
The Structure of the "THE"-Multiprogramming
Edsger W . Dijkstra

Technological University, Eindhoven, The Netherlands

System

A multiprogramming system is described in which all ac-
tivities are divided over a number of sequential processes.
These sequential processes are placed at various hierarchical
levels, in each of which one or more independent abstractions
have been implemented. The hierarchical structure proved to
be vital for the verification of the logical soundness of the
design and the correctness of its implementation.

KEY WORDS AND PHRASES: operating system, multlprogrammlng system,
system hierarchy, system structure, real-tlme debugging, program verification,
synchronizing primitives, cooperating sequential processes, system levels,
input-output bufferingt mulfiprogramming, processor sharing, mulfiprocessing'

CR CATEGORIES: 4.30, 4.32

Introduction

In response to a call explicitly asldng for papers "on
timely research and development efforts," I present a
progress report on the multiprogramming effort at the
Department of Mathematics at the Technological Uni-
versity in Eindhoven.

Having very limited resources (viz. a group of six peo-
ple of, on the average, haif-time availability) and wishing
to contribute to the art of system design--including all
the stages of conception, construction, and verification,
we were faced with the problem of how to get the necessary
experience. To solve this problem we adopted the follow-
ing three guiding principles:

(1) Select a project as advanced as you can conceive,
as ambitious as you can justify, in the hope that routine
work earl be kept to a minimum; hold out against all pres-
sure to incorporate such system expansions that would
only result into a purely quantitative increase of the total
amount of work to be done.

(2) Select a machine with sound basic characteristics
(e.g. an interrupt system to fall in love with is certainly
an inspiring feature); from then on try to keep the spe-
cific properties of the configuration for which you are pre-
paring the system out of your considerations as long as
possible.

(3) Be aware of the fact that experience does by no
means automatically lead to wisdom and understanding;
in other words, make a conscious effort to learn as much as
possible fl'om your previous experiences.

Presented at an ACM Symposium on Operating System Principles,
Gatlinburg, Tennessee, October 1-4, 1967.

Volume 11 / Number 5 / May, 1968

Accordingly, I shall try to go beyond just reporting
what we have done and how, and I shall try to formulate
as well what we have learned.

I should like to end the introduction with two short
remarks on working conditions, which I make for the sake
of completeness. I shall not stress these points any further.

One remark is that production speed is severely slowed
down if one works with half-time people who have other
obligations as well. This is at least a factor of four; prob-
ably it is worse. The people themselves lose time and
energy in switching over; the group as a whole loses de-
cision speed as discussions, when needed, have often to be
postponed until all people concerned are available.

The other remark is that the members of the group
(mostly mathematicians) have previously enjoyed as good
students a university training of five to eight years and
are of Master's or Ph.D. level. I mention this explicitly
because at least it1 my country the intellectual level needed
for system design is in general grossly underestimated. I
am convinced more than ever that this type of work is
very difficult, and that every effort to do it with other than
the best people is doomed to either failure or moderate
success at enormous expense.

The Tool and the Goal

The system has been designed for a Dutch machine, the
EL X8 (N.V. Electrologica, Rijswijk (ZH)). Charac-
teristics of our configuration are:

(1) core memory cycle time 2.5usec, 27 bits; at present
32K;

(2) drum of 512K words, 1024 words per track, rev.
time 40msec;

(3) an indirect addressing mechanism very well suited
for stack implementation;

(4) a sound system for commanding peripherals and
controlling of interrupts;

(5) a potentially great number of low capacity chan-
nels; ten of them are used (3 paper tape readers
at 1000char/see; 3 paper tape punches at 150char/
sec; 2 teleprinters; a plotter; a line printer);

(6) absence of a number of not unusual, awkward
features.

The primary goal of the system is to process smoothly
a continuous flow of user programs as a service to the Uni-
versity. A multiprograrmning system has been chosen
with the following objectives in mind: (1) a reduction of
turn-around time for programs of short duration, (2)
economic use of peripheral devices, (3) automatic control

C o m m u n i c a t i o n s o f t h e ACM 341

of backing store to be combined with economic use of the
central processor, and (4) the economic feasibility to use
the machine for those applications for which only the flexi-
bility of a general purpose computer is needed, but (as a
rule) not the capacity nor the processing power.

The system is not intended as a multiaeeess system.
There is no common data base via which independent
users can communicate with each other: they only share
the configuration and a procedure library (that includes a
translator for ALGOL 60 extended with complex numbers).
The system does not eater for user programs written in
machine language.

Compared with larger efforts one can state that quanti-
tatively spealdng the goals have been set as modest as the
equipment and our other resources. Qualitatively speak-
ing, I am afraid, we became more and more immodest as
the work progressed.

A Progress Report

We have made some minor mistakes of the usual type
(such as paying too much attention to eliminating what
was not the real bottleneck) and two major ones.

Our first major mistake was that for too long a time we
confined our attention to % perfect installation"; by the
time we considered howto make the best of it, one of the
peripherals broke down, we were faced with nasty prob-
lems. Taking care of the "pathology" took more energy
than we had expected, and some of our troubles were a
direct consequence of our earlier ingenuity, i.e. the com-
plexity of the situation into which the system could have
maneuvered itself. Had we paid attention to the pathology
at an earlier stage of the design, our management rules
would certainly have been less refined.

The second major mistake has been that we conceived
and programmed the major part of the system without
giving more than scanty thought to the problem of de-
bugging it. I must decline all credit for the fact that this
mistake had no serious consequences--on the contrary!
one might argue as an afterthought.

As captain of the crew I had had extensive experience
(dating back to 1958) in making basic software dealing
with real-time interrupts, and I knew by bitter experience
that as a result of the irreproducibility of the interrupt
moments a program error could present itself misleadingly
like an occasional machine malfunctioning. As a result I
was terribly afraid. Having fears regarding the possibility
of debugging, we decided to be as careful as possible and,
prevention being better than cure, to try to prevent nasty
bugs from entering the construction.

This decision, inspired by fear, is at the bottom of what
I regard as the group's main contribution to the art of
system design. We have found that it is possible to design a
refined multiprogramming system in such a way that its
logical soundness can be proved a priori and its implemen-
tation can admit exhaustive testing. The only errors that

342 C o m m u n i c a t i o n s of the ACM

showed up during testing were trivial coding errors
(occurring with a density of one error per 500 instructions),
each of them located within 10 minutes (classical) inspec-
tion by the machine and each of them correspondingly
easy to remedy. At the time this was written the testing
had not yet been completed, but the resulting system is
guaranteed to be flawless. When the system is delivered we
shall not live in the perpetual fear that a system derail-
ment may still occur in an unlikely situation, such as
might result from an unhappy "coincidence" of two or
more critical occurrences, for we shall have proved the
eon'eetness of the system with a rigor and explicitness
that is unusual for the great majority of mathematical
proofs.

A Survey of the System gtructure

Storage Allocation. In the classical yon Neumann
machine, information is identified by the address of the
memory location containing the information. When we
started to think about the automatic control of secondary
storage we were familiar with a system (viz. GmR ALGOL)
in which all information was identified by its drum address
(as in the classical yon Neumann machine) and in which
the function of the core memory was nothing more than
to make the information "page-wise" accessible.

We have followed another approach and, as it turned
out, to great advantage. In our terminology we made a
strict distinction between memory units (we called them
"pages" and had "core pages" and "drum pages") and
corresponding information units (for lack of a better word
we called them "segments"), a segment just fitting in a
page. For segments we created a completely independent
identification mechanism in which the number of possible
segment identifiers is much larger than the total number of
pages in primary and secondary store. The segment iden-
tifier gives fast access to a so-called "segment variable"
in core whose value denotes whether the segment is still
empty or not, and if not empty, in which page (or pages)
it can be found.

As a consequence of this approach, if a segment of in-
formation, residing in a core page, has to be dumped onto
the drum in order to make the core page available for other
use, there is no need to return the segment to the same
drum page from which it originally came. In fact, this
freedom is exploited: among the free drum pages the one
with minimum latency time is selected.

A next consequence is the total absence of a drum allo-
cation problem: there is not the slightest reason why, say,
a program should occupy consecutive drum pages. In a
multiprogramming environment this is very convenient.

Processor Allocation. We have given full recognition
to the fact that in a single sequential process (such as ca~
be performed by a sequential automaton) only the time
succession of the various states has a logical meaning, but
not the actual speed with which the sequential process is

V o l u m e 11 / Number 5 / May, 1968

performed. Therefore we have arranged the whole system
as a society of sequential processes, progressing with un-
defined speed ratios. To each user program accepted by the
system corresponds a sequential process, to each input
peripheral corresponds a sequential process (buffering
input streams in synchronism with the execution of the
input commands), to each output peripheral corresponds a
sequential process (unbuffering output streams in syn-
chronism with the execution of the output commands);
furthermore, we have the "segment controller" associated
with the drum and the "message interpreter" associated
with the console keyboard.

This enabled us to design the whole system in terms of
these abstract "sequential processes." Their harmonious
cooperation is regulated by means of explicit mutuM
synchronization statements. On the one hand, this ex-
plicit mutual synchronization is necessary, as we do not
make any assumption about speed ratios; on the other
hand, this mutual synchronization is possible because
"delaying the progress of a process temporarily" can never
be harmful to the interior logic of the process delayed. The
fundamental consequence of this approaeh--viz, the ex-
plicit mutual synchronization--is that the harmonious
cooperation of a set of such sequential processes can be
established by discrete reasoning; as a further consequence
the whole harmonious society of cooperating sequential
processes is independent of the actual number of processors
available to carry out these processes, provided the proces-
sors available can switch from process to process.

System Hierarchy. The total system admits a strict
hierarchical structure.

At level 0 we find the responsibility for processor allo-
cation to one of the processes whose dynamic progress is
logically permissible (i.e. in view of the explicit mutual
synchronization). At this level the interrupt of the real-
time clock is processed and introduced to prevent any
process to monopolize processing power. At this level a
priority rule is incorporated to achieve quick response of
the system where this is needed. Our first abstraction has
been achieved; above level 0 the number of processors
actually shared is no longer relevant. At higher levels we
find the activity of the different sequential processes, the
actual processor that had lost its identity having disap-
peared from the picture.

At level 1 we have the so-called "segment controller,"
a sequential process synchronized with respect to the drum
interrupt and the sequential processes on higher levels.
At level 1 we find the responsibility to cater to the book-
keeping resulting from the automatic backing store. At
this level our next abstraction has been achieved; at all
higher levels identification of information takes place in
terms of segments, the actual storage pages that had lost
their identity having disappeared from the picture.

At level 2 we find the "message interpreter" taking care
of the allocation of the console keyboard via which con-

versations between the operator and any of the higher
level processes can be carried out. The message interpreter
works in close synchronism with the operator. When the
operator presses a key, a character is sent to the machine
together with an interrupt signal to announce the next
keyboard character, whereas the actual printing is done
through an output command generated by the machine
under control of the message interpreter. (As far as the
hardware is concerned the console teleprinter is regarded
as two independent peripherals: an input keyboard and an
output printer.) If one of the processes opens a conversa-
tion, it identifies itself in the opening sentence of the con-
versation for the benefit of the operator. If, however, the
operator opens a conversation, he must identify the
process he is addressing, in the opening sentence of the
conversation, i.e. this opening sentence must be inter-
preted before it is known to which of the processes the
conversation is addressed! Here lies the logical reason for
the introduction of a separate sequential process for the
console teleprinter, a reason that is reflected in its name,
"message interpreter."

Above level 2 it is as if each process had its private con-
versational console. The fact that they share the same
physical console is translated into a resource restriction of
the form "only one conversation at a time," a restriction
that is satisfied via mutual synchronization. At this
level the next abstraction has been implemented; at higher
levels the actual console teleprinter loses its identity.
(If the message interpreter had not been on a higher level
than the segment controller, then the only way to imple-
ment it would have been to make a permanent reservation
in core for it; as the conversational vocabulary might be-
come large (as soon as our operators wish to be addressed
in fancy messages), this would result in too heavy a per-
manent demand upon core storage. Therefore, the vo-
cabulary in which the messages are expressed is stored
on segments, i.e. as information units that can reside on
the drum as well. For this reason the message interpreter
is one level higher than the segment controller.)

At level 3 we find the sequential processes associated
with buffering of input streams and unbuffering of out-
put streams. At this level the next abstraction is effeeted,
viz. the abstraction of the actual peripherals used that are
allocated at this level to the "logical communication units"
in terms of which are worked in the still higher levels. The
sequential processes associated with the peripherals are of
a level above the message interpreter, because they must
be able to converse with the operator (e.g. in the case of
detected malfunctioning). The limited number of periph-
erals again acts as a resource restriction for the processes
at higher levels to be satisfied by mutual synchronizatioI~
between them.

At level 4 we find the independent:user programs and
at level 5 the operator (not implemented by us).

The system structure has been described at length in
order to make the next section intelligible.

Volume 11 / Number 5 / May, 1968 Communica t ions o f t h e ACM 343

D e s i g n E x p e r i e n c e

• The conception stage took a long time. During that
period of time the concepts have been born in terms of
which we sketched the system in the previous section.
Furthermore, we learned the art of reasoning by which we
could deduce from our requirements the way in which the
processes should influence each other by their inutual
synchronization so that these requirements would be met.
(The requirements being that no information can be used
before it has been produced, that no peripheral can be set
to two tasks simultaneously, etc.). Finally we learned the
art of reasoning by which we could prove that the society
composed of processes thus mutually synchronized by
each other would indeed in its time behavior satisfy all
requirements.

The construction stage has been rather traditional,
perhaps even old-fashioned, that is, plain machine code.
Reprogramming on account of a change of specifications
has been rare, a circumstance that must have contributed
greatly to the feasibility of the "steam method." That the
first two stages took more time than planned was some-
what compensated by a delay in the delivery of the
machine.

In the verification stage we had the machine, during
short shots, completely at our disposal; these were shots
during which we worked with a virgin machine without
any software aids for debugging. Starting at level 0 the
system was tested, each time adding (a portion of) the
next level only after the previous level had been thoroughly
tested. Each test shot itself contained, on top of the (par-
tial) system to be tested, a number of testing processes
with a double function. First, they had to force the system
into all different relevant states; second, they had to verify
that the system continued to react according to specifica-
tion.

I shall not deny that the construction of these testing
programs has been a major intellectual effort: to convince
oneself that one has not overlooked "a relevant state"
and to convince oneself that the testing programs generate
them all is no simple matter. The encouraging thing is
that (as far as we know!) it could be done.

This fact was one of the happy consequences of the
hierarchical structure.

Testing level 0 (the real-time clock and processor allo-
cation) implied a number of testing sequential processes
on top of it, inspecting together that under all circum-
stances processor time was divided among them accord-
ing to the rules. This being established, sequential processes
as such were implemented.

Testing the segment controller at level 1 meant that all
"relevant states" could be formulated in terms of se-
quential processes making (in various combinations)
demands on core pages, situations that could be provoked
by explicit synchronization among the testing programs.
At this stage the existence of the real-time clock--al-
though interrupting all the time--was so immaterial that
one of the testers indeed forgot its existence!

By that time we had implemented the correct reaction
upon the (mutually unsynchronized) interrupts from the
reaI-time clock and the drum. If we ihad not introduced
the separate levels 0 and 1, and if we had not created a
ternfinology (viz. that of the rather abstract sequential
processes) in which the existence of the clock interrupt
could be discarded, but had instead tried in a nonhierar-
ehieal construction, to make the central processor react
directly upon any weird time succession of these two
interrupts, the number of "relevant states" would have
exploded to sueh a height that exhaustive testing would
have been an illusion. (Apart from that it is doubtful
whether we would have had the means to generate them
all, drum and clock speed being outside our control.)

For the sake of completeness I must mention a further
happy consequence. As Stated before, above level 1, core
and drum pages have lost their identity, and buffering of
input and output streams (at level 3) therefore occurs in
terms of segments. While testing at level 2 or 3 the drum
channel hardware broke down for some time, but t~sting
proceeded by restricting the number of segments to the
number that could be held in core. If building up the line
printer output streams had been implemented as "dump-
ing onto the drum" and the actual printing as "printing
from the drum," this advantage would have been denied
to us.

C o n c l u s i o n

As far as program verification is concerned I present
nothing essentially new. In testing a general purpose object
(be it a piece of hardware, a program, a machine, or a
system), one cannot subject it to all possible cases: for a
computer this would imply that one feeds it with all
possible programs! Therefore one must test it with a set
of relevant test cases. What is, or is not, relevant cannot be
decided as long as one regards the mechanism as a black
box; in other words, the decision has to be based upon the
internal structure of the mechanism to be tested. I t seems
to be the designer's responsibility to construct his mecha-
nism in such a way--i.e, so effectively structured--that
at each stage of the testing procedure the number of rele-
vant test cases will be so small that he can try them all and
that what is being tested will be so perspicuous that he
will not have overlooked any situation. I have presented a
survey of our system because I think it a nice example of
the form that such a structure might take.

In my experience, I am sorry to say, industrial software
makers tend to react to the system with mixed feelings.
On the one hand, they are inclined to think that we have
done a kind of model job; on the other hand, they express
doubts whether the techniques used are applicable outside
the sheltered atmosphere of a University and express the
opinion that we were successful only because of the modest
scope of the whole project. I t is not my intention to under-
estimate the organizing ability needed to handle a much
bigger job, with a lot more people, but I should like to ven-

344 Communications of the ACM Volume 11 / Number 5 / May, 1968

ture the opinion that the larger the project, the more essen-
tial the structuring! A hierarchy of five logical levels
might then very well turn out to be of modest depth,
especially when one designs the system more consciously
than we have done, with the aim that the software can be
smoothly adapted to (perhaps drastic) configuration ex-
pansions.

Acknowle@ments. I express my indebtedness to my
five collaborators, C. Bron, A. N. Habermann, F. J. A.
Hendriks, C. Ligtmans, and P. A. Voorhoeve. They have

contributed to all stages of the design, and together we
learned the art of reasoning needed. The construction and
verification was entirely their effort; if my dreams have
come true, it is due to their faith, their talents, and their
persistent loyalty to the whole project.

Finally I should like to thank the members of the pro-
gram committee, who asked for more information on the
synchronizing primitives and some justification of my
claim to be able to prove logical soundness a priori. In
answer to this request an appendix has been added, which
I hope will give the desired information and justification.

A P P E N D I X

S y n c h r o n i z i n g P r i m i t i v e s

Explicit mutual synchronization of parallel sequential
processes is implemented via so-called "semaphores."
They are special purpose integer variables allocated in the
universe in which the processes are embedded; they are
initialized (with the value 0 or 1) before the parallel proc-
esses themselves are started. After this initialization the
parallel processes will access the semaphores only via two
very specific operations, the so-called synchronizing primi-
tives. For historical reasons they are called the P-opera-
tion and the V-operation.

A process, "Q" say, that performs the operation "P
(sem)" decreases the value of the semaphore called "sem"
by 1. If the resulting value of the semaphore concerned
is nonnegative, process Q can continue with the execution
of its next statement; if, however, the resulting value is
negative, process Q is stopped and booked on a waiting
list associated with the semaphore concerned. Until fur-
ther notice (i.e. a V-operation on this very same sema-
phore), dynamic progress of process Q is not logically
permissible and no processor will be allocated to it (see
above "System Hierarchy," at level 0).

A process, "R" say, that performs the operation "V
(sem)" increases the value of the semaphore called "sem"
by 1. If the resulting value of the semaphore concerned
is positive, the V-operation in question has no further
effect; if, however, the resulting value of the semaphore
concerned is nonpositive, one of the processes booked
on its waiting list is removed from this waiting list, i.e.
its dynamic progress is again logically permissible and in
due time a processor will be allocated to it (again, see
above "System Hierarchy," at level 0).

COROLLARY 1. I f a semaphore value is nonpositive its
absolute value equals the number of processes booked on its

waiting list.
COROLLARY 2. The P-operation represents the potential

delay, the complementary V-operation represents the re-

moval of a barrier.
Note 1. P- and V-operations are "indivisible actions";

Volume 11 / Number 5 / May, 1968

i.e. if they occur "simultaneously" in parallel processes
they are noninterfcring in the sense that they can be re-
garded as being performed one after the other.

Note 2. If the semaphore value resulting from a V-
operation is negative, its waiting list originally contained
more than one process. It is undefined--i.e, logically im-
material-which of the waiting processes is then removed
from the waiting list.

Note 3. A consequence of the mechanisms described
above is that a process whose dynamic progress is permis-
sible can only loose this status by actually progressing,
i.e. by performance of a P-operation on a semaphore with a
value that is initially nonpositive.

During system conception it transpired that we used
the semaphores in two completely different ways. The
difference is so marked that, looking back, one wonders
whether it was really fair to present the two ways as
uses of the very same primitives. On the one hand, we
have the semaphores used for mutual exclusion, on the
other hand, the private semaphores.

M u t u a l E x c l u s i o n

In the following program we indicate two parallel, cyclic
processes (between the brackets " p a r b e g i n " and "par-
end") that come into action after the surrounding uni-
verse has been introduced and inigiahzed.

begin semaphore mutex; mutex := 1;
parbegin

begin L1 : P (mutex) ; critical section 1;
remainder of cycle 1; go to L1

end;
begin L2: P mutex); critical section 2; V (mutex);

remainder of cycle 2; go to L2
end

pareud
end

V (mutex) ;

As a result of the P- and V-operations on "mutex"
the actions, marked as "critical sections" exclude e~ch
other mutually in time; the scheme given allows straight-
forward extension to more than two parallel processes,

Communicat ions of the ACM 345

the maxinnun value of mutex equals l, the minimum value
equals - (n - 1) if we have n parallel processes.

Critical sections are used always, ~md only for the pur-
pose of unambiguous inspection and modification of the
state variables (allocated in the surrounding universe)
that describe the current state of the system (as far as
needed for the regulation of the ham~onious cooperation
between the various processes).

Private Semaphores

Each sequential process has associated with it a num-
ber of private semaphores and no other process will ever
perform a P-operation on them. The universe initializes
them with the value equal to 0, their maximum value
equals 1, and their minhnum value equals - 1 .

Whenever a process reaches a stage where the pemfis-
sion for dynamic progress depends on current values of
state variables, it follows the pattern:

P(mutex) ;
"inspection and modification of state variables including

a conditional V(private semaphore)";
V (mutex) ;
P(private semaphore).

If the inspection learns that the process in question
should eontinne, it performs the operation "V (private
semaphore) " - - the semaphore value then changes from 0
to 1--other~4se, this V-operation is skipped, leaving to
the other processes the obligation to perform this V-
operation at a suitable moment. The absence or presence
of this obligation is reflected in the finM values of the
state variables upon leaving the critical section.

Whenever a process reaches a stage where as a result
of its progress possibly one (or more) blocked processes
should now get permission to continue, it follows the pat-
tern:

P (mutex) ;
"modification and inspection of state variables includ-

ing zero or more V-operations on private semaphores
of other processes";

V(mutex).

By the introduction of suitable state variables and
appropriate programming of the critical sections any
strategy assigning peripherals, buffer areas, etc. can be
implemented.

The amount of coding and reasoning can be greatly
reduced by the observation that in the two complemen-
tary critical sections sketched above the same inspection
can be performed by the introduction of the notion of "an

tlnstabIe si/;uation," such as a free resider and a process
needing a. reader. Whenever ~m unstable situation emerges
it is removed (including one or more g-operations on
private semaphores) in the very same critical section in
which i{; has been created.

Proving the t t a r m o n i o u s Coopera t ion

The sequential processes in the system east all be re~
garded as cyclic processes in which a certain neutral point
can be marked, the so-called "homing position," in which
all processes are when the system is at rest,.

When a cyclic process leaves its homing position "it
accepts a task"; when the task has been performed and
not earlier, the process returns to its homing position.
Each eyelie process has a specific task processing power
(e.g. the execution of a user program or unbuffering a
portion of printer output, etc.).

The harmonious cooperation is mainly proved in roughly
three stages.

(1) I t is proved that although a process performing a
task may in so doing generate a finite number of tasks for
other processes, a single initial task cannot give rise to an
infinite number of task generations. The proof is simple as
processes can only generate tasks for processes at lower
levels of the hierarchy so that circularity is excluded.
(If a process needing a segment from the drum has gener-
ated a task for the segment controller, special precautions
have been taken to ensure that the segment asked for
remains in core at least until the requesting process has
effectively accessed the segment concerned. Without this
precaution finite tasks could be forced ~o generate an
infinite number of tasks for the segment controller, and the
system could get stuck in an unproductive page flutter.)

(2) I t is proved that it is impossible that all processes
have returned to their honfing position while somewhere
in the system there is still pending a generated but unae-
eepted task. (This is proved via instability of the situation
just described.)

(3) I t is proved that after the acceptance of an initial
task all processes eventually will be (again) in their hom-
ing position. Each process blocked in the course of task
execution relies on the other processes for removal of the
barrier. Essentially, the proof in question is a demon-
stration of the absence of "circular waits": process P
waiting for process Q waiting for process R waiting for
process P. (Our usual term for the circular wait is "the
Deadly Embrace.") In a more general society than our
system this proof turned out to be a proof by induction
(on the level of hierarchy, starting at the lowest level), as
A. N. Habermann has shown in his doctoral thesis.

i

l,i

N

346 Communications of the ACM Volume 11 / Nu~tber 5 / May, 1968

