
1

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE

Advanced Compilers
CMPSCI 710
Spring 2003
Lecture 2

Emery Berger
University of Massachusetts, Amherst

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 2

Control-Flow Analysis

n Motivating example: identifying loops
n majority of runtime
ð focus optimization on loop bodies!

n remove redundant code, replace expensive
operations) speed up program

n Finding loops:
n easy…

for i = 1 to 1000
for j = 1 to 1000
for k = 1 to 1000
do something

1 i = 1; j = 1; k = 1;
2 A1: if i > 1000 goto L1;
3 A2: if j > 1000 goto L2;
4 A3: if k > 1000 goto L3;
5 do something
6 k = k + 1; goto A3;
7 L3: j = j + 1; goto A2;
8 L2: i = i + 1; goto A1;
9 L1: halt

n or harder
(GOTOs)

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 3

Steps to Finding Loops

1. Identify basic blocks
2. Build control-flow graph
3. Analyze CFG to find loops

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 4

Control-Flow Graphs

n Control-flow graph:
n Node: an instruction or sequence of

instructions (a basic block)
n Two instructions i, j in same basic block

iff execution of i guarantees execution of j

n Directed edge: potential flow of control
n Distinguished start node Entry

n First instruction in program

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 5

Identifying Basic Blocks

n Input: sequence of instructions instr(i)
n Identify leaders:

first instruction of basic block
n Iterate: add subsequent instructions to basic

block until we reach another leader

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 6

Basic Block Partition Algorithm

leaders = 1 // start of program
for i = 1 to |n| // all instructions

if instr(i) is a branch
leaders = leaders [targets of instr(i)

worklist = leaders
While worklist not empty

x = first instruction in worklist
worklist = worklist – {x}
block(x) = {x}
for i = x + 1; i <= |n| && i not in leaders; i++

block(x) = block(x) [{i}

2

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 7

Basic Block Example

1 A = 4
2 t1 = A * B
3 L1: t2 = t1/C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 – H
9 if t3 >= 0 goto L3
10 goto L1
11 L3: halt

Leaders

Basic blocks

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 8

Control-Flow Edges

n Basic blocks = nodes
n Edges:

n Add directed edge between B1 and B2 if:
n Branch from last statement of B1 to first statement

of B2 (B2 is a leader), or
n B2 immediately follows B1 in program order and B1

does not end with unconditional branch (goto)

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 9

Control-Flow Edge Algorithm

Input: block(i), sequence of basic blocks
Output: CFG where nodes are basic blocks

for i = 1 to the number of blocks
x = last instruction of block(i)
if instr(x) is a branch

for each target y of instr(x),
create edge block i ! block y

if instr(x) is not unconditional branch,
create edge block i ! block i+1

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 10

CFG Edge Example

1 A = 4
2 t1 = A * B
3 L1: t2 = t1/C
4 if t2 < W goto L2
5 M = t1 * k
6 t3 = M + I
7 L2: H = I
8 M = t3 – H
9 if t3 >= 0 goto L3
10 goto L1
11 L3: halt

Leaders

Basic blocks

AAA

BBB
CCC

DDD

EEE
FFF

GGG

A

B

C

D

E

F G

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 11

Steps to Finding Loops

1. Identify basic blocks
2. Build control-flow graph
3. Analyze CFG to find loops

n Spanning trees, depth-first spanning trees
n Reducibility
n Dominators
n Dominator tree
n Strongly-connected components

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 12

Spanning Tree

n Build a tree containing every node and some
edges from CFG

procedure Span (v)
for w in Succ(v)
if not InTree(w)
add w, v!w to ST
InTree(w) = true
Span(w)

for v in V do inTree = false
InTree(root) = true
Span(root)

A

B

C

D

E

F G

3

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 13

CFG Edge Classification

Tree edge:
in CFG & ST

Advancing edge:
(v,w) not tree edge but w is
descendant of v in ST

Back edge:
(v,w): v=w or w is proper ancestor of
v in ST

Cross edge:
(v,w): w neither ancestor nor
descendant of v in ST

A

B

C

D

E

F G

loop

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 14

Depth-first spanning tree
procedure DFST (v)
pre(v) = vnum++

InStack(v) = true
for w in Succ(v)
if not InTree(w)
add v!w to TreeEdges

InTree(w) = true
DFST(w)

else if pre(v) < pre(w)
add v!w to AdvancingEdges

else if InStack(w)
add v!w to BackEdges

else
add v!w to CrossEdges

InStack(v) = false

for v in V do inTree = false
vnum = 0
DFST(root)

A

B

C

D

E

F G

1

2

3

4

5

6 7

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 15

Reducibility

n Natural loops:
n no jumps into middle of loop
n entirely disjoint or nested

n Reducible: hierarchical, “well-structured”
n flowgraph reducible iff all loops in it natural

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 16

Reducibility Example

reducible graph irreducible graph

n Some languages only permit
procedures with reducible
flowgraphs (e.g., Java)

n “GOTO Considered Harmful”:
introduces irreducibility
n FORTRAN
n C
n C++

n DFST does not find unique
header in irreducible graphs

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 17

Dominance

n Node d dominates node i (“d dom i”)
if every path from Entry to i includes d
n Reflexive: a dom a
n Transitive: a dom b, b dom c ! a dom c
n Antisymmetric: a dom b, b dom a ! b=a

n Immediate dominance:
n a idom b iff a dom b

Æ no c such that a dom c, c dom b (c ≠ a, c ≠ b)
n Idom’s:

n each node has unique idom
n relation forms tree

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 18

Dominance Example

n Immediate and other
dominators:
(excluding Entry)
n a idom b; a dom a, c, d, e, f, g
n b idom c; b dom b, d, e, f, g
n c idom d; c dom c, e, f, g
n d idom e; d dom d, f, g
n e idom f, e idom g; e dom e

control-flow graph dominator tree

4

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 19

Dominance and Loops

n Redefine back edge as one whose head
dominates its tail
n Slightly more restrictive definition

n Now we can (finally) find natural loops!
n for back edge m ! n, natural loop is subgraph

of nodes containing n (loop header) and nodes
from which m can be reached without passing
through n + connecting edges

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 20

Strongly-Connected Components

n What about irreducible flowgraphs?
n Most general loop form = strongly-connected

component (SCC):
n subgraph S such that every node in S reachable from

every other node by path including only edges in S

n Maximal SCC:
n S is maximal SCC if it is the largest SCC that contains S.

n Now: Loops = all maximal SCCs

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 21

SCC Example

Entry

B1

B2

B3

Strongly-connected component

Maximal strongly-
connected component

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 22

Computing Maximal SCCs

n Tarjan’s algorithm:
n Computes all maximal SCCs
n Linear-time (in number of nodes and edges)

n CLR algorithm:
n Also linear-time
n Simpler:

n Two depth-first searches and one “transpose”:
reverse all graph edges

n Unlike DFST, neither distinguishes inner loops

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 23

Conclusion

n Introduced control-flow analysis
n Basic blocks
n Control-flow graphs

n Discussed application of graph algorithms: loops
n Spanning trees, depth-first spanning trees
n Reducibility
n Dominators

n Dominator tree
n Strongly-connected components

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 24

Next Time

n Dataflow analysis
n Read ACDI Chapter 8, pp. 217-251

photocopies should be available soon

