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Abstract

Ensuring the correctness of multithreaded programs is difficult,
due to the potential for unexpected interactions between concurrent
threads. Much previous work has focused on detecting race condi-
tions, but the absence of race conditions does not by itself prevent
undesired thread interactions. We focus on the more fundamental
non-interference property of atomicity; a method is atomic if its ex-
ecution is not affected by and does not interfere with concurrently-
executing threads. Atomic methods can be understood according
to their sequential semantics, which significantly simplifies (formal
and informal) correctness arguments.

This paper presents a dynamic analysis for detecting atomicity vi-
olations. This analysis combines ideas from both Lipton’s theory
of reduction and earlier dynamic race detectors. Experience with
a prototype checker for multithreaded Java code demonstrates that
this approach is effective for detecting errors due to unintended in-
teractions between threads. In particular, our atomicity checker de-
tects errors that would be missed by standard race detectors, and
it produces fewer false alarms on benign races that do not cause
atomicity violations. Our experimental results also indicate that
the majority of methods in our benchmarks are atomic, supporting
our hypothesis that atomicity is a standard methodology in multi-
threaded programming.

Categories and Subject Descriptors: D.2.4 [Software Engineer-
ing]: Software/Program Verification–reliability; D.2.5 [Software
Engineering]: Testing and Debugging–monitors, testing tools; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs.

General Terms: Languages, Algorithms, Verification.
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1 Reliable Threads

Multiple threads of control are widely used in software develop-
ment because they help reduce latency, increase throughput, and
provide better utilization of multiprocessor machines. However,
reasoning about the behavior and correctness of multithreaded code
is difficult, due to the need to consider all possible interleavings of
the executions of the various threads. Thus, methods for specifying
and controlling the interference between threads are crucial to the
cost-effective development of reliable multithreaded software.

Much previous work on controlling thread interference has focused
on race conditions. A race condition occurs when two threads si-
multaneously access the same data variable, and at least one of the
accesses is a write [47]. In practice, race conditions are commonly
avoided by protecting each data structure with a lock [6]. This lock-
based synchronization discipline is supported by a variety of type
systems [21, 20, 19, 22, 8, 7, 28] and other static [49, 23, 10, 13]
and dynamic [47, 11, 51, 42, 45] analyses.

Unfortunately, the absence of race conditions is not sufficient to
ensure the absence of errors due to unexpected interference between
threads. As a concrete illustration of this limitation, consider the
following excerpt from the class java.lang.StringBuffer. All
fields of a StringBuffer object are protected by the implicit lock
associated with the object, and all StringBuffer methods should
be safe for concurrent use by multiple threads.

Excerpt from java.lang.StringBuffer

public final class StringBuffer {

public synchronized
StringBuffer append(StringBuffer sb) {

int len = sb.length();
... // other threads may change sb.length(),
... // so len does not reflect the length of sb
sb.getChars(0, len, value, count);
...

}

public synchronized int length() { ... }
public synchronized void getChars(...) { ... }
...

}

The append method shown above first calls sb.length(), which
acquires the lock sb, retrieves the length of sb, and releases the
lock. The length of sb is stored in the variable len. At this point,
a second thread could remove characters from sb. In this situation,



len is now stale [9] and no longer reflects the current length of sb,
and so the getChars method is called with an invalid len argu-
ment, and may throw an exception. Thus, StringBuffer objects
cannot be safely used by multiple threads, even though the imple-
mentation is free of race conditions.

Recent results have shown that subtle defects of a similar nature
are common, even in well-tested libraries [24]. Havelund reports
finding similar errors in NASA’s Remote Agent spacecraft con-
troller [1], and Burrows and Leino [9] and von Praun and Gross [51]
have detected comparable defects in Java applications. Clearly, the
construction of reliable multithreaded software requires the devel-
opment and application of more systematic methods for controlling
the interference between concurrent threads.

This paper focuses on a strong yet widely-applicable non-
interference property called atomicity. A method (or in general a
code block) is atomic if for every (arbitrarily interleaved) program
execution, there is an equivalent execution with the same overall
behavior where the atomic method is executed serially, that is, the
method’s execution is not interleaved with actions of other threads.

Atomicity corresponds to a natural programming methodology, es-
sentially dating back to Hoare’s monitors1 [32]. Many existing
classes and library interfaces already follow this methodology, our
experimental results indicate that the vast majority of methods in
our benchmarks are atomic.

In addition, atomicity provides a strong, indeed maximal, guaran-
tee of non-interference between threads. This guarantee reduces the
challenging problem of reasoning about an atomic method’s behav-
ior in a multithreaded context to the simpler problem of reasoning
about the method’s sequential behavior. The latter problem is sig-
nificantly more amenable to standard techniques such as manual
code inspection, dynamic testing, and static analysis.

In summary, atomicity is a widely-applicable and fundamental cor-
rectness property of multithreaded code. However, traditional test-
ing techniques are inadequate to verify atomicity. While testing
may discover a particular interleaving on which an atomicity viola-
tion results in erroneous behavior, the exponentially-large number
of possible interleavings makes obtaining adequate test coverage
essentially impossible.

This paper presents a dynamic analysis for detecting atomicity vio-
lations. For each code block annotated as being atomic, our analy-
sis verifies that every execution of that code block is not affected by
and does not interfere with other threads. Intuitively, this approach
increases the coverage of traditional dynamic testing. Instead of
waiting for a particular interleaving on which an atomicity violation
causes erroneous behavior, such as a program crash, the checker
actively looks for evidence of atomicity violations that may cause
errors under other interleavings. Our approach synthesizes ideas
from dynamic race detectors (such as Eraser’s Lockset algorithm)
and Lipton’s theory of reduction (described in Section 3.1). For
the StringBuffer class described above, our technique detects
that append contains a window of vulnerability between where
the lock sb is released inside length and then re-acquired inside
getChars, and produces the following warning, even on executions
where this window of vulnerability is not exploited by concurrent
threads.

1Monitors are less general in that they rely on syntactic scope
restrictions and do not support dynamically-allocated shared data.

Atomizer error report

StringBuffer.append is not atomic:
Atomic block entered
at StringBuffer.append(StringBuffer.java:445)
at BreakStringBuffer.main(BreakStringBuffer.java:21)

Atomic block commits at lock release:
at StringBuffer.length(StringBuffer.java:144)
at StringBuffer.append(StringBuffer.java:451)
at BreakStringBuffer.main(BreakStringBuffer.java:21)

Atomicity violation at lock acquire:
at StringBuffer.getChars(StringBuffer.java:326)
at StringBuffer.append(StringBuffer.java:455)
at BreakStringBuffer.main(BreakStringBuffer.java:21)

We have implemented this dynamic analysis in an automatic check-
ing tool called the Atomizer. The application of this tool to over
100,000 lines of Java code demonstrates that it provides an effective
approach for detecting defects in multithreaded programs, includ-
ing some defects that would be missed by existing race-detection
tools. In addition, the Atomizer produces fewer false alarms on be-
nign races that do not cause atomicity violations. Finally, our results
suggest that a large majority of the exported methods in our bench-
marks are atomic, which validates our hypothesis that atomicity is
a widely-used programming methodology.

We propose that the application of this technique during the devel-
opment, validation, and evolution of multithreaded programs will
provide multiple benefits, including:

• detecting atomicity violations that are resistant to both tradi-
tional testing and existing race detection tools,

• facilitating safe code re-use in multithreaded settings by vali-
dating atomicity properties of interfaces,

• simplifying code inspection and debugging, since atomic
methods can be understood according to their sequential se-
mantics, and

• improving concurrent programming methodology by encour-
aging programmers to document the atomicity guarantees pro-
vided by their code.

Dynamic atomicity checking complements existing static tech-
niques, such as the type system for atomicity developed by Flana-
gan and Qadeer [24], since most software is currently validated us-
ing a combination of static type checking and dynamic testing. For
large programs, a benefit of the dynamic approach is that it avoids
the overhead of type annotations or type inference, particularly for
legacy code. Combining dynamic atomicity checking with other
static checkers for multithreaded code, such as the Calvin-R tool
developed by Freund and Qadeer [26], would yield similar benefits.

The presentation of our results proceeds as follows. Section 2 in-
troduces a model of concurrent programs that we use as the basis
for our development. Section 3 describes our dynamic analysis for
atomicity. Section 4 describes how the Atomizer implements this
analysis, and Section 5 presents our experimental results. Section 6
discusses related work, and we conclude with Section 7.



2 Multithreaded Programs

To provide a formal basis for reasoning about interference between
threads, we start by formalizing an execution semantics for multi-
threaded programs. In this semantics, a multithreaded program con-
sists of a number of concurrently executing threads, each of which
has an associated thread identifier t ∈ Tid . The threads communi-
cate through a global store σ, which is shared by all threads. The
global store maps program variables x to values v. The global store
also records the state of each lock variable m ∈ Lock . If σ(m) = t,
then the lock m is held by thread t; if σ(m) = ⊥, then that lock is
not held by any thread.

In addition to operating on the shared global store, each thread also
has its own local store π containing data not manipulated by other
threads, such as the program counter of that thread. A state Σ =
(σ, Π) of the multithreaded system consists of a global store σ and
a mapping Π from thread identifiers t to the local store Π(t) of each
thread. Program execution starts in an initial state Σ0 = (σ0, Π0).

Domains

u, t ∈ Tid
x ∈ Var
v ∈ Value

m ∈ Lock
σ ∈ GlobalStore = (Var → Value) ∪ (Lock → (Tid ∪ {⊥}))
π ∈ LocalStore
Π ∈ LocalStores = Tid → LocalStore
Σ ∈ State = GlobalStore × LocalStores

2.1 Standard semantics

We model the behavior of each thread in a multithreaded program
as the transition relation T :

T ⊆ Tid × LocalStore × Operation × LocalStore

The relation T (t, π, a, π′) holds if the thread t can take a step from
a state with local store π, performing the operation a ∈ Operation
on the global store, yielding a new local store π′. The set of possible
operations on the global store includes: rd(x, v), which reads a
value v from a variable x; wr(x, v), which writes a value v to a
variable x; acq(m) and rel(m), which acquire and release a lock
m, respectively; begin and end, which mark the beginning and end
of an atomic block; and ε, the empty operation.

a ∈ Operation ::= rd(x, v) | wr(x, v)
| acq(m) | rel(m)
| begin | end | ε

The following relation σ →a
t σ′ models the effect of an operation

a by thread t on the global store σ. The global store σ[x := v] is
identical to σ except that it maps the variable x to the value v.

Effect of operations: σ →a
t σ′

[ACT READ]
σ(x) = v

σ →
rd(x,v)
t σ

[ACT WRITE]

σ →
wr(x,v)
t σ[x := v]

[ACT OTHER]
a ∈ {begin, end, ε}

σ →a
t σ

[ACT ACQUIRE]
σ(m) = ⊥

σ →
acq(m)
t σ[m := t]

[ACT RELEASE]
σ(m) = t

σ →
rel(m)
t σ[m := ⊥]

The following transition relation Σ → Σ′ performs a single step
of an arbitrarily chosen thread. We use →∗ to denote the reflexive-
transitive closure of →. A transition sequence Σ0 →∗ Σ models
the arbitrary interleaving of the various threads of a multithreaded
program, starting from the initial state Σ0. Although dynamic
thread creation is not explicitly supported by the semantics, it can
be modeled within the semantics in a straightforward way.

Standard semantics: Σ → Σ′

[STD STEP]
T (t, Π(t), a, π′) σ →a

t σ′

(σ, Π) → (σ′ ,Π[t := π′])

2.2 Serialized semantics

We assume the function A : LocalStore → Nat indicates the num-
ber of atomic blocks that are currently active, perhaps by exam-
ining the program counter and thread stack recorded in the local
store. This count should be zero in the initial state, and should only
change when entering or leaving an atomic block. We formalize
these requirements as follows:

• A(Π0(t)) = 0 for all t ∈ Tid ;

• if T (t, π, begin, π′) then A(π′) = A(π) + 1;

• if T (t, π, end, π′), then A(π) > 0 and A(π′) = A(π) − 1;

• if T (t, π, a, π′) for a 6∈ {begin, end}, then A(π) = A(π′).

The relation A(Π) holds if any thread is inside an atomic block:

A(Π)
def
= ∃t ∈ Tid . A(Π(t)) 6= 0

The following serialized transition relation 7→ is similar to the stan-
dard relation →, except that a thread cannot perform a step if an-
other thread is inside an atomic block. Thus, the serialized relation
7→ does not interleave the execution of an atomic block with in-
structions of concurrent threads.

Serialized semantics: Σ 7→ Σ′

[SERIAL STEP]
T (t, Π(t), a, π′) σ →a

t σ′ ∀u 6= t. A(Π(u)) = 0

(σ, Π) 7→ (σ′ ,Π[t := π′])

Reasoning about program behavior and correctness is much easier
under the serialized semantics (7→) than under the standard seman-
tics (→), since each atomic block can be understood sequentially,
without the need to consider all possible interleaved actions of con-
current threads. However, standard language implementations only
provide the standard semantics (→), which admits additional transi-
tion sequences and behaviors. In particular, a program that behaves
correctly according to the serialized semantics may still behave er-
roneously under the standard semantics. Thus, in addition to being
correct with respect to the serialized semantics, the program should
also use sufficient synchronization to ensure the atomicity of each
block of code that is intended to be atomic. Thus, for any program
execution (σ0, Π0) →

∗ (σ, Π) where ¬A(Π), there should exist an
equivalent serialized execution (σ0, Π0) 7→∗ (σ, Π). We call this
the atomicity requirement on program executions, and any execu-
tion of a correctly synchronized program should satisfy this require-



ment. (The restriction ¬A(Π) avoids consideration of partially-
executed atomic blocks.)

3 Dynamic Atomicity Checking

In this section, we present an instrumented semantics that dynam-
ically detects violations of the above atomicity requirement. We
start by reviewing Lipton’s theory of reduction [38], which forms
the basis of our approach.

3.1 Reduction

The theory of reduction is based on the notion of right-mover and
left-mover actions. An action b is a right-mover if, for any execution
where the action b performed by one thread is immediately followed
by an action c of a concurrent thread, the actions b and c can be
swapped without changing the resulting state, as shown below:

Commuting actions

Σ0 Σ2

c b
Σ′

1

Σ1Σ0 Σ2

b c

For example, if the operation b is a lock acquire, then the action c
of the second thread neither acquires nor releases the lock, and so
cannot affect the state of that lock. Hence the acquire operation can
be moved to the right of c without changing the resulting state, and
we classify each lock acquire operation as a right-mover.

Conversely, an action c is a left-mover if whenever c immediately
follows an action b of a different thread, the actions b and c can be
swapped, again without changing the resulting state. Suppose the
operation c by the second thread is a lock release. During b, the
second thread holds the lock, and b can neither acquire nor release
the lock. Hence the lock release operation can be moved to the left
of b without changing the resulting state, and we classify each lock
release operation as a left-mover.

Next, consider an access (read or write) to a variable that is shared
by multiple threads. If the variable is protected by some lock that is
held whenever the variable is accessed, then two threads can never
access the variable at the same time, and we classify each access to
that variable as a both-mover, which means that it is both a right-
mover and a left-mover. If the variable is not consistently protected
by some lock, we classify the variable access as a non-mover.

To illustrate how the classification of actions as various kinds of
movers enables us to verify atomicity, consider the first execution
trace in the diagram below. In this trace, a thread (1) acquires a
lock m, (2) reads a variable x protected by that lock, (3) updates x,
and then (4) releases m. The execution path of this thread is inter-
leaved with arbitrary actions b1, b2, b3 of other threads. Because
the acquire operation is a right-mover and the write and release op-
erations are left-movers, there exists an equivalent serial execution
in which the operations of this path are not interleaved with opera-
tions of other threads, as illustrated by the following diagram. Thus
the execution path is atomic.

Reduced execution sequence

Σ
′

1
Σ

′

2
Σ

′

3
Σ

′

4
Σ

′

5
Σ

′

6

acq(m) wr(x,1)rd(x,0) rel(m)
Σ7

Σ2 Σ3 Σ4 Σ5 Σ6 Σ7Σ1Σ0

Σ0

b3

b3b2

b1

b1

b2 wr(x,1)acq(m) rd(x,0) rel(m)

More generally, suppose a path through a code block contains a
sequence of right-movers, followed by at most one non-mover ac-
tion and then a sequence of left-movers. Then this path can be
reduced to an equivalent serial execution, with the same resulting
state, where the path is executed without any interleaved actions by
other threads.

3.2 Checking atomicity via reduction

We next leverage the theory of reduction to verify atomicity dy-
namically. In an initial presentation of our approach, we assume
the programmer provides a partial function

P : Var −→◦ Lock

that maps protected shared variables to associated locks; if P (x) is
undefined, then x is not protected by any lock.

We develop an instrumented semantics that only admits code paths
that are reducible, and which goes wrong on irreducible paths. To
record whether each thread is in the right-mover or left-mover part
of an atomic block, we extend the state space with an instrumenta-
tion store:

φ : Tid → {InRight , InLeft}

Each state is now a triple (σ, φ, Π). If A(Π(t)) 6= 0, then thread
t is inside an atomic block, and φ(t) indicates whether the thread
is in the right-mover or left-mover part of that atomic block. The
initial instrumentation store φ0 is given by φ0(t) = InRight for all
t ∈ Tid .

The following relation Σ ⇒a
t φ′ updates the instrumentation store

whenever thread t performs operation a. The rule [INS ACCESS
PROT] deals with an access to a protected variable while holding the
appropriate lock. This action is a both-mover and so the instrumen-
tation store φ does not change. Accesses to unprotected variables
are non-movers, and they can occur outside atomic blocks: see [INS
ACCESS OUTSIDE]. Unprotected accesses are also allowed inside
an atomic block, and they cause a transition from the right-mover
to the left-mover part of the atomic block: see [INS ACCESS COM-
MIT]. Acquire operations are right-movers, and they can occur out-
side or in the right-mover part of an atomic block, and conversely
for release operations.

The relation Σ ⇒a
t wrong holds if the operation a by thread t

would go wrong by accessing a protected variable without hold-
ing the correct lock [WRONG RACE], or by performing a non-left-
mover action in the left-mover part of an atomic block. Non-left-
mover actions include accessing an unprotected variable [WRONG
UNPROTECT] or acquiring a lock [WRONG ACQUIRE].



Instrumented operations: Σ ⇒a
t φ′ and Σ ⇒a

t wrong

[INS ACCESS PROT]
a ∈ {rd(x, v), wr(x, v)}

P (x) defined
σ(P (x)) = t

(σ, φ, Π) ⇒a
t φ

[INS ACCESS COMMIT]
a ∈ {rd(x, v), wr(x, v)}

P (x) undefined
A(Π(t)) 6= 0 φ(t) = InRight

(σ, φ,Π) ⇒a
t φ[t := InLeft ]

[INS ACCESS OUTSIDE]
a ∈ {rd(x, v), wr(x, v)}

P (x) undefined A(Π(t)) = 0
(σ, φ,Π) ⇒a

t φ

[INS ACQUIRE]

or
φ(t) = InRight
A(Π(t)) = 0

(σ, φ,Π) ⇒
acq(m)
t φ

[INS RELEASE]

(σ, φ,Π) ⇒
rel(m)
t φ[t := InLeft ]

[INS ENTER]

(σ, φ,Π) ⇒begin
t φ[t := InRight ]

[INS OTHER]
a ∈ {end, ε}

(σ, φ, Π) ⇒a
t φ

[WRONG RACE]
a ∈ {rd(x, v), wr(x, v)}

P (x) defined
σ(P (x)) 6= t

(σ, φ,Π) ⇒a
t wrong

[WRONG UNPROTECT]
a ∈ {rd(x, v), wr(x, v)}

P (x) undefined
A(Π(t)) 6= 0 φ(t) = InLeft

(σ, φ,Π) ⇒a
t wrong

[WRONG ACQUIRE]
A(Π(t)) 6= 0 φ(t) = InLeft

(σ, φ, Π) ⇒
acq(m)
t wrong

The instrumented transition relation Σ ⇒ Σ′ performs an instru-
mented step of an arbitrary thread; and Σ ⇒ wrong holds if a step
from Σ could violate the synchronization discipline or the atomicity
requirement.

Instrumented semantics: Σ ⇒ Σ′ and Σ ⇒ wrong

[INS STEP]
T (t, Π(t), a, π′)

σ →a
t σ′

(σ, φ,Π) ⇒a
t φ′

(σ, φ,Π) ⇒ (σ′ , φ′,Π[t := π′])

[INS WRONG]
T (t, Π(t), a, π′)

σ →a
t σ′

(σ, φ,Π) ⇒a
t wrong

(σ, φ,Π) ⇒ wrong

The following theorems state that the instrumented semantics is
identical to the standard semantics, except that the instrumented
semantics records additional information and may go wrong. In ad-
dition, any instrumented execution that does not go wrong satisfies
the atomicity requirement.

THEOREM 1 (EQUIVALENCE OF SEMANTICS).

1. If (σ, φ, Π) ⇒∗ (σ′, φ′, Π′), then (σ, Π) →∗ (σ′, Π′).

2. If (σ, Π) →∗ (σ′, Π′) then ∀φ either

(a) (σ, φ, Π) ⇒∗ wrong , or

(b) ∃φ′ such that (σ, φ, Π) ⇒∗ (σ′, φ′, Π′).

PROOF: By induction over derivations.

THEOREM 2 (INSTRUMENTED REDUCTION).
If (σ0, φ0, Π0) ⇒∗ (σ, φ, Π) and ¬A(Π) then (σ0, Π0) 7→∗

(σ, Π).

PROOF: See Appendix.

If the instrumented semantics admits a particular execution, then
not only is that execution reducible, but many similar executions
are also reducible. In particular, when an atomic block is being
executed, the only scheduling decision that affects program behav-
ior is when the commit operation (the transition from InRight to
InLeft) is scheduled. Scheduling decisions regarding when other
operations in the atomic block are scheduled are irrelevant, in that
they do not affect program behavior or reducibility. Hence, one test
run under our instrumented semantics can simultaneously verify the
reducibility of many executions of the standard semantics.

3.3 Inferring protecting locks

The instrumented semantics of the previous section relies on the
programmer to specify protecting locks for shared variables. To
avoid burdening the programmer, we next extend the instrumented
semantics to infer protecting locks, using a variant of Eraser’s Lock-
set algorithm [47]. We extend the instrumentation store φ to map
each variable x to a set of candidate locks for x, such that these
candidate locks have all been held on every access to x seen so far:

φ : (Tid → {InRight , InLeft}) ∪ (Var → 2Lock )

The initial candidate lock set for each variable is the set of all locks,
that is, φ0(x) = Lock for all x ∈ Var .

The relation Σ V
a
t φ′ updates the extended instrumentation store

whenever thread t performs operation a on the global store. The
rule [INS2 ACCESS] for a variable access removes from the vari-
able’s candidate lock set all locks not held by the current thread.
We use H(t, σ) to denote the set of locks held by thread t in state
σ:

H(t, σ) = {m ∈ Lock | σ(m) = t}

If the candidate lock set for a variable becomes empty, then all ac-
cesses to that variable should be treated as non-movers, but previ-
ous accesses may already have been incorrectly classified as both-
movers. For example, if φ(x) = {m} when thread t enters the
following function double, then the first access to x by thread t
will be classified as a both-mover. If, at that point, an action of a
concurrent thread causes φ(x) to become empty, the analysis will
classify the second access to x by t as a non-mover, but will not re-
classify the first access, and thus the analysis will fail to recognize
that double may not be reducible.

/*# atomic */ void double() {
synchronized (m) {

int t = x;

x = 2 * t;

}
}

Thus, to ensure soundness, the lock inference semantics does not
support unprotected variables, and instead requires every variable
to have a protecting lock. If the candidate lock set becomes empty,
then that state goes wrong, via [WRONG2 RACE].



Instrumented operations 2: Σ V
a
t φ′ and Σ V

a
t wrong

[INS2 ACCESS]
a ∈ {rd(x, v), wr(x, v)}

φ(x) ∩ H(t, σ) 6= ∅
(σ, φ,Π) Va

t φ[x := φ(x) ∩ H(t, σ)]

[INS2 ACQUIRE]

or
φ(t) = InRight
A(Π(t)) = 0

(σ, φ,Π) V
acq(m)
t φ

[INS2 ENTER]

(σ, φ,Π) V
begin
t φ[t := InRight ]

[INS2 OTHER]
a ∈ {end, ε}

(σ, φ, Π) Va
t φ

[INS2 RELEASE]

(σ, φ,Π) V
rel(m)
t φ[t := InLeft ]

[WRONG2 RACE]
a ∈ {rd(x, v), wr(x, v)}

φ(x) ∩ H(t, σ) = ∅
(σ, φ,Π) Va

t wrong

[WRONG2 ACQUIRE]
A(Π(t)) 6= 0
φ(t) = InLeft

(σ, φ,Π) V
acq(m)
t wrong

The relation Σ V Σ′ performs an instrumented step (with lock
inference) of an arbitrarily chosen thread; the relation Σ V wrong
describes states that go wrong.

Instrumented semantics 2: Σ V Σ′ and Σ V wrong

[INS2 STEP]
T (t, Π(t), a, π′)

σ →a
t σ′

(σ, φ,Π) Va
t φ′

(σ, φ,Π) V (σ′ , φ′,Π[t := π′])

[INS2 WRONG]
T (t, Π(t), a, π′)

σ →a
t σ′

(σ, φ,Π) Va
t wrong

(σ, φ,Π) V wrong

Like the previous instrumented semantics (⇒), the lock-inference
semantics (V) is equivalent to the standard semantics (→) except
that it only admits execution sequences that satisfy the atomicity
requirement. The following two theorems formalize these correct-
ness properties. Their proofs are analogous to those of Theorems 1
and 2.

THEOREM 3 (EQUIVALENCE OF SEMANTICS 2).

1. If (σ, φ, Π) V
∗ (σ′, φ′, Π′), then (σ, Π) →∗ (σ′, Π′).

2. If (σ, Π) →∗ (σ′, Π′) then ∀φ either

(a) (σ, φ, Π) V
∗ wrong , or

(b) ∃φ′ such that (σ, φ, Π) V
∗ (σ′, φ′, Π′).

THEOREM 4 (INSTRUMENTED REDUCTION 2).
If (σ0, φ0, Π0) V

∗ (σ, φ, Π) and ¬A(Π) then (σ0, Π0) 7→∗

(σ, Π).

Again, if the instrumented semantics admits a particular execution,
then all executions that are equivalent to that execution modulo ir-
relevant scheduling decisions are reducible.

4 Implementation

We have developed an implementation, called the Atomizer, of the
dynamic analysis outlined in the previous section. The Atomizer
takes as input a multithreaded Java [27] program and rewrites the

program to include additional instrumentation code. This instru-
mentation code calls appropriate methods of the Atomizer run-
time that implement the Lockset and reduction algorithms and issue
warning messages when atomicity violations are detected.

The Atomizer performs the instrumentation on Java source
code. This approach has a number of advantages: it supports
programmer-supplied annotations; it works at the high level of ab-
straction of the Java language; and it is portable across all Java vir-
tual machines. This approach does require source code, but the
instrumentation could also be performed at the bytecode level.

The target program can include annotations in comments to indicate
that a method is atomic, as in:

/*# atomic */ void getChars() {...}

The Atomizer supports additional annotations to specify that a code
block is atomic, to suppress spurious warnings, to ignore races on
specific fields, and so on. Alternatively, the Atomizer can apply
heuristics to decide which blocks should be checked for atomicity.
These heuristics are that (1) all methods exported by classes should
be atomic, and (2) all synchronized blocks and synchronized meth-
ods should be atomic. Exported methods are those that are public or
package protected. However, these heuristics are not used for main
and the run methods of Runnable objects, because these methods
typically are not atomic. Although these heuristic are quite simple,
they provide a reasonable starting point for identifying atomicity
errors in unannotated code.

In the rest of this section, we describe our Lockset and reduction
implementation, demonstrate how the tool identifies and reports er-
rors, and present several improvements to the basic algorithm.

4.1 Lockset algorithm

For each field of each allocated object, the Atomizer tracks a state
that reflects the degree to which the field has been shared among
multiple threads.

Lockset algorithm states for each allocated field

Modified
Shared

Local
Thread

Local(2)

Read
Shared

any thread r/w

first thread r/w

second thread r/w

second thread r/w

Thread

other thread
other thread

any thread

any thread
read

read

write

write

The following possible states of our algorithm are similar to the
states in earlier race detectors [47, 50]:

Thread-Local: The field has only been accessed by the object’s
creating thread.

Thread-Local (2): Ownership has transferred to a second thread,
and the field is no longer accessed by the creating thread. This
state supports common initialization patterns in Java [50].



Read-Shared: The field has been read, but not written, by multi-
ple threads.

Shared-Modified: The field has been read and written by multiple
threads, and a candidate lock set records which locks have been
consistently held when accessing this field. When entering this
state, the candidate set is initialized with all locks held by the
current thread.

When a thread accesses a field, the Atomizer run-time updates its
state according to the following transition diagram. (The Atomizer
does not instrument array accesses.)

4.2 Reduction algorithm

The instrumented semantics for lock inference in Section 3.3 goes
wrong on any race condition. Since programs frequently have be-
nign races, the Atomizer implements a relaxed version of this se-
mantics that accommodates such benign race conditions. If the
candidate lock set for a variable becomes empty, then subsequent
accesses to that variable are considered non-movers. Note that
previous accesses to that variable, which were earlier classified as
movers, will not be re-classified as non-movers, since storing a his-
tory of all variable accesses would be expensive. Thus, as men-
tioned in Section 3.3, these relaxed rules introduce a degree of un-
soundness. We believe this unsoundness rarely causes the Atom-
izer to miss atomicity violations in practice because it requires an
unlucky scheduling of operations and because the Atomizer will
report the problem on the next execution of the non-atomic code
fragment. The following rules adapt the relations Σ V

a
t φ′ and

Σ V
a
t wrong to express this relaxed semantics.

Relaxed instrumentation: Σ V
a
t φ′ and Σ V

a
t wrong

[INS2 RACE]
a ∈ {rd(x, v), wr(x, v)}

φ(x) ∩ H(t, σ) = ∅
φ(t) = InRight or ¬A(Π(t))

(σ, φ,Π) Va
t φ[t := InLeft , x := ∅]

[WRONG2 RACE]
a ∈ {rd(x, v), wr(x, v)}

φ(x) ∩ H(t, σ) = ∅
A(Π(t)) φ(t) = InLeft

(σ, φ,Π) Va
t wrong

To produce clear error messages like that in Section 1, the Atom-
izer can optionally capture stack traces (in the form of Exception
objects) at the entry and commit points of each atomic block, and
include these stack traces in error messages. Since the Atomizer
supports nested atomic blocks, a single operation could result in
multiple atomicity violations.

4.3 Extensions

The Atomizer may produce false alarms due to imprecisions in the
Lockset and reduction algorithms. We next present several im-
provements that eliminate many of these false alarms. We start
by revisiting the treatment of synchronization operations during
reduction. The classification of lock acquires and releases as
right-movers and left-movers, respectively, is correct but overly-
conservative in some cases. In particular, modular programs typ-
ically include redundant synchronization operations that we can
more precisely characterize as both-movers.

Re-entrant locks. Lock acquires are in general only right-movers
and not left-movers. However, Java provides re-entrant locks, and
a re-entrant lock acquire is a both-mover, because this operation
cannot interact with other threads. Similarly, a re-entrant release is
also a both-mover.

Thread-local locks. If a lock is used by only a single thread, ac-
quires and releases of that lock are both-movers.

Thread-local (2) locks. Adding another Thread-local state, as in
our Lockset algorithm, eliminates false alarms caused by initializa-
tion patterns in which one thread creates and initializes a protected
object, and then transfers ownership of both the object and its pro-
tecting lock to another thread.

Protected locks. Suppose each thread always holds some lock m1

before acquiring lock m2. In this case, two threads cannot attempt
to acquire m2 simultaneously, and so operations on the lock m2 are
also both-movers.

Write-protected data. Consider the following two methods, in
which the variable x is protected by a lock for all writes, but not
protected for reads.

/*# atomic */ int read() { return x; }
/*# atomic */ void inc() {

synchronized (lock) { x = x+1; }
}

If x is a 32-bit variable, then the read() method is atomic on a
sequentially-consistent machine, even though no protecting lock is
held. Despite the presence of such unprotected reads, the inc()
method is also atomic. In particular, when the lock is held, a read
of x is a both-mover, since no other thread can write to x without
holding the lock.

To handle examples like this one, we use a variant of the Lock-
set algorithm. For each field, this algorithm infers a lock set pair,
consisting of:

1. an access-protecting lock set, which contains locks held on
every access (read or write) to that field, and

2. a write-protecting lock set, which contains locks held on every
write to that field.

The access-protecting lock set is always a subset of the write-
protecting lock set. A field read is a both-mover if the current thread
holds at least one of the write-protecting locks; otherwise the read
is a non-mover. In contrast, a field write is a both-mover only if
the access-protecting lock set is non-empty; otherwise the write is
a non-mover.

Using these lock set pairs, the Atomizer can infer that inc() is
atomic, since it consists of a right-mover (the lock acquire); a both-
mover (the read of x); an atomic action (since the write of x does
not commute with concurrent reads of other threads); and a left-
mover (the lock release). In comparison, existing race-detection
tools would produce a false warning about the race condition in
read(), even though this race condition is benign and does not
affect the atomicity of either method.



Num. Num. Max. Num. Base Atomizer Atomicity
Benchmark Lines Threads Locks Locks Held Lock Set Pairs Time (s) Slowdown Warnings Errors
elevator 529 5 8 1 17 11.14 — 2 0
hedc 29,948 26 385 3 728 8.36 — 4 1
tsp 706 10 2 1 5 0.94 48.2 7 0
sor 17,690 4 1 1 2 0.70 7.3 0 0
moldyn 1,291 5 1 1 2 3.62 11.8 0 0
montecarlo 3,557 5 1 1 2 7.94 2.2 1 0
raytracer 1,859 5 5 1 7 5.96 36.6 1 1
mtrt 11,315 6 7 2 7 2.33 46.4 6 0
jigsaw 90,100 53 706 31 4,531 13.49 4.7 34 1
specJBB 30,490 10 262,000 6 340,088 18.01 11.2 4 0
webl 22,284 5 402,445 3 452,685 60.35 — 19 0
lib-java 75,305 39 816,617 6 986,855 96.5 — 19 4

Figure 1. Summary of test programs and performance.

5 Evaluation

This section summarizes our experience applying the Atomizer to
twelve benchmark programs. These programs include elevator,
a discrete event simulator for elevators [51]; hedc, a tool to access
astrophysics data from Web sources [51]; tsp, a Traveling Sales-
man Problem solver [51]; sor, a scientific computing program [51];
mtrt, a multithreaded ray-tracing program from the SPEC JVM98
benchmark suite [48]; jigsaw, an open source web server [54] con-
figured to serve a fixed number of pages to a crawler; specJBB, the
SPEC JBB2000 business object simulator [48] configured to pro-
cess a fixed number of transactions; moldyn, montecarlo, and
raytracer from the Java Grande benchmark suite [33]; webl, a
scripting language interpreter for processing web pages, configured
to execute a simple web crawler [34]; and lib-java. This last pro-
gram is an uninstrumented test harness (comprised of webl, jbb,
and hedc) that tests an instrumented version of the standard Java
libraries java.lang, java.io, java.net, and java.util. All
programs other than lib-java use uninstrumented libraries.

The Atomizer instrumented these programs using the heuristics de-
scribed in Section 4 (exported methods and synchronized blocks are
annotated as atomic). To ensure that our measurements would ac-
curately reflect the cost of the underlying analysis, the Atomizer did
not record stack histories for atomic block entry and commit points
for these tests. We performed the experiments on a Red Hat Linux
8.0 computer with dual 3.06GHz Pentium 4 Xeon processors and
2GB of memory. We used the Sun JDK 1.4.2 compiler and virtual
machine for all benchmarks except lib-java, for which we used
the Sun JDK 1.3.1 virtual machine due to compatibility problems.

Figure 1 presents statistics for the test programs using all the exten-
sions from Section 4.3. The number of locks and distinct lock set
pairs were relatively small for most programs, although the larger
programs used many objects as locks, in some cases several orders
of magnitude more than in comparably-sized C programs [47].

The slowdown incurred by the instrumentation varied from 2.2x to
roughly 50x. We only report slowdowns for compute-bound pro-
grams. Those programs with very little slowdown, such as sor
and montecarlo, spent most of the time in uninstrumented library
code. We believe that slowdowns of 20x–40x are representative for
most programs. However, we did not focus on efficiency in this
prototype, and there is much room for improvement. In particular,
static analyses have reduced the overhead of dynamic race detection
to under 50% [51], which suggests that similar performance could
be achieved when checking atomicity.

The “Atomicity Warnings” column in Figure 1 reports the number
of atomic blocks and methods that failed the Atomizer’s atomic-
ity requirements during test runs. Figure 2 shows the cumulative
benefit of the extensions from Section 4.3. The “Basic” column in-
dicates the number of warnings reported for each program using the
basic Lockset and reduction algorithms. The succeeding columns
show the number of warnings as each refinement from Section 4.3
is added. Cumulatively, these five refinements are quite effective:
they reduce the number of warnings by roughly 70% (from 341 to
97).

The last column in Figure 1 reports the number of atomicity vio-
lations that we consider errors, either because they could lead to
undesirable program behavior or because they violate documented
atomicity properties. Despite checking only mature software, the
Atomizer identified a number of potentially damaging errors. Half
of the errors were reported for atomic blocks with multiple data
races or a single data race followed by a lock acquire. The remain-
der contained a lock acquire operation after a lock release.

When testing the instrumented libraries, the Atomizer
warned of an atomicity violation in the synchronized method
PrintStream.println(String s), which uses two calls to
write the string s and the following new-line character to a stream
stored in the instance variable out. However, a different thread in
the system also wrote to out, potentially at the same time, which
could cause the output stream to be corrupted. A comparable
error in PrintWriter had been previously identified by a static
type system [24], but the Atomizer caught this defect with no
programmer intervention and pinpointed an exact location in the
program where the bug could manifest itself.

The Atomizer reported an error in jigsaw that was also found stat-
ically using a view consistency analysis [51]. In this case, a specific
interleaving could allow an entry to be added to a resource store af-
ter the store had been closed as part of the shutdown process. Other
errors included a known problem with Hashtable iterators in the
presence of concurrent modifications, and a case where multiple
threads updated a Calendar object through non-atomic methods.

In most programs, the warnings that did not indicate defects could
be suppressed by inserting a handful of annotations. A significant
number of false alarms were due to the overly-optimistic heuristics
employed by the Atomizer to identify atomic blocks. Fewer false
alarms would be produced when checking code with programmer-
inserted /*# atomic */ declarations. For example, atomicity vi-
olations were often reported on methods called near the top-level
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Figure 2. Warnings reported by the Atomizer under different configurations.

entry points of the program (the main and run methods), but many
such methods are not intended to be atomic and would not be la-
beled as atomic by a programmer. Other common sources of false
alarms include double-checked locking patterns, lazy initialization
patterns, and various caching idioms. These programming idioms
are notoriously problematic for analysis tools based on race detec-
tion and are discussed in more detail in [42]. Although some of
these practices, such as double-checked locking, are incompatible
with the Java memory model specification, we classify them as false
alarms since they do not cause problems in most current Java envi-
ronments [42].

During these tests, the Atomizer also recognized five fields with
benign race conditions that did not lead to atomicity violations. In
these cases, the Atomizer did not report spurious warnings to the
user, as would have been the case for race condition checkers.

Overall, the Atomizer found no potential atomicity violations in
over 90% of the methods annotated as atomic that were exercised
during our test runs. These statistics suggest that atomicity is a
fundamental design principle in many multithreaded systems, espe-
cially library classes and reusable application components.

6 Related Work

Lipton [38] first proposed reduction as a way to reason about con-
current programs without considering all possible interleavings. He
focused primarily on checking deadlock freedom. Doeppner [15],
Back [4], and Lamport and Schneider [37] extended this work
to allow proofs of general safety properties. Cohen and Lam-
port [12] extended reduction to allow proofs of liveness properties.
Misra [41] has proposed a reduction theorem for programs built
with monitors [32] communicating via procedure calls.

Eraser [47] introduced the Lockset algorithm for dynamic race
detection. This approach has been extended to object-oriented
languages [50] and has been improved for precision and perfor-
mance [11, 45]. O’Callahan and Choi [42] recently combined the

Lockset algorithm with a happens-before analysis to reduce false
alarms in a dynamic race detector for Java programs.

A number of static race detectors have also been developed.
Warlock [49] is a static race detection system for C programs.
ESC/Java [23] statically catches a variety of software defects, in-
cluding race conditions. Other approaches for static race and dead-
lock prevention are discussed in earlier papers [20, 19, 21]; these in-
clude model-checking [10, 13, 18], dataflow analysis [16], abstract
interpretation [44], and type systems for process calculi [35, 36].

In previous work, we produced a type system [21] that prevents vi-
olations of the lock-based synchronization discipline. Since then,
similar type systems have been developed that include a notion of
object ownership [8], and that target other languages such as Cy-
clone [28], a type-safe variant of C. Compared to dynamic tech-
niques, these static type systems provide stronger soundness guar-
antees and detect errors earlier in the development cycle, but require
more effort from programmer.

While some of these race detection tools have been quite effec-
tive, they may fail to detect atomicity violations and may yield false
alarms on benign race conditions that do not violate atomicity.

Bacon et al developed Guava [5], an extension to the Java language
with a form of monitor capable of sharing object state in a way that
prevents race conditions. The Atomizer would work very well for
languages like Guava, since language-enforced race freedom would
eliminate several common sources of false alarms observed while
checking programs written in languages that permit races.

In recent work, Flanagan and Qadeer developed a static type system
to verify atomicity in Java programs [25, 24]. In comparison to the
Atomizer, the type system provides better coverage and soundness
guarantees, but is less expressive (for example, it does not support
redundant locking). The type system also requires programmer-
inserted annotations that specify properties such as the locking dis-
cipline followed by the program.



This type system for atomicity was inspired by the Calvin-R [26]
static checking tool for multithreaded programs. Calvin-R supports
modular verification of multithreaded programs by annotating each
procedure with a specification; this specification is related to the
procedure implementation via abstraction relation that combines
the notions of simulation and reduction. In ongoing work, the no-
tions of reduction and atomicity are used by Qadeer et al [46] to
infer concise procedure summaries in an analysis for multithreaded
programs.

An alternative approach for verifying atomicity using model-
checking is being explored by Hatcliff et al [30]. In addition to us-
ing Lipton’s theory of reduction, they also investigate an approach
based on partial order reductions. Their experimental results sug-
gest that the model-checking approach for verifying atomicity is
feasible for unit-testing, where the reachable state space is smaller
than in integration-testing.

Atomicity is a semantic correctness condition for multithreaded
software. In this respect, it is similar to strict serializability [43],
a correctness condition for database transactions, and linearizabil-
ity [31], a correctness condition for concurrent objects. Verifying
that an object is linearizable requires full program verification. We
hope that our analysis for atomicity can be leveraged to develop
lightweight checking tools for related correctness conditions.

Artho et al [1] have developed a dynamic analysis tool to identify
one class of “higher-level races”. The analysis is based on the no-
tion of view consistency. Intuitively, a view is the set of variables
accessed within a synchronized block. Thread A is view consis-
tent with B if all views from the execution of A, intersected with
the maximal view of B, are ordered by subset inclusion. Viola-
tions of view consistency can indicate that a program may be using
shared variables in a problematic way. View consistency violations
can also be detected statically [52]. ESC/Java has been extended
to catch a different notion of higher-level races, where a stale value
from one synchronized block is used in a subsequent synchronized
block [9].

In recent work, Wang and Stoller [53] developed several algorithms
for checking atomicity dynamically, including the basic algorithm
described in Section 3.3. Their work focuses primarily on more ex-
pressive algorithms that can verify additional execution sequences
as serializable. They have not yet applied their algorithms to large
programs. Our experiments on large programs motivated the de-
velopment of several crucial improvements to the basic algorithm,
such as our support for redundant synchronization operations and
write-protected data, and has allowed us to validate the efficiency
and effectiveness of our approach.

While our tool checks atomicity, other researchers have proposed
using atomicity as a language primitive, essentially implementing
the serialized semantics 7→. Lomet [40] first proposed the use of
atomic blocks for synchronization. The Argus [39] and Avalon [17]
projects developed language support for implementing atomic ob-
jects. Persistent languages [2, 3] are attempting to augment atomic-
ity with data persistence in order to introduce transactions into pro-
gramming languages. A more recent approach to supporting atom-
icity uses lightweight transactions implemented in the run-time sys-
tem [29]. An alternative is to generate synchronization code auto-
matically from high-level specifications [14].

7 Conclusions

Developing reliable multithreaded software is notoriously difficult,
because concurrent threads often interact in unexpected and erro-
neous ways. Programmers try to avoid unintended interactions by
designing methods and interfaces that are atomic, but traditional
testing techniques are inadequate for verifying atomicity.

This paper presents a dynamic analysis designed to catch atomic-
ity violations would be missed by traditional testing or (static or
dynamic) race-detection techniques. This analysis has been imple-
mented and applied to a range of benchmark programs, and has
successfully detected atomicity violations in these programs. In ad-
dition, our experimental results suggest that over 90% of the meth-
ods in our benchmarks are atomic, which validates our hypothesis
that atomicity is a fundamental design principle in multithreaded
programs.

For future work, we hope to study hybrid atomicity checkers based
on a synthesis of the dynamic and static approaches. In one com-
bination, a static type-based analysis may verify many expected
race-freedom and atomicity properties, and the dynamic atomicity
checker could then focus on the unverified residue. For race detec-
tion, this hybrid approach has reduced the instrumentation overhead
by an order of magnitude [51, 42]; we expect comparable improve-
ments when checking atomicity.
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A Proof of Theorem 2

We start by defining two additional transition relations: Σ ⇒t Σ′,
which performs an instrumented step of thread t, and Σ |⇒ Σ′,
which is a serialized variant of the instrumented semantics ⇒.

Additional relations: Σ ⇒t Σ′ and Σ |⇒ Σ′

[INS STEP T]
T (t, Π(t), a, π′)

σ →a
t σ′

(σ, φ,Π) ⇒a
t φ′

(σ, φ,Π) ⇒t (σ′ , φ′, Π[t := π′])

[INS SERIAL STEP]

(σ, φ,Π) ⇒t (σ′, φ′,Π′)
∀u 6= t. A(Π(u)) = 0

(σ, φ,Π) |⇒ (σ′, φ′,Π′)

We introduce three state predicates N(t), R(t), and L(t), where
N(t) means that thread t is not in an atomic block, and R(t) and
L(t) mean that thread t is in the right-mover and left-mover parts
of an atomic block, respectively. The following Reduction Theo-
rem formalizes five conditions that are sufficient to conclude that
all atomic blocks are reducible.

The statement of this theorem uses some additional notation. For
two actions b, c ⊆ State×State , we say that b right-commutes with
c if for all Σ1, Σ2, Σ3, whenever (Σ1, Σ2) ∈ b and (Σ2, Σ3) ∈ c,
then there exists Σ′

2 such that (Σ1, Σ′

2) ∈ c and (Σ′

2, Σ3) ∈ b. The
action b left-commutes with the action c if c right-commutes with b.
We also define the left restriction ρ · b and the right restriction b · ρ
of an action b with respect to a set of states ρ ⊆ State .

ρ · b
def
= {(Σ, Σ′) ∈ b | Σ ∈ ρ}

b · ρ
def
= {(Σ, Σ′) ∈ b | Σ′ ∈ ρ}

THEOREM 5 (REDUCTION). Suppose that for all t, u ∈ Tid
with t 6= u:

A1. R(t), L(t), and N(t) form a partition of State .

A2. (L(t) · ⇒t · R(t)) is empty.

A3. (⇒t · R(t)) right-commutes with ⇒u.

A4. (L(t) · ⇒t) left-commutes with ⇒u.

A5. if Σ ⇒t Σ′, then Σ ∈ R(u) ⇔ Σ′ ∈ R(u), and Σ ∈
L(u) ⇔ Σ′ ∈ L(u).

Suppose further that Σ0 ⇒∗ Σ and Σ0 and Σ are in N(t) for all
t ∈ Tid . Then Σ0 |⇒∗ Σ.

PROOF: See [25].

We now leverage this theorem to show that every instrumented ex-
ecution trace is reducible.

RESTATEMENT OF THEOREM 2 (INSTRUMENTED REDUCTION)
If (σ0, φ0, Π0) ⇒∗ (σ, φ, Π) and ¬A(Π) then (σ0, Π0) 7→∗

(σ, Π).

PROOF: We define the predicates N(t), R(t), and L(t) necessary
to apply Theorem 5 (Reduction) as follows:

N(t)
def
= {(σ, φ, Π) | A(Π(t)) = 0}

R(t)
def
= {(σ, φ, Π) | A(Π(t)) 6= 0 ∧ φ(t) = InRight}

L(t)
def
= {(σ, φ, Π) | A(Π(t)) 6= 0 ∧ φ(t) = InLeft}

These predicates satisfy the following five requirements of Theo-
rem 5, for t, u ∈ Tid with t 6= u:

A1. They clearly partition State .

A2. (L(t) ·⇒t ·R(t)) is empty, since φ(t) is never set to InRight
while within an atomic block.

A3. (⇒t ·R(t)) right-commutes with ⇒u, since if R(t) holds af-
ter an action of thread t, then that action is either an ε-action, a
lock acquire, or a variable access while holding the protecting
lock, all of which right-commute with ⇒u.

A4. (L(t) · ⇒t) left-commutes with ⇒u, since if L(t) holds be-
fore an action of thread t, then that action is either an ε-action,
a lock release, or a variable access while holding the protect-
ing lock, all of which left-commute with ⇒u.

A5. if Σ ⇒t Σ′, then Σ ∈ R(u) ⇔ Σ′ ∈ R(u) and Σ ∈ L(u) ⇔
Σ′ ∈ L(u), since a step by thread t does not change φ(u) or
Π(u).

Hence by Theorem 5 (Reduction), (σ0, φ0, Π0) |⇒
∗ (σ, φ, Π), and

therefore (σ0, Π0) 7→
∗ (σ, Π).


