Parallel & Concurrent
Programming:

Cilk

Emery Berger

CMPSCI 691W
Spring 2006

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

- '

= So far:

= Programming with threads, etc.
= POSIX, Java

= Implicitly parallel programming
language: Flux

= This time:

= Cilk: explicitly parallel programming
language

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Decomposition
= into parallel threads
= Mapping
« of threads to processors
= Communication
= to move data across threads
= Synchronization
= among threads

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

VIOQE

Simplify software development
Architecture independence

= Lifespan of parallel architectures...
Understandable

Provide guaranteed performance

Ease of use

=« Conceal decomposition, mapping,
communication, & synchronization!

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

Fully abstract (Haskell, Unity)

Explicit parallelism (Multilisp, Fortran+, NESL)
+ explicit decomposition (CODE, Flux)

+ explicit mapping (Linda)

+ explicit communication (static dataflow)

+ synchronization (everything explicit)
(MPI, fork (), Java, POSIX threads, Ada, occam)
= message passing, shared memory, rendezvous

structure, communication: dynamic | limited

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

_

Explicit everything except mapping
Extension of C for parallel programming
= Shared memory only

Benefits:

= Provably-efficient work stealing scheduler
= “Performance guarantees”

=« Clean programming model

Implemented as source-to-source compiler
generating C

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

int main

(int argc,

{

char *argv][])

int n, result;
n atoi (argv([l]);
result fib(n);

printf (“Result:%$d\n”,
result) ;
return 0;

UNIVERSITY OF MASSACHUSETTS AMHERST e

int fib (int n)
{

if (n<2) return n;

else {
int x, y;
x = £fib (n-1);
y = fib (n-2);

return (x+y);

Department of Computer Science

cilk int main
(int argc, char *argv([])

{

int n, result;

n = atoi(argv[l1l]);

result = spawn fib(n);

sync;

printf (“Result:%$d\n”,
result) ;

return 0;

cilk int fib (int n)
{
if (n<2) return n;
else {
int x, y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y);

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Inlets

= Atomic execution

« Implicit in calls like x += spawn £ib(n-1)
= Abort

= Terminates work no longer needed
(e.g. for parallel search)

= Locking
= Access to shared data (sigh)

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Cilk
Runtime System

source-to-source c-compiler linking
5 il load
fib.cilk | " fibe fibo | fib
cilk2c gcce 1d

= Inserts calls to runtime system:
= Executes threads
= Distributes work (work-stealing scheduling)

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Work-First Principle

= Work = amount of time needed to
execute the computation serially

= Critical path length = execution time
on infinite number of processors

= Work-First Principle:

= Minimize scheduling overhead by
possibly increasing critical path

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

Work-First Principle

= T, = time on P processors:
« T,=T/P+O(T,)
= T, <T/P+c, T,

= Average parallelism (max speedup)
= Paverace = T/T.

= Parallel slackness

- PAVERAG E/ P

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Work-First Principle, Il

= Assumption of parallel slackness:
= Paverace/P > C.

= Combining these with inequality:
« T,=T/P

= Work overhead:
= C, =T/T

o TP ~ C1TS/ P

s Conclusion: Minimize work overhead

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

_Work.Stealing

= Ready deque of
threads
Workers treat deque
as stack, pushing and
popping calls onto
i wivwivwivy

Out of work: steal from top of another workers’ deque
= parents stolen before children
= asymptotically optimal — greedy schedule

Implemented using two versions of each procedure:
fast clone for common case & slow clone for steals

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

Run when procedure spawned
= Little support for parallelism

Whenever call is made:
= Save complete state
= Push onto bottom of deque
When call returns:
= Check to see if procedure was stolen
= If stolen, return immediately
= If not stolen, continue execution

Children never stolen = sync = no-op

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

cilk int fib (int n)
{
if (n<2) return n;
else {
int x, y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y);

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

int fib (int n)

fib_frame *f;

f = alloc(sizeof (*£f));
f->sig = fib_sig;

if (n<2) {

free(f, sizeof (*f));

return n;

}

else { .. }

frame pointer
allocate frame

initialize frame

free frame

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

11
12
13
14
15
16
17
18
19
20
21
22
23

int x, vy;

f->entry = 1; save PC
f->n = n; save live vars
* i) f; store frame pointer
push () ; push frame
x = fib (n-1); do C call
if (pop(x) == FAILURE) pop frame
return O; procedure stolen
< . > second spawn
; sync is free!
free(f, sizeof (*f)); free frame

return (x+vy);

bl

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Used when procedure stolen

=« Similar to fast clone,
but supports concurrent execution

= Restores program counter &
procedure state using copy stored on
deque

= Calling sync makes call to runtime
system to check on children’s status

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

The T.H.E. Protocol

= Deques held in shared memory
= Workers operate at bottom, thieves at top

= Must prevent race conditions where thief
and victim try to access same procedure
frame

= Locking deques would be expensive for
workers
« Violates work-first principle

s T.H.E Protocol removes overhead of
common case (no conflict)

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

The T.H.E. Protocol

Assumes only reads and writes atomic

Head of the deque is H, tail is T, and (T = H)

= Only thief can change H
= Only worker can change T

To steal, thieves must get the lock L.
= At most two processors operating on deque

Three cases of interaction:
= Two or more items on deque — each gets one
= No items on deque - both worker and thief fail

= One item on deque - either worker or thief
gets frame, but not both

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

= Both thief and worker assume they can get
a procedure frame and changeHor T

= Both thief and worker try to get frame:

= One or both will discover H > T,
depending on instruction order.

= If thief discovers (H > T):
= Backs off and restores H
= If worker discovers (H > T):

= Restores T, and then tries for the lock

= Inside lock, procedure can be safely popped if
still there

UNIVERSITY OF MASSACHUSETTS AMHERST » Department of Computer Science

T++;
unlock (L) ;

return FAILURE;

}

unlock (L) ;

}

return SUCCESS;

steal () { push ()
lock (L) ; { T++;
H++;
if (H > T) {
H=—;

unlock (L) ;
return FAILURE;
}
unlock (L) ;
return SUCCESS;

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

}

Empirical Re

x 8X Sun SMP:
average speed up of 6.2 vs. elision
(serial C non-threaded versions).

= Assumptions of work-first:

= Applications tested all showed high
amounts of “average parallelism”

= Work overhead small for most
programs

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Program T Work T P Ts 11 /T3
blockedmul 41.7 40.8 0.00114 35780 5.32 7.8
bucket 6.4 6.1 0.0318 192 1.02 6.3
cholesky 25.1 22.5 0.0709 317 3.68 6.5
cilksort 5.9 5.6 0.00503 1105 0.87 6.7
ff+ 13.0 12.5 0.00561 2228 1.92 6.5
fib 25.0 19.2 0.000120 160000 3.19 7.8
heat 63.3 63.2 0.19 331 8.32 7.6
knapsacky 112.0 1040 0000212 490566 14.3 7.8
knary 53.0 43.0 2.15 20 202 2.6
1u 23.1 23.0 0174 132 3.00 T.5
magic 6.1 55 0.0780 Tl 0.548 T
notempmul 40.4 39.8 0.0142 2803 4.96 5.0
plu 196.1 1941 1.753 112 30.8 6.4
queensy 216.0 2150 0.00156 137821 194 11.0
spaceml 30.3 38.9 0.000747 52075 4,91 5.0
strassen 4.2 41 0.154 27 0. 76T 5.5
rectmul 5.0 50 0.000578 K509 (.638 7.8
barnes-hut | 112.0 112.0 0.629 181 14.8 7.6

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

466 MHz
Alpha 21164
200 MH=
Pentium Pro
167 MHz - o THE protocol
Ultra SPARC I 0 frame allocation
W state saving
105 MHz e
MIPS R10000
0 1 2 3 &} 5 6 7
overheads

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

Experimental data -
Model T_1/P+ T inf —
Work bound ----
Cntical path bound ----- A

Mormalized Speedup
-

D_D‘I 1 1 1 1 1 111 I 1 1 1 1 11 11 | 1 1 1 L 1 1 L1
0.01 0.1 1 10
Normalized Machine Size

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

= Why use Cilk rather than threads?
= "Nondeterminator” (race detector)

= Are test programs representative?

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

UNIVERSITY OF MASSACHUSETTS AMHERST « Department of Computer Science

