Advanced Compilers
CMPSCI 710
Spring 2003

Dominators, etc.

Emery Berger
University of Massachusetts, Amherst

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Def-Use Chains: Problem

switch ()
case x: i A 1; break;
case y: i A 2; break;
case z: i A 3; break;
switch (k)
case x: a A i; break;
case y: b A i; break;
case z: ¢ A i; break;

Dominators, etc.

= Last time
= Live variable analysis
= backwards problem
= Constant propagation
= algorithms
= def-use chains
= Today
= SSA-form
= dominators

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE.

SSA Transformations

= New variable for each assignment, rename uses

v, A4
A vy+5

v, A6
A v, +7

7

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

SSA Form

= Static single assignment
= each assignment to variable gets unique name
= all uses reached by that assignment are renamed
= exactly one def per use

» Sparse program representation:
use-def chain = (variable, [use,, use,...])

UNIVERSITY OF My USETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

= Easy for straight-line code, but what about control flow?

F -Functions

= At each join, add special assignment:
“f function”:

= operands indicate which assignments reach join
= j,, operand = j, predecessor
= If control reaches join from j,, predecessor,
then value of f(R,S,...) is value of j,, operand

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

SSA Transformation,

SSA Example Il

F function

ifP ifpP
then v A 4 then v, A 4
else v A 6 else v, A 6

/* use v */

vi ATV, W)

vA1
while (v < 10)
vAv+1

/* use v3 */

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

vAI1l
if (v <10)
vAv+1
goto 2

A WN PR

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE.

switch ()
case x: i A 1; break;
case y: i A 2; break;
case z: i A 3; break;
switch (k)
case x: a A i; break;
case y: b A i; break;
case z: ¢ A i; break;

UNIVERSITY OF MASSACHUSETTS, AMHERST » DEPARTMENT OF COMPUTER SCIENCE

Placing F functions

= Safe to put f functions for every variable at
every join point

= But:
= inefficient— not necessarily sparse!
= |oses information

= Goal: minimal f nodes, subject to need

UNIVERSITY OF My USETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

F Function Requirement

= Node Z needs f function for V if:
= Z is convergence point for two paths
originating at different nodes

= both originating nodes contain assignments to
V or also need f functions for V

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Minimal Placement of F functions

= Naive computation of need is expensive:
must examine all triples in graph
= Can be done in O(N) time

= Relies on dominance frontier computation
[Cytron et al., 1991]

= Also can be used to compute control
dependence graph

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Control Dependence Graph

= ldentifies conditions affecting statement
execution
= Statement is control dependent on branch
if:
= one edge from branch
definitely causes statement to execute
= another edge can cause statement to be skipped

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Dominators
= Before we do dominance frontiers, we need to
discuss other dominance relationships

= x dominates y (x dom y)
= in CFG, all paths to y go through x
= Dom(v) = set of all vertices that dominate v
= Entry dominates every vertex

= Reflexive: adoma
= Transitive: adomb,bdmc ¥ adomc

= Antisymmetric adom b, bdma ¥ b=a

= Notice: in SSA form, a definition dominates its use

Control Dependence Example

if (a==1)
q A2

else

if (a==2)
goto B

goto A

A1l
c
d

w> o

A1l
A

ST + DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF MASSACHUSETTS, AMHERST » DEPARTMENT OF COMPUTER SCIENCE

Finding Dominators

= Dom(v) = {v} ApZPRED(v) Dom(p)
= Algorithm:

DOM(Entry) = {Entry}
for v 2 V-{Entry}
DOM(V) = V
repeat
changed = false
for n 2 V-{Entry}
olddom = DOM(n)
DOM(N) = {n} [(A, 2 prencny DOM(PD)
if DOM(n) * olddom
changed = true

SETTS, AMHERST » DEPARTMENT OF COMPUTER SCIENCE

Dominator Algorithm Example

DOM(Entry) = {Entry}
for v 2 V-{Entry}

Dom
DOM(V) = \
repeat
changed = false
Dom for n 2 V-{Entry}

olddom = DOM(n)
DOM(N) = {n} [(A, 2 preocny DOM(P))
if DOM(n) \neq olddom

Dom Changed = true

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT O PUTER SCIENCE

Other Dominators

= Strict dominators
= Dom!(v) = Dom(v) — {v}
= antisymmetric & transitive
= Immediate dominator
= ldom(v) = closest strict dominator of v

= d Idom v if
d Dom! v and 8w 2 Dom!(v): w Dom d

= antisymmetric
= |dom induces tree

CHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Inverse Dominators

= Dom?(v) = set of all vertices dominated by v
= reflexive, antisymmetric, transitive

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Dominator Tree

G (Exit) G (Exit)

UNIVERSITY USETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Finally: Dominance Frontiers!
= The dominance frontier DF(X) is set of all
nodes Y such that:

= X dominates a predecessor of Y

= But X does not strictly dominate Y

= DF(X) = {Y](9 P 2 PRED(Y): X Dom P)
£ q X Dom!Y)

USETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Inverse Dominator Example
. Dom(A&): {A}

Doy

gy, o

- Bagy, oo
- gy, (Ae0)
g, e
. Bgm(ll? :): {ABEF}

G Exit) Bgm,(%): {ABEG}

UNIVERSITY TTS, AMHERST + DEPARTMENT OF COMPUTER SCIENCE

Why Dominance Frontiers

= Dominance frontier criterion:
= if node x contains def of a, then any node z
in DF(x) needs af function for a

= intuition:
at least two non-intersecting paths converge
to z, and one path must contain node strictly
dominated by x

USETTS, AMHERST + DEPARTMENT OF COMPUTER SCIENC

Dominance Frontier Example
node y is in
dominance frontier
of node x if:
x dominates
predecessor of y
but does not strictly
dominate y

DF(X) = {Y|(9P 2 PRED(Y): X Dom P) £ g X Dom! Y)

OMPUTER SCIENCE

UNIVERSITY OF MASSACHUSETTS, AMHERST + DEPARTMENT O

Dominance Frontier Example

Donrt DF(v) = SUCC(Dom “1(v)) — Dom!"(v)
) where Domt(v) = Dom(y) — {v}

Donrt
SUCC(Donrl) SUCC(Dontl)
DF

DF

Dot
SucC(DontY)
Q Domt
suUCC(DomY)

G (Exit) [kt

DF

S, AMHERST « DEPARTMENT OF COMPUTER SCIENCE

Next Time

= Computing dominance frontiers
= Computing SSA form

