issue latency and multiplicity for 
each. For instance, suppose we want to issue an instruc- 
tion associated with a functional unit with issue latency 3 
and multiplicity 2. This means that there are two units 
we might use to issue the instruction. If both are busy 
then the machine will stall until one is idle. It then issues 
the instruction on the idle unit, and that unit is unable to 
issue another instruction until three cycles later. The 
issue latency is independent of the operation latency; the 
former affects later operations using the same functional 
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unit, and the latter affects later instructions using the 
result of this one. In either case, the pipeline instruction 
scheduler tries to minimize the resulting stall time. 

Superscalar machines may have an upper limit on 
the number of instructions that may be issued in the same 
cycle, independent of the availability of functional units. 
We can specify this upper limit. If no upper limit is 
desired, we can set it to the total number of functional 
units. 

Our compiler divides the register set into two dis- 
joint parts. It uses one part as temporaries for short-term 
expressions, including values loaded from variables 
residing in memory. It uses the other part as home loca- 
tions for local and global variables that are used enough 
to warrant keeping them in registers rather than in 
memory. When number of operations executing in paral- 
lel is large, it becomes important to increase the number 
of registers used as temporaries. This is because using 
the same temporary register for two different values in 
the same basic block introduces an artificial dependency 
that can interfere with pipeline scheduling. Our interface 
lets us specify how the compiler should divide the 
registers between these two uses. 

4. Results 
We used our programmable reorganization and 

simulation system to investigate the performance of 
various superpipelined and superscalar machine or- 
ganizations. We ran eight different benchmarks on each 
different configuration. All of the benchmarks are writ- 
ten in Modula-2 except for yacc. 
ccom Our own C compiler. 

kw A PC board router. 

linpack Linpack, double precision, unrolled 4x unless 
noted otherwise. 

livermore The first 14 Liver-more Loops, double preci- 
sion, not unrolled unless noted otherwise. 

met 

stall 

Metronome, a board-level timing verifier. 

The collection of Hennessy benchmarks from 
Stanford (including puzzle, tower, queens, 
etc.). 

whet Whetsones. 

yacc The Unix parser generator. 

Unless noted otherwise, the effects of cache misses 
and systems effects such as interrupts and TLB misses 
are ignored in the simulations. Moreover, when avail- 
able instruction-level parallelism is discussed, it is as- 
sumed that all operations execute in one cycle. To deter- 
mine the actual number of instructions issuable per cycle 
in a specific machine, the available parallelism must be 
divided by the average operation latency. 

I 

/ 
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4.1. The Duality of Latency and Parallel Issue 
In section 2.7 we stated that a superpipelined 

machine and an ideal superscalar machine (i.e., without 
class conflicts) should have the same performance, since 
they both have the same number of instructions execut- 
ing in parallel. To confirm this we simulated the eight 
benchmarks on an ideal base machine, and on super- 
pipelined and ideal superscalar machines of degrees 2 
through 8. Figure 4-l shows the results of this simula- 
tion. The superpipelined machine actually has less per- 
formance than the superscalar machine, but the perfor- 
mance difference decreases with increasing degree. 

Superscalar 

1 2 3 4 5 6 7 8 
Degree of Superscalar or Superpipeline 

Figure 4-1: Supersymmetry 

Consider a superscalar and super&lined machine, 
both of degree three, issuing a basic block of six inde- 
pendent instructions (see Figure 4-2). The superscalar 
machine will issue the last instruction at time t, 
(assuming execution starts at td. In contrast, the super- 
pipelined machine will take 113 cycle to issue each in- 
struction, so it will not issue the last instruction until time 
t5,3. Thus although the superscalar and superpipelined 
machines have the same number of instructions execut- 
ing at the same time in the steady state, the super- 
pipelined machine has a larger startup transient and it 
gets behind the superscalar machine at the start of the 
program and at each branch target. This effect 
diminishes as the degree of the superpipelined machine 
increases and all of the issuable instructions are issued 
closer and closer together. This effect is seen in Figure 
4-1 as the superpipelined performance approaches that of 
the ideal superscalar machine with increasing degree. 

Another difference between superscalar and super- 
pipelined machines involves operation latencies that are 
non-integer multiples of a base machine cycle time. In 
particular, consider operations which can be performed 
in less time than a base machine cycle set by the integer 
add latency, such as logical operations or register-to- 
register moves. In a base or superscalar machine these 
operations would require an entire clock because that is 



by definition the smallest time unit, In a superpipelined 
machine these instructions might be executed in one su- 
perpipelined cycle. Then in a superscalar machine of 
degree 3 the latency of a logical or move operation might 
be 2/3 longer than in a superpipelined machine of degree 
3. Since the latency is longer for the superscalar 
machine, the superpipelined machine will perform better 
than a superscalar machine of equal degree. In general, 
when the inherent operation latency is divided by the 
clock period, the remainder is less on average for 
machines with shorter clock periods. We have not quan- 
tified the effect of this difference to date. 

Superscalar 

Superpipelined 

\ 
0 12 3 4 5 6 7 6 9 10 11 12 13’ 

Time In Base Cycles 

Figure 4-2: Start-up in superscalar vs. superpipelined 

4.2, Limits to Instruction-Level Parallelism 
Studies dating from the late 1960’s and early 1970’s 

[14, 151 and continuing today have observed average 
instruction-level parallelism of around 2 for code without 
loop unrolling. Thus, for these codes there is not much 
benefit gained from building a machine with super- 
pipelining greater than degree 3 or a superscalar machine 
of degree greater than 3. The instruction-level paral- 
lelism required to fully utilize machines is plotted in 
Figure 4-3. On this graph, the X dimension is the degree 
of superscalar machine, and the Y dimension is the de- 
gree of superpipelining. Since a superpipelined super- 
scalar machine of only degree (2,2) would require an 
instruction-level parallelism of 4, it seems unlikely that it 
would ever be worth building a superpipelined super- 
scalar machine for moderately or slightly parallel code. 
The superpipelining axis is marked with the average de- 
gree of superpipelining in the CRAY-1 that was com- 
puted in Section 2.7. From this it is clear that vast 
amounts of instruction-level parallelism would be re- 
quired before the issuing of multiple instructions per 
cycle would be warranted in the CRAY-1. 

Unfortunately, latency is often ignored. For ex- 
ample, every time peak performance is quoted, max- 
imum bandwidth independent of latency is given. 
Similarly, latency is often ignored in simulation studies. 
For example, instruction issue methods have been com- 
pared for the CRAY- 1 assuming all functional units have 
1 cycle latency [l]. This results in speedups of up to 2.7 
from parallel issue of instructions, and leads to the mis- 
taken conclusion that the CRAY-1 would benefit sub- 
stantiahy from concurrent instruction issuing. In reality, 
based on Figure 4-3, we would expect the performance 
of the CRAY-1 to benefit very little from parallel in- 

struction issue. We simulated the performance of the 
CRAY-1 assuming single cycle functional unit latency 
and actual functional unit latencies, and the results are 
given in Figure 4-4. 

superpipelined 

5 / 10 15 20 25 

CRAY-11 
4 I 8 12 16 20 

cycles I 
per OP I 
(i.e., 3 I 6 9 12 15 
l/cycle I superpipelined 
time) I superscalar machines 

2 I 4 6 8 10 
MultiTitan 

1 +-------------------- super- 
1 2 3 4 5 scalar 

instr. issued per cycle 

Figure 4-3: Parallelism required for full utilization 

all latencies = 1 

;; 80 

3 

' 60 

i 
% 
d 40 

20. actual CRAY-1 latencies 

0 
1 2 3 4 5 6 7 8 

Instructionissuemultiplicity 

Figure 4-4: Parallel issue with unit and real latencies 

As expected, since the CRAY-1 already executes 
several instructions concurrently due to its average de- 
gree of superpipelining of 4.4, there is almost no benefit 
from issuing multiple instructions per cycle when the 
actual functional unit latencies are taken into account. 

4.3. Variations in Instruction-Level Parallelism 
So far we have been plotting a single curve for the 

harmonic mean of all eight benchmarks. The different 
benchmarks actually have different amounts of 
instruction-level parallelism. The performance improve- 
ment in each benchmark when executed on an ideal su- 
perscalar machine of varying degree is given in Figure 
4-5. Yacc has the least amount of instruction-level paral- 
lelism. Many programs have approximately two instruc- 
tions executable in parallel on the average, including the 
C compiler, PC board router, the Stanford collection, 
metronome, and whetstones. The Livermore loops ap- 
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proaches an instruction-level parallelism of 2.5. The of- 
ficial version of Linpack has its inner loops unrolled four 
times, and has an instruction-level parallelism of 3.2. 
We can see that there is a factor of two difference in the 
amount of instruction-level parallelism available in the 
different benchmarks, but the ceiling is still quite low. 

linpack.unroll4x 

livermore 

ccom whetsones 

1 2 3 4 5 6 7 8 
Instmction issue multiplicity 

Figure 4-5: Instruction-level parallelism by benchmark 

4.4. Effects of Optimizing Compilers 
Compilers have been useful in detecting and exploit- 

ing instruction-level parallelism. Highly parallel loops 
can be vectorized [3]. Somewhat less parallel loops can 
be unrolled and then trace-scheduled [5] or 
software-pipelined [4, 111. Even code that is only 
slightly parallel can be scheduled [6,7, 171 to exploit a 
superscalar or superpipelined machine. 

The effect of loop-unrolling on instruction-level 
parallelism is shown in Figure 4-6. The Linpack and 
Liver-more benchmarks were simulated without loop un- 
rolling and also unrolled two, four, and ten times. In 
either case we did the unrolling in two ways: naively and 
carefully. Naive unrolling consists simply of duplicating 
the loop body inside the loop, and allowing the normal 
code optimizer and scheduler to remove redundant com- 
putations and to re-order the instructions to maximize 
parallelism. Careful unrolling goes farther. In careful 
unrolling, we reassociate long strings of additions or 
multiplications to maximize the parallelism, and we 
analyze the stores in the unrolled loop so that stores from 
early copies of the loop do not interfere with loads in 
later copies. Both the naive and the careful unrolling 
were done by hand. 

The parallelism improvement from naive unrolling 
is mostly flat after unrolling by four. This is largely 
because of false conflicts between the different copies of 
an unrolled loop body, imposing a sequential framework 
on some or all of the computation. Careful unrolling 
gives us a more dramatic improvement, but the paral- 
lelism available is still limited even for tenfold unrolling. 

One reason for this is that we have only forty temporary 
registers available, which limits the amount of paral- 
lelism we can exploit. 
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Figure 4-6: Parallelism vs. loop unrolling 

In practice, the peak parallelism was quite high. The 
parallelism was 11 for the carefully unrolled inner loop 
of Linpack, and 22 for one of the carefully unrolled 
Liver-more loops. However, in either case there is still a 
lot of inherently sequential computation, even in impor- 
tant places. Three of the Livermore loops, for example, 
implement recurrences that benefit little from unrolling. 
If we spend half the time in a very parallel inner loop, 
and we manage to make this inner loop take nearly zero 
time by executing its code in parallel, we only double the 
speed of the program. 

In all cases, cache effects were ignored. If limited 
instruction caches were present, the actual performance 
would decline for large degrees of unrolling. 

Although we see that moderate loop-unrolling can 
increase the instruction-level parallelism, it is dangerous 
to generalize this claim. Most classical optimizations [2] 
have little effect on the amount of parallelism available, 
and often actually decrease it. This makes sense; un- 
optimized code often contains useless or redundant com- 
putations that are removed by optimization. These use- 
less computations give us an artificially high degree of 
parallelism, but we are filling the parallelism with make- 
work. 

In general, however, classical optimizations can ei- 
ther add to or subtract from parallelism. This is il- 
lustrated by the expression graph in Figure 4-7. If our 
computation consists of two branches of comparable 
complexity that can be executed in parallel, then optimiz- 
ing one branch reduces the parallelism. On the other 
hand, if the computation contains a bottleneck on which 
other operations wait, then optimizing the bottleneck in- 
creases the parallelism. This argument holds equally 
well for most global optimizations, which are usually just 
combinations of local optimizations that require global 
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information to detect. For example, to move invariant 
code out of a loop, we just remove a large computation 
and replace it with a reference to a single temporary. We 
also insert a large computation before the loop, but if the 
loop is executed many times then changing the paral- 
lelism of code outside the loop won’t make much dif- 
ference. 

Parallelism = 1.67 Parallelism = 1.33 Parallelism = 1.50 

Figure 4-7: Parallelism vs. compiler optimizations 

Gl.obal allocation of registers to local and global 
variables [16] is not usually considered a classical op- 
timization, because it has been widespread only since the 
advent of machines with large register sets. However, it 
too can either increase or decrease parallelism. A basic 
block in which all variables reside in memory must load 
those variables into registers before it can operate on 
them. Since these loads can be done in parallel, we 
would expect to reduce the overall parallelism by 
globally allocating the variables to registers and remov- 
ing these loads. On the other hand, assignments of new 
values to these variables may be easier for the pipeline 
scheduler to re-order if they are assignments to registers 
rather than stores to memory. 

We simulated our test suite with various levels of 
optimization. Figure 4-8 shows the results. The leftmost 
point is the parallelism with no optimization at all. Each 
time we move to the right, we add a new set of optimiza- 
tions. In order, these are pipeline scheduling, intra-block 
optimizations, global optimizations, and global register 
allocation, In this comparison we used 16 registers for 
expression temporaries and 26 for global register alloca- 
tion. The dotted and dashed lines allow the different 
benchmarks to be distinguished, and are not otherwise 
significant. 

Doing pipeline scheduling can increase the available 
parallelism by 10% to 60%. Throughout the remainder 
of this paper we assume that pipeline scheduling is per- 
formed. For most programs, further optimization has 
little effect on the instruction-level parallelism (although 
of course it has a large effect on the performance). On 
the average across our test suite, optimization reduces the 
parallelism, but the average reduction is very close to 
zero. 

The behavior of the Livermore benchmark is 
anomalous. A large decrease in parallelism occurs when 
we add optimization because the inner loops of these 
benchmarks contain redundant address calculations that 
are reaognized as common subexpressions. For example, 
without common subexpression elimination the address 
of AII] would be computed twice in the expression “A[11 

= AII] + 1”. It happens that these redundant calculations 
are not bottlenecks, so removing them decreases the 
parallelism. 
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Figure 4-8: Effect of optimization on parallelism 

Global register allocation causes a slight decrease in 
parallelism for most of the benchmarks. This is because 
operand loads can be done in parallel, and are removed 
by register allocation. 

The numeric benchmarks Livermore, Linpack, and 
Whetstones are exceptions to this. Global register al- 
location increases the parallelism of these three. This is 
because key inner loops contain intermixed references to 
scalars and to array elements. Loads from the former 
may appear to depend on previous stores to the latter, 
because the scheduler must assume that two memory 
locations are the same unless it can prove otherwise. If 
global register allocation chooses to keep a scalar in a 
register instead of memory, this spurious dependency 
disappears. 

In any event, it is clear that very few programs will 
derive an increase in the available parallelism from the 
application of code optimization. Programs that make 
heavy use of arrays may actually lose parallelism from 
common subexpression removal, though they may also 
gain parallelism from global register allocation. The net 
result seems hard to predict. The single optimization that 
does reliably increase parallelism is pipeline scheduling 
itself, which makes manifest the parallelism that is al- 
ready present. Even the benefit from scheduling varies 
widely between programs. 

5. Other Important Factors 
The preceding simulations have concentrated on the 

duality of latency and parallel instruction issue under 
ideal circumstances. Unfortunately there are a number of 
other factors which will have a very important effect on 
machine performance in reality. In this section we will 
briefly discuss some of these factors. 
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5.1. Cache Performance 
Cache performance is becoming increasingly impor- 

tant, and it can have a dramatic effect on speedups ob- 
tained from parallel instruction execution. Figure 5-l 
lists some cache miss times and the effect of a miss on 
machine performance. Over the last decade, cycle time 
has been decreasing much faster than main memory ac- 
cess time. The average number of machine cycles per 
instruction has also been decreasing dramatically, espe- 
cially when the transition from CISC machines to RISC 
machines is included. These two effects are multiplica- 
tive and result in tremendous increases in miss cost. For 
example, a cache miss on a VAX 11/780 only costs 60% 
of the average instruction execution. Thus even if every 
instruction had a cache miss, the machine performance 
would only slow down by 60%! However, if a RISC 
machine like the WRL Titan [13] has a miss, the cost is 
almost ten instruction times. Moreover, these trends 
seem to be continuing, especially the increasing ratio of 
memory access time to machine cycle time. In the future 
a cache miss on a superscalar machine executing two 
instructions per cycle could cost well over 100 instruc- 
tion times! 

Machine cycles cycle mem miss miss 

per time time cost cost 
instr (ns) (ns) cycles instr 

_----____---______-----~-~~~-----.-~---- 

VAX11/780 10.0 200 1200 6 .6 
WRL Titan 1.4 45 540 12 8.6 

? 0.5 5 350 70 140.0 
_____-_____--_____-------------------- 

Table 5-1: The cost of cache misses 

Cache miss effects decrease the benefit of parallel 
instruction issue. Consider a 2.Ocpi (i.e., 2.0 cycles per 
instruction) machine, where l.Ocpi is from issuing one 
instruction per cycle, and 1.0 cpi is cache miss burden. 
Now assume the machine is given the capability to issue 
three instructions per cycle, to get a net decrease down to 
0.5cpi for issuing instructions when data dependencies 
are taken into account. Performance is proportional to 
the inverse of the cpi change. Thus the overall perfor- 
mance improvement will be from 1/2.Ocpi to l/l.ficpi, or 
33%. This is much less than the improvement of 
l/l.Ocpi to l/O&pi, or lOO%, as when cache misses are 
ignored. 

5.2. Design Compfexity and Technology Constraints 
When machines are made more complicated in order 

to exploit instruction-level parallelism, care must be 
taken not to slow down the machine cycle time (as a 
result of adding the complexity) more than the speedup 
derived from the increased parallelism. This can happen 
in two ways, both of which are hard to quantify. First, 
the added complexity can slow down the machine by 
adding to the critical path, not only in terms of logic 
stages but in terms of greater distances to be traversed 
when crossing a more complicated and bigger machine. 
As we have seen from our analysis of the importance of 

latency, hiding additional complexity by adding extra 
pipeline stages will not make it go away. Also, the 
machine can be slowed down by having a fixed resource 
(e.g., good circuit designers) spread thinner because of a 
larger design. Finally, added complexity can negate per- 
formance improvements by increasing time to market. If 
the implementation technologies are fixed at the start of a 
design, and processor performance is quadrupling every 
three years, a one or two year slip because of extra com- 
plexity can easily negate any additional performance 
gained from the complexity. 

Since a superpipelined machine and a superscalar 
machine have approximately the same performance, the 
decision as to whether to implement a superscalar or a 
superpipelined machine should be based largely on their 
feasibility and cost in various technologies. For ex- 
ample, if a ‘lTL machine was being built from off-the- 
shelf components, the designers would not have the 
freedom to insert pipeline stages wherever they desired. 
For example, they would be required to use several mul- 
tiplier chips in parallel (i.e., superscalar), instead of 
pipelining one multiplier chip more heavily (i.e., 
superpipelined). Another factor is the shorter cycle times 
required by the superpipelined machine. For example, if 
short cycle times are possible though the use of fast in- 
terchip signalling (e.g., ECL with terminated transmis- 
sion lines), a superpipelined machine would be feasible. 
However, relatively slow ‘ITL off-chip signaling might 
require the use of a superscalar organization. In general, 
if it is feasible, a superpipelined machine would be 
preferred since it only pipelines existing logic more 
heavily by adding latches instead of duplicating func- 
tional units as in the superscalar machine. 

6. Concluding Comments 
In this paper we have shown superscalar and super- 

pipelined machines to be roughly equivalent ways to ex- 
ploit instruction-level parallelism. The duality of latency 
and parallel instruction issue was documented by simula- 
tions. Ignoring class conflicts and implementation com- 
plexity, a superscalar machine will have slightly better 
performance (by less than 10% on our benchmarks) than 
a superpipelined machine of the same degree due to the 
larger startup transient of the superpipelined machine. 
However, class conflicts and the extra complexity of 
parallel over pipelined instruction decode could easily 
negate this advantage. These tradeoffs merit investiga- 
tion in future work. 

The available parallelism after normal optimizations 
and global register allocation ranges from a low of 1.6 
for Yacc to 3.2 for Linpack. In heavily parallel programs 
like the numeric benchmarks, we can improve the paral- 
lelism somewhat by loop unrolling. However, dramatic 
improvements are possible only when we carefully 
restructure the unrolled loops. This restructuring re- 
quires us to use knowledge of operator associativity, and 
to do interprocedural alias analysis to determine when 
memory references are independent. Even when we do 
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this, the performance improvements are limited by the 
non-parallel code in the application, and the improve- 
ments in parallelism are not as large as the degree of 
unrolling. In any case, loop unrolling is of little use in 
non-parallel applications like Yacc or the C compiler. 

Pipeline scheduling is necessary in order to exploit 
the parallelism that is available; it improved performance 
by around 20%. However, classical code optimization 
had very little effect on the parallelism available in non- 
numeric applications, even when it had a large effect on 
the performance. Optimization had a larger effect on the 
parallelism of numeric benchmarks, but the size and even 
the direction of the the effect depended heavily on the 
code’s context and the availability of temporary 
registers. 

Finally, many machines already exploit most of the 
parallelism available in non-numeric code because they 
can issue an instruction every cycle but have operation 
latencies greater than one. Thus for many applications, 
significant performance improvements from parallel in- 
struction issue or higher degrees of pipelining should not 
be expected. 
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