Parallel & Concurrent
Programming:

Concurrency iIn Java

Emery Berger
CMPSCI 691W - Spring 2006

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science



= Built-in OO-style support

= New concurrency operations
= Concurrency patterns

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science




VIOQE

= Every Java object has a lock
= Lock word

= Recursive:
« Thread ID
= Count

= Condition variables:
= Wait queues

= Space overhead, but convenient

= Can always lock an object with
synchronized

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science



class AtomicCounter {

private int count;

AtomicCounter (int n) {
count = n;

}

public void increment () {
synchronized (this) {

count++;

}
public int getCount () {

int c;

synchronized (this) {
c = count;

}

return c;

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science




class AtomicCounter ({
private int count;
AtomicCounter (int n) {
count = n;

}

synchronized public void increment () {

count++;

}
synchronized public int getCount () {

int c;
c = count,;

return c;

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science




= Also built-in: condition variables
= obj.wait ()

= obj.wait (long timeout)
= Releases monitor, sleeps
m obj.notify ()
= Wakes up one waiting thread
= obj.notifyAll ()
= Wakes up all waiting threads

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science



m extend Thread
= Implement run () method
= Invoke with start ()

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science




class CountUp extends Thread ({

public void run () {
counter.increment () ;
System.out .println ("count = " +

counter.getCount () ) ;

}

static AtomicCounter counter
= new AtomicCounter (0);

public class testme {
public static void main (String args[]) {
for (int 1 = 0; i < 100; i++) {
CountUp £ = new CountUp();
f.start ();

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science




' 4 ‘

= Previous slide: program has race
= (Example execution)

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science




class CountUp extends Thread ({
public void run () {
synchronized (counter) ({
counter.increment () ;
System.out .println ("count = " +
counter.getCount ());

}

static AtomicCounter counter
= new AtomicCounter (0);

public class testme2 {
public static void main (String args[]) {
for (int 1 = 0; i < 100; i++) {
CountUp £ = new CountUp();
f.start ();

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science




= Private local in Thread object =
thread-specific data

« Elegant, natural model

class CountUp extends Thread ({
public void run () {
synchronized (counter) ({
counter.increment () ;
System.out .println ("count = " +
counter.getCount ());

}
}

private AtomicCounter counter
= new AtomicCounter (0);

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science



= Java threads also have priority:

= Unlike UNIX, higher priority value =
higher priority

= |If any threads are runnable at priority
I, they run instead of any thread at
priority < I
= Fixed-priority scheduling
=« Caveat: not guaranteed to always hold

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science



nreaq |vi 2/1ar

= Other Thread methodes:
= setPriority (int)
= getPriority ()
= yield()
= Let other threads execute
= £.join ()
= Wait for thread t to complete

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science




' Pl '

= Extensive support for concurrency
« Ak.a. “Tiger”
= Introduced with Java 1.5 (“5")
= Built on Lea’s concurrency library

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science




‘)IC =2 Y
4 4

s Semaphore (int)

= Ordinary counting semaphore

= acquire (), tryAcquire (),
release ()

s Semaphore (int, True)
= Fair semaphore (FIFO)

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science



viucn IVIOFE

= Blocking & non-blocking queues
= Numerous flavors

= Concurrent hash maps
« “MT-hot”

= Copy-on-write arrays

= Exchanger

= Barriers

= Futures

= Thread pool support

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science



= LinkedBlockingQueue
= Blocks on put () if full, poll () if empty
= Implement pipeline across threads
= Producer-consumer pattern

= Example application:
= worker threads

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science



= ArrayBlockingQueue
=« Array implementation (bounded buffer)

= Example application:

= worker threads, without allocation
=« Fixed max number of tasks

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science




= SynchronousQueue
= Each put () waits for take ()
= Rendezvous channel

= Example application:
= worker threads
= Same number of threads as tasks

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science




= PriorityBlockingQueue
= Unbounded queue, based on heap
=« Head = item with lowest “priority”

= Example application:
concurrent simulation (priority = time)

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science



= DelayQueue
=« Time-based scheduling queue
= Only expired items may be removed

= Example applications:
= Manage objects with timeouts
= Simulator

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science




1=V

= CopyOnWriteArraylList

=« Mutations = copy entire backing array,
update particular item

s Cost?
= When would this be desirable?

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science



m

= Simple rendezvous

= Each thread gives object to
exchanger, and gets other

= yours =
exchanger.exchange (mine);

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science



= All threads reach sync point before
continuing: barrier

= Very common for scientific apps —
in loop: do work, reach barrier

for (int i = 0; i < 1000; i++) {
// do work
try {
barrier.await ();
} catch (Exception e) { .. }

}

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science



m

= FutureTask — asynchronously executes
some function to compute value
= Future operations:
= run () — starts execution
= get () — waits for future to complete,
= cancel () — aborts execution
= isDone () — check if future complete

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science



= Thread invocation & destruction
relatively expensive

= Instead: use pool of threads

= When new task arrives, get thread from
pool to work on it; block if pool empty

= Faster with many tasks
= Limits max threads

s ThreadPoolExecutor class

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science



UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science




