Advanced Compilers
CMPSCI 710
Spring 2003
Yet more data flow analysis

Emery Berger
University of Massachusetts, Amherst

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Yet More Data Flow Analysis

= Last time:
= The iterative worklist algorithm
= Today:

= Live variable analysis
= backwards problem

= Constant propagation
= algorithms
= def-use chains

UNIVERSITY OF MASSACHUSETTS, AMHERST » DEPARTMENT OF COMPUTER SCIENCE

Project Stuff

= 1to 2 person teams

= Implement optimization/analysis in:
= Jikes RVM (IBM’s research Java compiler)
= Broadway (UTexas “metacompiler”)
= other (subject to approval)

= Duedates:
= 02/11/03: One-page project description.
= 02/25/03: 2-4 page project design.
= 03/25/03: Project implementation review.
= 04/29/03: Implementation due.
= 05/06-13/03: In-class presentations.
= 05/13/03: Project report.

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE.

Use, Def, Live Variables:

Live Variable Analysis

= Variable x is live at point p if:

= used before being redefined along some

path starting at p
= backwards problem

= Use(p):

= variables that may be used starting at p
= Def(p):

= variables that may be defined in p

UNIVERSITY OF My USETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Example
Use Def Live

1: x =12;

2: y = 14;

3: z=X;

4: y = 15;

5:q=z+2z

6: halt

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Defining Live Variable Analysis

Lattice elements =
= In(Exit) =
= Out(v) = up;, succ(s)ln(P)
= U=
In(v) = Use(v) u (Out(v) — Def(v))
x 2 Use(v) iff x may be used before defined
s Usg(d:v="..X.)=
= Use(d: if (...x...)) =
= X 2 Def(y) iff x defined before used in v
= Def(d: v=rexp) =

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Iterative Worklist Algorithm,
Live Variables

forv2v
ouUT(V) = £
IN(v) = Use(v)
worklist A V
while (worklist ! A)
for v 2 worklist
oldin(v) = IN(v)
OUT(V) = U, succy INCP)
IN(v) = Use(v) u (OUT(V) — Def(v))
if (oldin(v) ' IN(V))
worklist A worklist [PRED(V)

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Outline

= Today:
= Live variable analysis
= backwards problem
= Constant propagation

= algorithms
= def-use chains

UNIVERSITY Of ACHUSETTS, AMHERST » DEPARTMENT OF COMPUTER SCIENCE

Constant Propagation Lattice,
Revisited

>
= Meet rules:
. -2-1012.
maU>=a
?
mau?="7?

= constant u constant = constant (if equal)
= constant u constant = 7 (if not equal)

= [nitialization:
= Optimistic assumption:
= all variables unknown constant = >
= Pessimistic assumption:
= all variables not constant = ?

USETTS, AMHERST + DEPARTMENT O PUTER SCIENCE

Live Variables Example

use(l) = def(1) =
use(2) = def(2) =
: parameter a; use(3) = def(3) =
use(4) = def(4) =
: parameter b; use(5) = def(5) =
use(6) = def(6) =

use(7) = def(7) =

:if y > a+b

RTMENT OF COMPUTER SCIENCE

Constant Propagation

= Discovers constant variables & expressions
Propagates them as far forward as possible
= Uses:
= Evaluate expressions at compile-time
= Eliminates dead code
= e.g., debugging code
= Improves effectiveness of many optimizations

= Always awin

UNIVERSITY

Wegman & Zadeck:
TOPLAS 1991

= Relates &
improves on
previous constant
propagation

more
constants

conditional
constant

simple
constant

algorithms
" Sparsity faster faster
= improves speed more
= Conditional: sparse constants sparse
. . simple conditional
= incorporates info [SESSEERET T

from branches

S, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF

conditional
constant

Kildall’'s Algorithm

more
constants

‘conditional
constant. constant

= Worklist-based:
= add successors of Entry
= remove and examine a node from worklist
= evaluate expressions to compute new In and Out
= if the Out value changes,
= add successors to worklist
= Finds simple constants:
= no information about direction of branches
= one value per variable along each path

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

simple conditional
constant constant

Kildall’s Algorithm:
Example

sparse sparse
e simple conditional
constant constant

more
constants

UNIVERSITY Of USETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

conditional
constant

Kildall’s Algorithm:
Analysis

—— conditional
= Interms of N, E, V: =

= N = assignments + expressions in branches

= for convenience: N = nodes in CFG

= E =edgesin CFG

= V = variables
= lterations = 2 * V * | (in-edges)

= Runtime = iterations * operations

= Space = lattice values

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

simple. conditional
constant constant.

Reif & Lewis

= Kildall's (SC):
= at each node, computes value of all variables at
entry and produces set of values for all
variables at exit

more
constants

= Reif & Lewis (SSC):
= also finds simple constants, but faster
= Sparse representation
= original formulation based on def-use graph
= revised version based on SSA form

UNIVERSITY OF

Def-Use Graph

= Graph of def-use chains:
connection from definition site
(assignment) to use site along path in CFG
= does not pass through another definition
= Includes infeasible paths
= Misses some constants

5, AMHERST + DEPARTMENT TER SCIENCE

Def-Use Graph:

Example
iAl

jA2

if (=2)
i A
zAi

JTER SCIENCE

simple conditional
constant. constant

more
constants

= Worklist:
= Put root edges from def-use graph in worklist
= if def site in roots can be evaluated to constant,
assign that to variable, otherwise ?
= assign all other variables >
= remove def-join edges from worklist:
= propagate value of def to use using meet rules
= if value is lowered, add node to worklist

‘conditional
constant

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Reif and Lewis:
Example

UNIVERSITY OF M ETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

simple
constant.

Wegman & Zadeck:
Conditional Definition

more
m—— ‘conditional

= Conditional definition:
keeps track of conditional branches
= form of dead code elimination

= constant expr in branch
) mark appropriate branch as executable
= use symbolic execution to mark edges

= ignore non-executable edges at joins when
propagating constants

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Def-Use Chains: Problem

D> >
N

switch (k)
case X: a

D>

case y: b
case z: ¢ A i;

Next Time

= “SSA is a better way”
= Dominance & dominance frontiers
= Control dependence

= Read ACDI Chapter 8, pp. 252—258

UNIVERS) ETTS, AMHERST + DEPARTMENT Of

= worst-case size of graph = O(?)

UNIVERSITY G ETTS, AMHERST » DEPARTMENT OF COMPUTER SCIENCE

