
1

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE

Advanced Compilers
CMPSCI 710
Spring 2003

Yet more data flow analysis

Emery Berger
University of Massachusetts, Amherst

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 2

Project Stuff

n 1 to 2 person teams
n Implement optimization/analysis in:

n Jikes RVM (IBM’s research Java compiler)
n Broadway (UTexas “ metacompiler ”)
n other (subject to approval)

n Due dates:
n 02/11/03: One-page project description.
n 02/25/03: 2-4 page project design.
n 03/25/03: Project implementation review.
n 04/29/03: Implementation due.
n 05/06-13/03: In-class presentations.
n 05/13/03: Project report.

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 3

Yet More Data Flow Analysis

n Last time:
n The iterative worklist algorithm

n Today:
n Live variable analysis

n backwards problem

n Constant propagation
n algorithms
n def-use chains

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 4

Live Variable Analysis

n Variable x is live at point p if:
n used before being redefined along some

path starting at p
n backwards problem

n Use(p):
n variables that may be used starting at p

n Def(p):
n variables that may be defined in p

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 5

Use, Def, Live Variables:
Example

1: x = 12;
2: y = 14;
3: z = x;
4: y = 15;
5: q = z + z;
6: halt;

Use Def Live

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 6

Defining Live Variable Analysis

n Lattice elements =
n In(Exit) =
n Out(v) = uP in SUCC(S)In(P)
n u =

n In(v) = Use(v) u (Out(v) – Def(v))
n x 2 Use(v) iff x may be used before defined

n Use(d : v = …x…) =
n Use(d : if (…x…)) =

n x 2 Def(v) iff x defined before used in v
n Def(d : v = exp) =

2

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 7

Iterative Worklist Algorithm,
Live Variables
for v 2 V

OUT(v) = ∅
IN(v) = Use(v)

worklist Ã V
while (worklist ≠ ∅)
for v 2 worklist

oldin(v) = IN(v)
OUT(v) = up 2 SUCC(v) IN(p)
IN(v) = Use(v) u (OUT(v) – Def(v))
if (oldin(v) ≠ IN(v))

worklist Ã worklist [PRED(v)

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 8

Live Variables Example
Entry

3: x=a*b;

5: if y > a+b

6: a = a+1;

Exit

4: y=a*b;

2: parameter b;

1: parameter a;

7: x = a+b;

def(1) =
def(2) =
def(3) =
def(4) =
def(5) =
def(6) =
def(7) =

use(1) =
use(2) =
use(3) =
use(4) =
use(5) =
use(6) =
use(7) =

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 9

Outline

n Today:
n Live variable analysis

n backwards problem

n Constant propagation
n algorithms
n def-use chains

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 10

Constant Propagation

n Discovers constant variables & expressions
n Propagates them as far forward as possible
n Uses:

n Evaluate expressions at compile-time
n Eliminates dead code

n e.g., debugging code
n Improves effectiveness of many optimizations

n Always a win

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 11

Constant Propagation Lattice,
Revisited

n Meet rules:
n a u > = a
n a u ? = ?
n constant u constant = constant (if equal)
n constant u constant = ? (if not equal)

n Initialization:
n Optimistic assumption:

n all variables unknown constant = >

n Pessimistic assumption:
n all variables not constant = ?

>

… -2 -1 0 1 2 …
?

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 12

Wegman & Zadeck:
TOPLAS 1991

simple
constant

sparse
simple

constant

conditional
constant

sparse
conditional
constant

faster faster

more
constants

more
constants

n Relates &
improves on
previous constant
propagation
algorithms

n Sparsity
n improves speed

n Conditional:
n incorporates info

from branches

3

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 13

Kildall’s Algorithm

n Worklist-based:
n add successors of Entry
n remove and examine a node from worklist
n evaluate expressions to compute new In and Out
n if the Out value changes,

n add successors to worklist

n Finds simple constants:
n no information about direction of branches
n one value per variable along each path

simple
constant

sparse
simple

constant

conditional
constant

sparse
conditional
constant

faster faster

more
constants

more
constants

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 14

Kildall’s Algorithm:
Example

i Ã 1
j Ã 2
if (j == 2)

i Ã 3
z Ã i

i Ã 1

j Ã 2

if (j==2)

i Ã 3

z Ã i

simple
constant

sparse
simple

constant

conditional
constant

sparse
conditional
constant

faster faster

more
constants

more
constants

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 15

Kildall’s Algorithm:
Analysis

n In terms of N, E, V:
n N = assignments + expressions in branches

n for convenience: N = nodes in CFG
n E = edges in CFG
n V = variables

n Iterations = 2 * V * I (in-edges)
n Runtime = iterations * operations

=
n Space = lattice values

=

simple
constant

sparse
simple

constant

conditional
constant

sparse
conditional
constant

faster faster

more
constants

more
constants

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 16

Reif & Lewis

n Kildall’s (SC):
n at each node, computes value of all variables at

entry and produces set of values for all
variables at exit

n Reif & Lewis (SSC):
n also finds simple constants, but faster
n sparse representation
n original formulation based on def-use graph

n revised version based on SSA form

simple
constant

sparse
simple

constant

conditional
constant

sparse
conditional
constant

faster faster

more
constants

more
constants

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 17

Def-Use Graph

n Graph of def-use chains:
connection from definition site
(assignment) to use site along path in CFG
n does not pass through another definition

n Includes infeasible paths
n misses some constants

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 18

Def-Use Graph:
Example

i Ã 1
j Ã 2
if (j == 2)

i Ã 3
z Ã i

i Ã 1

j Ã 2

if (j==2)

i Ã 3

z Ã i

4

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 19

Reif and Lewis

n Worklist :
n Put root edges from def-use graph in worklist
n if def site in roots can be evaluated to constant,

assign that to variable, otherwise ?
n assign all other variables >
n remove def-join edges from worklist:

n propagate value of def to use using meet rules
n if value is lowered, add node to worklist

simple
constant

sparse
simple

constant

conditional
constant

sparse
conditional
constant

faster faster

more
constants

more
constants

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 20

Reif and Lewis:
Example

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 21

Wegman & Zadeck:
Conditional Definition

n Conditional definition :
keeps track of conditional branches
n form of dead code elimination
n constant expr in branch

) mark appropriate branch as executable
n use symbolic execution to mark edges
n ignore non-executable edges at joins when

propagating constants

simple
constant

sparse
simple

constant

conditional
constant

sparse
conditional
constant

faster faster

more
constants

more
constants

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 22

Def-Use Chains: Problem

switch (j)
case x: i Ã 1;
case y: i Ã 2;
case z: i Ã 3;

switch (k)
case x: a Ã i;
case y: b Ã i;
case z: c Ã i;

n worst-case size of graph = O(?)

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 23

Next Time

n “SSA is a better way”
n Dominance & dominance frontiers
n Control dependence

n Read ACDI Chapter 8, pp. 252—258

