Advanced Compilers
CMPSCI 710
Spring 2003
Partial Redundancy Elimination

Emery Berger

University of Massachusetts, Amherst

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Partial Redundancy

= Partial redundancy:
= Fxpression computed more than once
on some path through control-flow graph

= Partial-redundancy elimination (PRE):
= Minimizes partial redundancies
= Inserts and deletes computations (adds temps)

» Each path contains no more (usually fewer) occurrences of
any computation than before

= Dominates global CSE & loop-invariant code motion

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Topics

m Last time
= Common subexpression elimination
= Value numbering
= Global CSE
m This time

= Partial redundancy elimination

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

PRE: Problem

l// some codd B = X¥yj

other cod

n Critical edge prevents redundancy elimination

= Connects node with two or more successors to one with two
or more predecessors

= Why is it a problem?

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

PRE Example

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

PRE: Solution

some cod t = x*y
= X*y] [= t;
~.
l// other codd b =t]

= Split critical edges!
= Insert empty basic blocks
= Allows PRE to continue

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Big Example:
Critical Edges

entry

z = a+1}
if (x>3

if (z<7)

PRE Dataflow Equations

= First formulation [Morel & Renvoise 79]
bidirectional dataflow analysis
= Ugly
= This version [Knoop et al. 92]
= Based on “lazy code motion”
= Places computations as late as possible
= Same reductions as classic algorithm
= Minimizes register pressure

= Most complex dataflow problem we’ve ever seen...

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Big Example:
Critical Edges Removed

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Local Transparency

entry
!

c = x*y;B7

Step 1: Local Transparency

= Expression’s value is locally transparent in
a basic block if

= No assignments to variables that occur in
expression

= Set of locally transparent expressions:
TRANSIoc(i)

= Note: Ignore expressions in branches

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

TransLoc — no assignments

exit to variables in expression

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Step 2: Locally Anticipatable

= Expression is locally anticipatable in basic
block if
= There is computation of expression in block
= Moving to beginning of block has no effect

= No uses of expression nor assignments of variable in
block ahead of computation

= Set of locally anticipatable expressions:

ANTloc(i)

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Locally Anticipatable

ANTloc — computes expr,
can move to front

Step 3: Globally Anticipatable

= Expression’s value globally anticipatable
on entry to basic block if

= Every path from that point includes
computation of expression

= Expression yields same value all along path

= Set of globally anticipatable expressions:

ANTin()

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Globally Anticipatable Expressions:
Dataflow Equations

= ANTout(exit) = [
= ANTin(i) =

ANTloc(i) U (TRANSIloc(i) N ANTout(i))
= ANTout(i) =

M € suce) ANTin(j)

= What’s the analysis direction?

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Globally Anticipatable

entry

ANTout(exit) = U
B7] ANTin) =
J, / ANTloc() U (TRANSloc(i)

N ANTout(i))
ANTout(i) = N ¢ sy ANTin(j)

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Step 4: Earliest Expressions

= Expression is earliest at entrance to block if
= No block from entry to block both:
= Evaluates expression and
= Produces same value as at entrance to block
= Defined in terms of local transparency and globally
anticipatable expressions
= EARLin(i)
= Ui ¢ preay EARLout(j)
= EARLout(i)
= inv(TRANSloc(i)) U (inv(ANTin(i)) N EARLin(i))
= Initialize EARLin(entry) = U,

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Early Expressions

entry
!

=%F EARLin() = U, ¢ pregg
B R e
EARLout() =
i inv(TRANSIoc(i) U
exit (xnv((rANT;n@ r(i);EARLln(i))

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

PRE Transformation

= We'll cut to the chase:
= Latest, Isolated expressions
= Use earliest, globally anticipatable
= OPT(i) = latest but not isolated
= LATEIin(i) N inv(ISOLout(i))
= REDN() = used but not optimal
= ANTloc(i) N inv(LATEin(i) U ISOLout(i))
= Insert fresh temporaries for OPT
expressions, replace uses in REDN

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Conclusion

= PRE

= Subsumes global CSE & loop-invariant code
motion

= Complex (but unidirectional) dataflow analysis
problem

= Can only reduce number of computations and
register pressure

= Next time
= Register allocation: ACDI ch.16, pp. 481-524

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

OPT, REDN, PRE

B87]{ OPT(BI) = a+1

OPT(B2, B3a) = x*y
REDN(BI) = a+1
REDN(B2, B4, B7) = x*y

exit

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

