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1 ldentify basic blocks
2 Build control-flow graph
3 Analyze CFG to find loops
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Control-Flow Analysis

= Motivating example: identifying loops
= majority of runtime
- focus optimization on loop bodies!

= remove redundant code, replace expensive
operations ) speed up program

i=1; J=1; k=1;
Al: if i > 1000 goto L1;

= Finding loops: for §42°, 18, 1,3 1000 goto L2}
4 A3:_i > 0 goto L3;
e g e,
= or harder o k5 KtekhiAgto AS:
L3: j =3 + I; goto A2;

(GOTOS) s L2: i =1 + 1; goto Al;
L1: halt
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Identifying Basic Blocks

= Input: sequence of instructions instr(i)
= ldentify leaders:
first instruction of basic block

= |terate: add subsequent instructions to basic
block until we reach another leader

Control-Flow Graphs

= Control-flow graph:
= Node: an instruction or sequence of
instructions (a basic block)

= Two instructions i, j in same basic block
iff execution of i guarantees execution of j

= Directed edge: potential flow of control
= Distinguished start node Entry
= First instruction in program
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Basic Block Partition Algorithm

leaders = 1 // start of program
for i =1 to |n] // all instructions
if instr(i) is a branch
leaders = leaders [ targets of instr(i)
worklist = leaders
While worklist not empty
x = First instruction in worklist
worklist = worklist — {x}
block(x) = {x}
for i = x + 1; i <= |n] & i not in leaders; i++
block(x) = block(x) [ {i}
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Basic Block Example

Leaders

EES IS
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Control-Flow Edge Algorithm
Input: block(i), sequence of basic blocks
Output: CFG where nodes are basic blocks

= 1 to the number of blocks
= last instruction of block(i)
if instr(x) is a branch
for each target y of instr(x),
create edge block i ¥ block y
if instr(x) is not unconditional branch,
create edge block i ¥ block i+l

for
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Control-Flow Edges

= Basic blocks = nodes
= Edges:

= Add directed edge between B1 and B2 if:
= Branch from last statement of B1 to first statement
of B2 (B2 is a leader), or

= B2 immediately follows B1 in program order and B1
does not end with unconditional branch (goto)
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Steps to Finding Loops

1 ldentify basic blocks
2 Build control-flow graph
s Analyze CFG to find loops
= Spanning trees, depth-first spanning trees
= Reducibility
= Dominators
= Dominator tree
= Strongly-connected components
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CFG Edge Example

Basic blocks
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Spanning Tree

= Build a tree containing every node and some
edges from CFG

procedure Span (V)
for w in Succ(v)
if not InTree(w)
add w, vIw to ST
InTree(w) = true
Span(w)

for v in Vdo inTree = false
InTree(root) = true
Span(root)
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CFG Edge Classification

Tree edge:
inCFG & ST

Advancing edge:
(v,w) not tree edge but w is
descendant of vin ST

Back edge:
(v,w): v=w or w is proper ancestor of
vin ST

Cross edge
(v,w): w neither ancestor nor
descendant of vin ST

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Reducibility

= Natural loops:
= no jumps into middle of loop
= entirely disjoint or nested

= Reducible: hierarchical, “well-structured”
= flowgraph reducible iff all loops in it natural
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Depth-first spanning tree

procedure DFST (v)
pre(v) = vnum++
Instack(v) = true
for w in Succ(v)
if not InTree(w)
add viw to TreeEdges
InTree(w) = true
DFST(w)
else if pre(v) < pre(w)
w to AdvancingEdges
else if nStack( 0
add viw to BackEdges

else
add viw to CrossEdges
Instack(v) = false

for v in Vdo inTree = false
vnum = 0 6
DFST(root)
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= Some languages only permit
procedures with reducible
flowgraphs (e.g., Java)
= “GOTO Considered Harmful”:
introduces irreducibility
=« FORTRAN
= C
s C++

= DFST (‘:IOG_S not f_ind unique

74

reducible graph irreducible graph

Dominance

= Node d dominates node i (“ddom i”)
if every path from Entry to i includes d
= Reflexive: adom a
= Transitive: adom b,bdom ¢ ¥ adom ¢
= Antisymmetric  adom b,bdom a ¥ b=a

= Immediate dominance:
= aidom biff adom b
£ no csuch that adom ¢, cdom b(c® a,¢ 2 b)
= |dom’s:
= each node has unigue idom
= relation forms tree
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Reducibility Example

header in irreducible graphs

Dominance Example

= Immediate and other
dominators:
(excluding Entry)
= aidomb; adoma,cdefg
= hidomec, bdomb,d,efg
= cidom d; cdomec,e f, g
= didome; ddomd,f, g
= ¢idom f, eidom g; edom e

control-flow graph dominator tree
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Dominance and Loops

= Redefine back edge as one whose head
dominates its tail

= Slightly more restrictive definition

= Now we can (finally) find natural loops!
= for back edgem ¥ n, natural loop is subgraph
of nodes containing n (loop header) and nodes
from whichm can be reached without passing
through n + connecting edges
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SCC Example

Maximal strongly-
connected component

connected component
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Strongly-Connected Components

= What about irreducible flowgraphs?

= Most general loop form = strongly-connected
component (SCC):

= subgraph S such that every node in S reachable from
every other node by path including only edges in S

= Maximal SCC:
= Sis maximal SCC if it is the largest SCC that contains S.
= Now: Loops = all maximal SCCs
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Conclusion

= Introduced control-flow analysis
= Basic blocks
= Control-flow graphs

= Discussed application of graph algorithms: loops
= Spanning trees, depth-first spanning trees
= Reducibility
= Dominators
= Dominator tree
= Strongly-connected components
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Computing Maximal SCCs

= Tarjan’s algorithm:

= Computes all maximal SCCs

= Linear-time (in number of nodes and edges)
= CLR algorithm:

= Also linear-time

= Simpler:

= Two depth-first searches and one “transpose”:
reverse all graph edges

= Unlike DFST, neither distinguishes inner loops
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Next Time

= Dataflow analysis
= Read ACDI Chapter 8, pp. 217-251
photocopies should be available soon
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