
1

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science

Emery Berger
University of Massachusetts, Amherst

Advanced Compilers
CMPSCI 710
Spring 2003

Partial Redundancy Elimination

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 2

Topics

Last time
Common subexpression elimination

Value numbering
Global CSE

This time
Partial redundancy elimination

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 3

Partial Redundancy

Partial redundancy:
Expression computed more than once
on some path through control-flow graph

Partial-redundancy elimination (PRE):
Minimizes partial redundancies

Inserts and deletes computations (adds temps)

Each path contains no more (usually fewer) occurrences of
any computation than before

Dominates global CSE & loop-invariant code motion

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 4

PRE Example

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 5

PRE: Problem

Critical edge prevents redundancy elimination
Connects node with two or more successors to one with two
or more predecessors

Why is it a problem?

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 6

PRE: Solution

Split critical edges!
Insert empty basic blocks
Allows PRE to continue

2

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 7

Big Example:
Critical Edges

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 8

Big Example:
Critical Edges Removed

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 9

PRE Dataflow Equations

First formulation [Morel & Renvoise 79]
bidirectional dataflow analysis

Ugly
This version [Knoop et al. 92]

Based on “lazy code motion”
Places computations as late as possible
Same reductions as classic algorithm
Minimizes register pressure

Most complex dataflow problem we’ve ever seen…

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 10

Step 1: Local Transparency

Expression’s value is locally transparent in
a basic block if

No assignments to variables that occur in
expression

Set of locally transparent expressions:
TRANSloc(i)

Note: Ignore expressions in branches

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 11

Local Transparency

TransLoc – no assignments
to variables in expression

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 12

Step 2: Locally Anticipatable

Expression is locally anticipatable in basic
block if

There is computation of expression in block
Moving to beginning of block has no effect

No uses of expression nor assignments of variable in
block ahead of computation

Set of locally anticipatable expressions:
ANTloc(i)

3

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 13

Locally Anticipatable

ANTloc – computes expr,
can move to front

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 14

Step 3: Globally Anticipatable

Expression’s value globally anticipatable
on entry to basic block if

Every path from that point includes
computation of expression
Expression yields same value all along path

Set of globally anticipatable expressions:
ANTin(i)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 15

Globally Anticipatable Expressions:
Dataflow Equations

ANTout(exit) = ∅
ANTin(i) =
ANTloc(i) ∪ (TRANSloc(i) ∩ ANTout(i))

ANTout(i) =
∩j ∈ Succ(i) ANTin(j)

What’s the analysis direction?

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 16

Globally Anticipatable

ANTout(exit) = ∅
ANTin(i) =

ANTloc(i) ∪ (TRANSloc(i)
∩ ANTout(i))

ANTout(i) = ∩j ∈ Succ(i) ANTin(j)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 17

Step 4: Earliest Expressions

Expression is earliest at entrance to block if
No block from entry to block both:

Evaluates expression and
Produces same value as at entrance to block

Defined in terms of local transparency and globally
anticipatable expressions

EARLin(i)
= ∪j ∈ Pred(i) EARLout(j)
EARLout(i)
= inv(TRANSloc(i)) ∪ (inv(ANTin(i)) ∩ EARLin(i))
Initialize EARLin(entry) = Uexp

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 18

Early Expressions

EARLin(i) = ∪j ∈ Pred(i)
EARLout(j)

EARLout(i) =
inv(TRANSloc(i)) ∪
(inv(ANTin(i) ∩ EARLin(i))

4

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 19

PRE Transformation

We’ll cut to the chase:
Latest, Isolated expressions

Use earliest, globally anticipatable
OPT(i) = latest but not isolated
= LATEin(i) ∩ inv(ISOLout(i))
REDN(i) = used but not optimal
= ANTloc(i) ∩ inv(LATEin(i) ∪ ISOLout(i))

Insert fresh temporaries for OPT
expressions, replace uses in REDN

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 20

OPT, REDN, PRE

OPT(B1) = a+1
OPT(B2, B3a) = x*y
REDN(B1) = a+1
REDN(B2, B4, B7) = x*y

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 21

Conclusion

PRE
Subsumes global CSE & loop-invariant code
motion
Complex (but unidirectional) dataflow analysis
problem
Can only reduce number of computations and
register pressure

Next time
Register allocation: ACDI ch.16, pp. 481-524

