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A multiprogramming system is described in which all ac- 
tivities are divided over a number of sequential processes. 
These sequential processes are placed at various hierarchical 
levels, in each of which one or more independent abstractions 
have been implemented. The hierarchical structure proved to 
be vital for the verification of the logical soundness of the 
design and the correctness of its implementation. 
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Introduction 

In response to a call explicitly asldng for papers "on 
timely research and development efforts," I present a 
progress report on the multiprogramming effort at the 
Department of Mathematics at the Technological Uni- 
versity in Eindhoven. 

Having very limited resources (viz. a group of six peo- 
ple of, on the average, haif-time availability) and wishing 
to contribute to the art of system design--including all 
the stages of conception, construction, and verification, 
we were faced with the problem of how to get the necessary 
experience. To solve this problem we adopted the follow- 
ing three guiding principles: 

(1) Select a project as advanced as you can conceive, 
as ambitious as you can justify, in the hope that routine 
work earl be kept to a minimum; hold out against all pres- 
sure to incorporate such system expansions that would 
only result into a purely quantitative increase of the total 
amount of work to be done. 

(2) Select a machine with sound basic characteristics 
(e.g. an interrupt system to fall in love with is certainly 
an inspiring feature); from then on try to keep the spe- 
cific properties of the configuration for which you are pre- 
paring the system out of your considerations as long as 
possible. 

(3) Be aware of the fact that experience does by no 
means automatically lead to wisdom and understanding; 
in other words, make a conscious effort to learn as much as 
possible fl'om your previous experiences. 

Presented at an ACM Symposium on Operating System Principles, 
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Accordingly, I shall try to go beyond just reporting 
what we have done and how, and I shall try to formulate 
as well what we have learned. 

I should like to end the introduction with two short 
remarks on working conditions, which I make for the sake 
of completeness. I shall not stress these points any further. 

One remark is that production speed is severely slowed 
down if one works with half-time people who have other 
obligations as well. This is at least a factor of four; prob- 
ably it is worse. The people themselves lose time and 
energy in switching over; the group as a whole loses de- 
cision speed as discussions, when needed, have often to be 
postponed until all people concerned are available. 

The other remark is that the members of the group 
(mostly mathematicians) have previously enjoyed as good 
students a university training of five to eight years and 
are of Master's or Ph.D. level. I mention this explicitly 
because at least it1 my country the intellectual level needed 
for system design is in general grossly underestimated. I 
am convinced more than ever that this type of work is 
very difficult, and that every effort to do it with other than 
the best people is doomed to either failure or moderate 
success at enormous expense. 

The Tool and the  Goal 

The system has been designed for a Dutch machine, the 
EL X8 (N.V. Electrologica, Rijswijk (ZH)). Charac- 
teristics of our configuration are: 

(1) core memory cycle time 2.5usec, 27 bits; at present 
32K; 

(2) drum of 512K words, 1024 words per track, rev. 
time 40msec; 

(3) an indirect addressing mechanism very well suited 
for stack implementation; 

(4) a sound system for commanding peripherals and 
controlling of interrupts; 

(5) a potentially great number of low capacity chan- 
nels; ten of them are used (3 paper tape readers 
at 1000char/see; 3 paper tape punches at 150char/ 
sec; 2 teleprinters; a plotter; a line printer); 

(6) absence of a number of not unusual, awkward 
features. 

The primary goal of the system is to process smoothly 
a continuous flow of user programs as a service to the Uni- 
versity. A multiprograrmning system has been chosen 
with the following objectives in mind: (1) a reduction of 
turn-around time for programs of short duration, (2) 
economic use of peripheral devices, (3) automatic control 
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of backing store to be combined with economic use of the 
central processor, and (4) the economic feasibility to use 
the machine for those applications for which only the flexi- 
bility of a general purpose computer is needed, but (as a 
rule) not the capacity nor the processing power. 

The system is not intended as a multiaeeess system. 
There is no common data base via which independent 
users can communicate with each other: they only share 
the configuration and a procedure library (that includes a 
translator for ALGOL 60 extended with complex numbers). 
The system does not eater for user programs written in 
machine language. 

Compared with larger efforts one can state that quanti- 
tatively spealdng the goals have been set as modest as the 
equipment and our other resources. Qualitatively speak- 
ing, I am afraid, we became more and more immodest as 
the work progressed. 

A Progress Report 

We have made some minor mistakes of the usual type 
(such as paying too much attention to eliminating what 
was not the real bottleneck) and two major ones. 

Our first major mistake was that for too long a time we 
confined our attention to % perfect installation"; by the 
time we considered howto make the best of it, one of the 
peripherals broke down, we were faced with nasty prob- 
lems. Taking care of the "pathology" took more energy 
than we had expected, and some of our troubles were a 
direct consequence of our earlier ingenuity, i.e. the com- 
plexity of the situation into which the system could have 
maneuvered itself. Had we paid attention to the pathology 
at an earlier stage of the design, our management rules 
would certainly have been less refined. 

The second major mistake has been that we conceived 
and programmed the major part of the system without 
giving more than scanty thought to the problem of de- 
bugging it. I must decline all credit for the fact that this 
mistake had no serious consequences--on the contrary! 
one might argue as an afterthought. 

As captain of the crew I had had extensive experience 
(dating back to 1958) in making basic software dealing 
with real-time interrupts, and I knew by bitter experience 
that  as a result of the irreproducibility of the interrupt 
moments a program error could present itself misleadingly 
like an occasional machine malfunctioning. As a result I 
was terribly afraid. Having fears regarding the possibility 
of debugging, we decided to be as careful as possible and, 
prevention being better than cure, to try to prevent nasty 
bugs from entering the construction. 

This decision, inspired by fear, is at the bottom of what 
I regard as the group's main contribution to the art of 
system design. We have found that it is possible to design a 
refined multiprogramming system in such a way that its 
logical soundness can be proved a priori and its implemen- 
tation can admit exhaustive testing. The only errors that 
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showed up during testing were trivial coding errors 
(occurring with a density of one error per 500 instructions), 
each of them located within 10 minutes (classical) inspec- 
tion by the machine and each of them correspondingly 
easy to remedy. At the time this was written the testing 
had not yet been completed, but the resulting system is 
guaranteed to be flawless. When the system is delivered we 
shall not live in the perpetual fear that a system derail- 
ment may still occur in an unlikely situation, such as 
might result from an unhappy "coincidence" of two or 
more critical occurrences, for we shall have proved the 
eon'eetness of the system with a rigor and explicitness 
that is unusual for the great majority of mathematical 
proofs. 

A Survey of the System gtructure 

Storage Allocation. In the classical yon Neumann 
machine, information is identified by the address of the 
memory location containing the information. When we 
started to think about the automatic control of secondary 
storage we were familiar with a system (viz. GmR ALGOL) 
in which all information was identified by its drum address 
(as in the classical yon Neumann machine) and in which 
the function of the core memory was nothing more than 
to make the information "page-wise" accessible. 

We have followed another approach and, as it turned 
out, to great advantage. In our terminology we made a 
strict distinction between memory units (we called them 
"pages" and had "core pages" and "drum pages") and 
corresponding information units (for lack of a better word 
we called them "segments"), a segment just fitting in a 
page. For segments we created a completely independent 
identification mechanism in which the number of possible 
segment identifiers is much larger than the total number of 
pages in primary and secondary store. The segment iden- 
tifier gives fast access to a so-called "segment variable" 
in core whose value denotes whether the segment is still 
empty or not, and if not empty, in which page (or pages) 
it can be found. 

As a consequence of this approach, if a segment of in- 
formation, residing in a core page, has to be dumped onto 
the drum in order to make the core page available for other 
use, there is no need to return the segment to the same 
drum page from which it originally came. In  fact, this 
freedom is exploited: among the free drum pages the one 
with minimum latency time is selected. 

A next consequence is the total absence of a drum allo- 
cation problem: there is not the slightest reason why, say, 
a program should occupy consecutive drum pages. In a 
multiprogramming environment this is very convenient. 

Processor Allocation. We have given full recognition 
to the fact that in a single sequential process (such as ca~ 
be performed by a sequential automaton) only the time 
succession of the various states has a logical meaning, but 
not the actual speed with which the sequential process is 
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performed. Therefore we have arranged the whole system 
as a society of sequential processes, progressing with un- 
defined speed ratios. To each user program accepted by the 
system corresponds a sequential process, to each input 
peripheral corresponds a sequential process (buffering 
input streams in synchronism with the execution of the 
input commands), to each output peripheral corresponds a 
sequential process (unbuffering output streams in syn- 
chronism with the execution of the output commands); 
furthermore, we have the "segment controller" associated 
with the drum and the "message interpreter" associated 
with the console keyboard. 

This enabled us to design the whole system in terms of 
these abstract "sequential processes." Their harmonious 
cooperation is regulated by means of explicit mutuM 
synchronization statements. On the one hand, this ex- 
plicit mutual synchronization is necessary, as we do not 
make any assumption about speed ratios; on the other 
hand, this mutual synchronization is possible because 
"delaying the progress of a process temporarily" can never 
be harmful to the interior logic of the process delayed. The 
fundamental consequence of this approaeh--viz, the ex- 
plicit mutual synchronization--is that the harmonious 
cooperation of a set of such sequential processes can be 
established by discrete reasoning; as a further consequence 
the whole harmonious society of cooperating sequential 
processes is independent of the actual number of processors 
available to carry out these processes, provided the proces- 
sors available can switch from process to process. 

System Hierarchy. The total system admits a strict 
hierarchical structure. 

At level 0 we find the responsibility for processor allo- 
cation to one of the processes whose dynamic progress is 
logically permissible (i.e. in view of the explicit mutual 
synchronization). At this level the interrupt of the real- 
time clock is processed and introduced to prevent any 
process to monopolize processing power. At this level a 
priority rule is incorporated to achieve quick response of 
the system where this is needed. Our first abstraction has 
been achieved; above level 0 the number of processors 
actually shared is no longer relevant. At higher levels we 
find the activity of the different sequential processes, the 
actual processor that had lost its identity having disap- 
peared from the picture. 

At level 1 we have the so-called "segment controller," 
a sequential process synchronized with respect to the drum 
interrupt and the sequential processes on higher levels. 
At level 1 we find the responsibility to cater to the book- 
keeping resulting from the automatic backing store. At 
this level our next abstraction has been achieved; at all 
higher levels identification of information takes place in 
terms of segments, the actual storage pages that had lost 
their identity having disappeared from the picture. 

At level 2 we find the "message interpreter" taking care 
of the allocation of the console keyboard via which con- 

versations between the operator and any of the higher 
level processes can be carried out. The message interpreter 
works in close synchronism with the operator. When the 
operator presses a key, a character is sent to the machine 
together with an interrupt signal to announce the next 
keyboard character, whereas the actual printing is done 
through an output command generated by the machine 
under control of the message interpreter. (As far as the 
hardware is concerned the console teleprinter is regarded 
as two independent peripherals: an input keyboard and an 
output printer.) If  one of the processes opens a conversa- 
tion, it identifies itself in the opening sentence of the con- 
versation for the benefit of the operator. If, however, the 
operator opens a conversation, he must identify the 
process he is addressing, in the opening sentence of the 
conversation, i.e. this opening sentence must be inter- 
preted before it is known to which of the processes the 
conversation is addressed! Here lies the logical reason for 
the introduction of a separate sequential process for the 
console teleprinter, a reason that is reflected in its name, 
"message interpreter." 

Above level 2 it is as if each process had its private con- 
versational console. The fact that they share the same 
physical console is translated into a resource restriction of 
the form "only one conversation at a time," a restriction 
that is satisfied via mutual synchronization. At this 
level the next abstraction has been implemented; at higher 
levels the actual console teleprinter loses its identity. 
(If the message interpreter had not been on a higher level 
than the segment controller, then the only way to imple- 
ment it would have been to make a permanent reservation 
in core for it; as the conversational vocabulary might be- 
come large (as soon as our operators wish to be addressed 
in fancy messages), this would result in too heavy a per- 
manent demand upon core storage. Therefore, the vo- 
cabulary in which the messages are expressed is stored 
on segments, i.e. as information units that can reside on 
the drum as well. For this reason the message interpreter 
is one level higher than the segment controller.) 

At level 3 we find the sequential processes associated 
with buffering of input streams and unbuffering of out- 
put streams. At this level the next abstraction is effeeted, 
viz. the abstraction of the actual peripherals used that are 
allocated at this level to the "logical communication units" 
in terms of which are worked in the still higher levels. The 
sequential processes associated with the peripherals are of 
a level above the message interpreter, because they must 
be able to converse with the operator (e.g. in the case of 
detected malfunctioning). The limited number of periph- 
erals again acts as a resource restriction for the processes 
at higher levels to be satisfied by  mutual synchronizatioI~ 
between them. 

At level 4 we find the independent:user programs and 
at level 5 the operator (not implemented by us). 

The system structure has been described at length in 
order to make the next section intelligible. 
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D e s i g n  E x p e r i e n c e  

• The conception stage took a long time. During that 
period of time the concepts have been born in terms of 
which we sketched the system in the previous section. 
Furthermore, we learned the art of reasoning by which we 
could deduce from our requirements the way in which the 
processes should influence each other by their inutual 
synchronization so that these requirements would be met. 
(The requirements being that no information can be used 
before it has been produced, that no peripheral can be set 
to two tasks simultaneously, etc.). Finally we learned the 
art of reasoning by which we could prove that the society 
composed of processes thus mutually synchronized by 
each other would indeed in its time behavior satisfy all 
requirements. 

The construction stage has been rather traditional, 
perhaps even old-fashioned, that  is, plain machine code. 
Reprogramming on account of a change of specifications 
has been rare, a circumstance that must have contributed 
greatly to the feasibility of the "steam method." That the 
first two stages took more time than planned was some- 
what compensated by a delay in the delivery of the 
machine. 

In the verification stage we had the machine, during 
short shots, completely at our disposal; these were shots 
during which we worked with a virgin machine without 
any software aids for debugging. Starting at level 0 the 
system was tested, each time adding (a portion of) the 
next level only after the previous level had been thoroughly 
tested. Each test shot itself contained, on top of the (par- 
tial) system to be tested, a number of testing processes 
with a double function. First, they had to force the system 
into all different relevant states; second, they had to verify 
that the system continued to react according to specifica- 
tion. 

I shall not deny that the construction of these testing 
programs has been a major intellectual effort: to convince 
oneself that one has not overlooked "a relevant state" 
and to convince oneself that the testing programs generate 
them all is no simple matter. The encouraging thing is 
that (as far as we know!) it could be done. 

This fact was one of the happy consequences of the 
hierarchical structure. 

Testing level 0 (the real-time clock and processor allo- 
cation) implied a number of testing sequential processes 
on top of it, inspecting together that under all circum- 
stances processor time was divided among them accord- 
ing to the rules. This being established, sequential processes 
as such were implemented. 

Testing the segment controller at level 1 meant that all 
"relevant states" could be formulated in terms of se- 
quential processes making (in various combinations) 
demands on core pages, situations that could be provoked 
by explicit synchronization among the testing programs. 
At this stage the existence of the real-time clock--al- 
though interrupting all the time--was so immaterial that 
one of the testers indeed forgot its existence! 

By that time we had implemented the correct reaction 
upon the (mutually unsynchronized) interrupts from the 
reaI-time clock and the drum. If  we ihad not introduced 
the separate levels 0 and 1, and if we had not created a 
ternfinology (viz. that of the rather abstract sequential 
processes) in which the existence of the clock interrupt 
could be discarded, but had instead tried in a nonhierar- 
ehieal construction, to make the central processor react 
directly upon any weird time succession of these two 
interrupts, the number of "relevant states" would have 
exploded to sueh a height that exhaustive testing would 
have been an illusion. (Apart from that it is doubtful 
whether we would have had the means to generate them 
all, drum and clock speed being outside our control.) 

For the sake of completeness I must mention a further 
happy consequence. As Stated before, above level 1, core 
and drum pages have lost their identity, and buffering of 
input and output streams (at level 3) therefore occurs in 
terms of segments. While testing at level 2 or 3 the drum 
channel hardware broke down for some time, but t~sting 
proceeded by restricting the number of segments to the 
number that could be held in core. If building up the line 
printer output streams had been implemented as "dump- 
ing onto the drum" and the actual printing as "printing 
from the drum," this advantage would have been denied 
to us. 

C o n c l u s i o n  

As far as program verification is concerned I present 
nothing essentially new. In testing a general purpose object 
(be it a piece of hardware, a program, a machine, or a 
system), one cannot subject it to all possible cases: for a 
computer this would imply that one feeds it with all 
possible programs! Therefore one must test it with a set 
of relevant test cases. What is, or is not, relevant cannot be 
decided as long as one regards the mechanism as a black 
box; in other words, the decision has to be based upon the 
internal structure of the mechanism to be tested. I t  seems 
to be the designer's responsibility to construct his mecha- 
nism in such a way--i.e, so effectively structured--that 
at each stage of the testing procedure the number of rele- 
vant test cases will be so small that he can try them all and 
that what is being tested will be so perspicuous that he 
will not have overlooked any situation. I have presented a 
survey of our system because I think it a nice example of 
the form that such a structure might take. 

In my experience, I am sorry to say, industrial software 
makers tend to react to the system with mixed feelings. 
On the one hand, they are inclined to think that we have 
done a kind of model job; on the other hand, they express 
doubts whether the techniques used are applicable outside 
the sheltered atmosphere of a University and express the 
opinion that we were successful only because of the modest 
scope of the whole project. I t  is not my intention to under- 
estimate the organizing ability needed to handle a much 
bigger job, with a lot more people, but I should like to ven- 
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ture the opinion that the larger the project, the more essen- 
tial the structuring! A hierarchy of five logical levels 
might then very well turn out to be of modest depth, 
especially when one designs the system more consciously 
than we have done, with the aim that the software can be 
smoothly adapted to (perhaps drastic) configuration ex- 
pansions. 
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A P P E N D I X  

S y n c h r o n i z i n g  P r i m i t i v e s  

Explicit mutual synchronization of parallel sequential 
processes is implemented via so-called "semaphores." 
They are special purpose integer variables allocated in the 
universe in which the processes are embedded; they are 
initialized (with the value 0 or 1) before the parallel proc- 
esses themselves are started. After this initialization the 
parallel processes will access the semaphores only via two 
very specific operations, the so-called synchronizing primi- 
tives. For historical reasons they are called the P-opera- 
tion and the V-operation. 

A process, "Q" say, that performs the operation "P  
(sem)" decreases the value of the semaphore called "sem" 
by 1. If  the resulting value of the semaphore concerned 
is nonnegative, process Q can continue with the execution 
of its next statement; if, however, the resulting value is 
negative, process Q is stopped and booked on a waiting 
list associated with the semaphore concerned. Until fur- 
ther notice (i.e. a V-operation on this very same sema- 
phore), dynamic progress of process Q is not logically 
permissible and no processor will be allocated to it (see 
above "System Hierarchy," at level 0). 

A process, "R" say, that performs the operation "V  
(sem)" increases the value of the semaphore called "sem" 
by 1. If the resulting value of the semaphore concerned 
is positive, the V-operation in question has no further 
effect; if, however, the resulting value of the semaphore 
concerned is nonpositive, one of the processes booked 
on its waiting list is removed from this waiting list, i.e. 
its dynamic progress is again logically permissible and in 
due time a processor will be allocated to it (again, see 
above "System Hierarchy," at level 0). 

COROLLARY 1. I f  a semaphore value is nonpositive its 
absolute value equals the number of processes booked on its 

waiting list. 
COROLLARY 2. The P-operation represents the potential 

delay, the complementary V-operation represents the re- 

moval of a barrier. 
Note 1. P- and V-operations are "indivisible actions"; 
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i.e. if they occur "simultaneously" in parallel processes 
they are noninterfcring in the sense that they can be re- 
garded as being performed one after the other. 

Note 2. If the semaphore value resulting from a V- 
operation is negative, its waiting list originally contained 
more than one process. It  is undefined--i.e, logically im- 
material-which of the waiting processes is then removed 
from the waiting list. 

Note 3. A consequence of the mechanisms described 
above is that a process whose dynamic progress is permis- 
sible can only loose this status by actually progressing, 
i.e. by performance of a P-operation on a semaphore with a 
value that is initially nonpositive. 

During system conception it transpired that we used 
the semaphores in two completely different ways. The 
difference is so marked that, looking back, one wonders 
whether it was really fair to present the two ways as 
uses of the very same primitives. On the one hand, we 
have the semaphores used for mutual exclusion, on the 
other hand, the private semaphores. 

M u t u a l  E x c l u s i o n  

In the following program we indicate two parallel, cyclic 
processes (between the brackets " p a r b e g i n "  and "par-  
end")  that come into action after the surrounding uni- 
verse has been introduced and inigiahzed. 

begin semaphore mutex; mutex := 1; 
parbegin 

begin L1 : P (mutex ) ; critical section 1; 
remainder of cycle 1; go to L1 

end; 
begin L2: P mutex); critical section 2; V (mutex); 

remainder of cycle 2; go to L2 
end 

pareud 
end 

V (mutex) ; 

As a result of the P- and V-operations on "mutex" 
the actions, marked as "critical sections" exclude e~ch 
other mutually in time; the scheme given allows straight- 
forward extension to more than two parallel processes, 
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the maxinnun value of mutex equals l, the minimum value 
equals - ( n  - 1) if we have n parallel processes. 

Critical sections are used always, ~md only for the pur- 
pose of unambiguous inspection and modification of the 
state variables (allocated in the surrounding universe) 
that describe the current state of the system (as far as 
needed for the regulation of the ham~onious cooperation 
between the various processes). 

Private Semaphores 

Each sequential process has associated with it a num- 
ber of private semaphores and no other process will ever 
perform a P-operation on them. The universe initializes 
them with the value equal to 0, their maximum value 
equals 1, and their minhnum value equals - 1 .  

Whenever a process reaches a stage where the pemfis- 
sion for dynamic progress depends on current values of 
state variables, it follows the pattern: 

P(mutex) ; 
"inspection and modification of state variables including 

a conditional V(private semaphore)"; 
V (mutex) ; 
P(private semaphore). 

If the inspection learns that the process in question 
should eontinne, it performs the operation "V (private 
semaphore) " - - the  semaphore value then changes from 0 
to 1--other~4se, this V-operation is skipped, leaving to 
the other processes the obligation to perform this V- 
operation at a suitable moment. The absence or presence 
of this obligation is reflected in the finM values of the 
state variables upon leaving the critical section. 

Whenever a process reaches a stage where as a result 
of its progress possibly one (or more) blocked processes 
should now get permission to continue, it follows the pat- 
tern: 

P (mutex) ; 
"modification and inspection of state variables includ- 

ing zero or more V-operations on private semaphores 
of other processes"; 

V(mutex). 

By the introduction of suitable state variables and 
appropriate programming of the critical sections any 
strategy assigning peripherals, buffer areas, etc. can be 
implemented. 

The amount of coding and reasoning can be greatly 
reduced by the observation that in the two complemen- 
tary critical sections sketched above the same inspection 
can be performed by the introduction of the notion of "an 

tlnstabIe si/;uation," such as a free resider and a process 
needing a. reader. Whenever ~m unstable situation emerges 
it is removed (including one or more g-operations on 
private semaphores) in the very same critical section in 
which i{; has been created. 

Proving the t t a r m o n i o u s  Coopera t ion  

The sequential processes in the system east all be re~ 
garded as cyclic processes in which a certain neutral point 
can be marked, the so-called "homing position," in which 
all processes are when the system is at rest,. 

When a cyclic process leaves its homing position "it 
accepts a task"; when the task has been performed and 
not earlier, the process returns to its homing position. 
Each eyelie process has a specific task processing power 
(e.g. the execution of a user program or unbuffering a 
portion of printer output, etc.). 

The harmonious cooperation is mainly proved in roughly 
three stages. 

(1) I t  is proved that although a process performing a 
task may in so doing generate a finite number of tasks for 
other processes, a single initial task cannot give rise to an 
infinite number of task generations. The proof is simple as 
processes can only generate tasks for processes at lower 
levels of the hierarchy so that circularity is excluded. 
(If a process needing a segment from the drum has gener- 
ated a task for the segment controller, special precautions 
have been taken to ensure that the segment asked for 
remains in core at least until the requesting process has 
effectively accessed the segment concerned. Without this 
precaution finite tasks could be forced ~o generate an 
infinite number of tasks for the segment controller, and the 
system could get stuck in an unproductive page flutter.) 

(2) I t  is proved that it is impossible that all processes 
have returned to their honfing position while somewhere 
in the system there is still pending a generated but unae- 
eepted task. (This is proved via instability of the situation 
just described.) 

(3) I t  is proved that after the acceptance of an initial 
task all processes eventually will be (again) in their hom- 
ing position. Each process blocked in the course of task 
execution relies on the other processes for removal of the 
barrier. Essentially, the proof in question is a demon- 
stration of the absence of "circular waits": process P 
waiting for process Q waiting for process R waiting for 
process P. (Our usual term for the circular wait is "the 
Deadly Embrace.") In a more general society than our 
system this proof turned out to be a proof by induction 
(on the level of hierarchy, starting at the lowest level), as 
A. N. Habermann has shown in his doctoral thesis. 
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