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More Data Flow Analysis

n Last time
n Program points
n Lattices
n Max fixed point
n Reaching definitions

n Today
n Iterative Worklist Algorithm

n actual algorithm, examples
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From Last Time:
Informal Description

n Define lattice to represent facts
n Attach meaning to lattice values
n Associate transfer function to each node
n Initialize values at each program point
n Iterate through program until fixed point
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Iterative Worklist Algorithm
for v 2 V

IN(v) = ∅
OUT(v) = Gen(v)

worklist Ã V
while (worklist ≠ ∅)

v Ã remove(worklist)
oldout(v) = OUT(v)
IN(v) = [p 2 PRED(v) OUT(p)
OUT(v) = GEN(v) [ (IN(v) – KILL(v))
if (oldout(v) ≠ OUT(v))

worklist Ã worklist [ SUCC(v)
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Iterative Worklist Algorithm:
Analysis

n Worst-case runtime
n Visit each basic block

n up to |N|
n compute successors
n perform set operations (bit vectors)

n Can we bound number of passes?
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Bounding Expected Runtime

n Order matters:
visit nodes in reverse postorder:
n Nodes visited roughly after its predecessors
n Intuition: accumulate as much info as possible 

before processing each node
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Reverse Postorder
visit(n):
visited(n) Ã true
for s 2 SUCC(n)
if not visited(s)
visit(s)

postorder(n) Ã count
count Ã count + 1

count Ã 1
for each node n
visited(n) Ã false

visit (entry)
for each node n
rPostorder(n) Ã NumNodes – postorder(n)
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Reverse Postorder:
Examples

1

2

3

4

visited(1) = 
visited(2) = 
visited(3) = 
visited(4) = 

postorder(1) = 
postorder(2) = 
postorder(3) = 
postorder(4) = 
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Reverse Postorder:
Examples

1

2

3

4 5

76

visited(1) = 
visited(2) = 
visited(3) = 
visited(4) =
visited(5) =
visited(6) =
visited(7) = 

postorder(1) = 
postorder(2) = 
postorder(3) = 
postorder(4) = 
postorder(5) =
postorder(6) =
postorder(7) =
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Loop Interconnectiveness

n Defined as d(G) =
maximum number of back edges on any 
acyclic path in graph G
n up to |N|
n but usually · 3 and often 1

n d(G) = 1 for reducible flow graphs

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 11

Loop Interconnectiveness:
Examples

1

2

3

4

d(G) = 

1

2

3 4

d(G) = 

1

2

3

4

d(G) = 
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Iterative Worklist Algorithm,
Modified
for v 2 V

IN(v) = ∅
OUT(v) = Gen(v)

worklist Ã rPostorder(V), changed Ã true
while (changed)

changed Ã false
for v 2 worklist

oldout(v) = OUT(v)
IN(v) = up 2 PRED(v) OUT(p)
OUT(v) = GEN(v) u (IN(v) – KILL(v))
if (oldout(v) ≠ OUT(v))
changed Ã true



3

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 13

Reaching Definitions Example
Entry

3: x=a*b;

5: if y > a+b

6: a = a+1;

Exit

4: y=a*b;

2: parameter b;

1: parameter a;

7: x = a+b;

postorder(1) = 
postorder(2) =
postorder(3) =
postorder(4) =
postorder(5) =
postorder(6) =
postorder(7) =

visited(1) = 
visited(2) =
visited(3) =
visited(4) =
visited(5) =
visited(6) =
visited(7) =
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For Reaching Definitions

n For reaching defs , u = [

n Gen(d: v = exp) = {d}
n “on exit from block d, generate new definition”

n Kill(d : v = exp) = defs(v)
n “on exit from block d, definitions of v are killed”

n Computing In(S) and Out(S)
n In(S) = [P i n PRED(S)Out(P)
n Out(S) = Gen(v ) [ (In(v) – Kill(v))
n Out(Entry ) = {}
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Reaching Definitions Example
Entry

3: x=a*b;

5: if y > a+b

6: a = a+1;

Exit

4: y=a*b;

2: parameter b;

1: parameter a;

7: x = a+b;

defs(x) = {3, 7} 
defs(y) = {4}
defs(a) = {1, 6}
defs(b) = {2}

reverse postorder =
{1, 2, 3, 4, 5, 6, 7}

changed =
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Iterative Worklist Algorithm:
Revised Analysis

n Stabilizes in at most d(G) + 2 iterations
n d(G) + 1 iterations to propagate data
n 1 iteration to detect stability
n as noted, d(G) usually · 3, often 1

n Each pass computes:
n O(E) meets (sets of size |defs|)
n O(N) other operations

n Effectively O(N) complexity
n Note: for backwards analysis, use postorder

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 17

Other Data Flow Problems

n Definitely 
uninitialized variables
n Gen(S) =
n Kill(S) =
n Out(Entry ) =
n u = 

n Possibly uninitialized
variables
n Gen(S) =
n Kill(S) =
n Out(Entry ) =
n u = 

a = 3
b = 5
if (a == 2)

c = 1
else

b = 2
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Next Time – Even More Data Flow!

n Live variable analysis
n backwards problem

n Constant propagation
n Supplementary paper available:

n Wegman & Zadeck, TOPLAS 1991


