Advanced Compilers
CMPSCI 710
Spring 2003
Common Subexpression Elimination

Emery Berger

University of Massachusetts, Amherst

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Topics

= Last time

= Dynamic storage allocation, garbage collection
» This time

= Common subexpression elimination

= Value numbering

= Global CSE

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Determining Equivalence

= Goal: eliminate redundant computations

= Sparse conditional constant propagation:
= Eliminates multiple computations
= Eliminates unnecessary branches

i=2; i= 2
j=4i%2; _>j=4;
k=1i+ 2; k = 4;

= Can we eliminate equivalent expressions
without constants?

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Common Subexpression Elimination

= Recognizes textually identical (or
commutative) redundant computations

= Replaces second computation
by result of the first

t1 =x +y;
c=x+y; c = ti;
d=y +x d = ti;
:-1.=i>+c;_> t2=0b + c;
e=b + d; a = t2;

e = t2;

= How do we do this efficiently?

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Value Numbering

» Each variable, expression, and constant:
unique value number
= Same number = computes same value

= Based on information from within block

= Use hash functions to compute these

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Computing Value Numbers

= Assign values to variables
= a=3 = value(a) =3
m Map expressions to values
= a2 =b + 2 = value(a) = hash(+,value(b),2)
= Use appropriate hash function
= Plus: commutative
= hashc(+,value(b),2) = hashc(+,2,value (b))
= Minus: not commutative
= hash(-,value(b),2) # hash(-,2,value(b))

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Value Numbering Summary

m Forward symbolic execution of basic block

= Each new value assigned to temporary

= Preserves value for later use even if original variable
rewritten

= a=xty;a=atzb y
=Sa=xty;t=apa=atzb=¢
= Maps
= Var to Val
= specifies symbolic value for each variable
= Exp to Val
= specifies value of each evaluated expression
= Exp to Tmp
= specifies tmp that holds value of each evaluated
ression

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Computing Value Numbers,

Example

Original Basic Block New Basic Block
a=x+ty a=xty

b=atz tl=a
b =b+y b=atz

c=atz t2=b
Var-Val Exp-1’al ExboTwp b3: li:ry

3=

x -> vl vl+v2 - V3 vitv2 >t =g
y - v2 v3t+vd - v5 v3+v4 - t2

a - v3 v5+v2 - v6 v5+v2 — t3

7z _ v4

b - v

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Problems

m Algorithm has a temporary for each new value
= a=xty;tl =a;
= Introduces
= lots of temporaries
= lots of copy statements to temporaries
= In many cases, temporaries and copy statements are
unnecessary

= Eliminate with copy propagation and dead code
elimination

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Map Usage

= Var to Val
= Used to compute symbolic value of y and z when processing
statement of formx =y + z
= Exp to Tmp
= Used to determine which temp to use if value(y) + value(z)
previously computed when processing statement of form x =y
+2
= Exp to Val
= Used to update Var to Val when
= processing statement of the form x =y + z, and
= value(y) + value(z) previously computed

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Interesting Properties

= Finds common subexpressions even if they use
different variables in expressions
= y=atb;x=b;z=at+x
=y=atb;jt=y;x=b;jz=t

= Finds common subexpressions even if variable that
originally held the value was overwritten
= y=atb;x=b;y=1;z=atx
=Sy=athjt=yx=by=1Lz=t

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Global CSE

= Value numbering eliminates some subexpressions

but not all

read(i);
1 =2 % i;
if (i > 0) goto Li;
j=2=%i;
goto L2;

Li: k=2 * i;

L2:

= I’s value is not always equal to j’s or k’s value

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Available Expressions

= Global CSE requires

computation of

available expressions read(i);

for blocks b: 1=2%*i;

= Expressions on every if (i > 0) goto Li;
path in cfg from entry j=2%1i;
to b gote L2;

= No operand in Li: k= 2 % i;

expression redefined L2:
= Then use appropriate
temp variable for used
available expressions

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Available Expressions,

Example
. : = Build control-flow graph
|- .:: “ = Solve dataflow problem
d"f{: b = Initialize AEin(i) = universal
c=c*2; set of expressions
if (e > d) { . .
g-a*c = ABin(b) = M ¢ preayABoUL()
e = AHout(b) = EVAL(G) U
y (AEin(i) — KILL()

i=1+1;
¥ while (i > 10};

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Value Numbering Example

= Step 1: insert temps for conditionals

a =xory;

a=xory; b =xory;
b=xory; t = tz;

if !z goto Li; > if (t1) goto Li;
x = iz; x = lz;

c =x and ¥; c = x and y;
if (x and y) goto L2; t2 = x and y;

if (£2) goto L2;

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Available Expressions:
Dataflow Equations

= For a block b:
= AFEin(b) = expressions available on entry to b
= KILL(b) = expressions killed in b

= EVAL(b) = expressions defined in b and not
subsequently killed in b

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Next Time

= Partial Redundancy Elimination
= Read ACDI:
s Ch. 13

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Value Numbering Example

= Step 2:
= Add entries for each rhs
= Remove entries when dependent variable changes
statement | hash value
i: a = x or y;
2: b=xor y;

3:t = 1z;
4: if (t1) goto Li;
5: x = 1z;

6: ¢ = x and y;
7: €2 = x and y;
8: if (£2) goto LZ;

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

