Advanced Compilers
CMPSCI 710
Spring 2003

Register Allocation

Emery Berger

University of Massachusetts, Amherst

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Managing the Memory Hierarchy

= Programmer view: only two levels of memory
= Main memory (stores & loads)
= Disk (file 1/O)

= Two things maintain this abstraction:
= Hardware
= Moves data between memory and caches
= Compiler

= Moves data between memory and registers

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Register Allocation: Definition

= Register allocation assigns registers to values
= Candidate values:
= Variables
= Temporaries
= Large constants

= When needed, spill registers to memory

Important low-level optimization
= Registers are 2x — 7x faster than cache
» Judicious use = big performance improvements

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

The Memory Hierarchy

= Higher = smaller, faster, closer to CPU
= A real desktop machine (minc)

8K data & instructions; 2-cycle latency

512K; 7-cycle latency

1GB; 100 cycle latency

40 GB; 38,000,000 cycle latency (!)

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Overview

» Introduction

= Register Allocation
= Definition
= History
= Interference graphs
= Graph coloring
= Register spilling

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Register Allocation: Complications

w Explicit names
= Unlike all other levels of hierarchy
u Scarce
= Small register files (set of all registers)
= Some reserved by operating system
= cg., “BP”, “SP”...
u Complicated
= Weird constraints, esp. on CISC architectures

= Special registers: zero-load

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science




History

= As old as intermediate code
= Used in the original FORTRAN compiler (1950’s)

= Very crude algorithms

= No breakthroughs until 1981!

= Chaitin invented register allocation scheme based on
graph coloring
= Equivalence first noted by Cocke et al., 1971

= Simple heuristic, works well in practice

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Basic Register Allocation Idea

= Value in dead temporary not needed for
rest of the computation

= Dead temporary can be reused

m Basic rule:

w Temporaries t, and t, can share same register
if at any point in the program at most one of
t,ort,is live !

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Register Allocation Example

= Consider this program with six variables:
=c+d
+b

f -1
with the assumption that a and e die after use
= Temporary a can be “reused” aftere :=a + b
= Same with temporary e

a:

» Can allocate a, ¢, and f all to one register (r,):

=, T
=ty

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Register Interference Graph

= Two temporaries live simultaneously

» Cannot be allocated in the same register

= Construct register interference graph
= Node for each temporary
= Undirected edge between t, and t,
= If live simultaneously at some point in the program

= Two temporaries can be allocated to same register
if no edge connects them

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Algorithm: Part |

= Compute live vatiables for each point:
{G,C,f} __,|a=b+c /{b,c,f}

iz -a

{c.df}— ei=d+f

{ce}—

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Register Interference Graph:
Example

= For our example:

{b.c.f}

{acf} f b
{c.d.f}

{cde.f}

{ce} c
{b.cef}

{c.f} d

{b}

a

b and c cannot be in the same register
b and d can be in the same register

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science




Register Interference Graph:
Properties

m Extracts exactly the information needed to
characterize legal register assignments
= Gives global picture of register requirements
= Over the entire flow graph
» After RIG construction, register allocation is
architecture-independent

= Add additional edges in RIG to encode architectural
intricacies

= Now what do we do with this graph?

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Register Allocation
Through Graph Coloring

= In our problem, colors = registers

= We need to assign colors (registers) to graph
nodes (temporaties)

= Let k = number of machine registers

u If the RIG is k-colorable, there’s a register
assighment that uses no more than k
registers

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Graph Coloring

= Graph coloring:
assignment of colors to nodes
= Nodes connected by edge have different colors

= Equivalently: no adjacent nodes have same
color

= Graph k-colorable =
can be colored with k colots

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Graph Coloring Example,
Continued

= Under this coloring the code becomes:

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Graph Coloring Example

= Consider the example RIG

ar,
b rs

There is no coloring with fewer than 4 colors
There are 4-colorings of this graph

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Computing Graph Colorings

= How do we compute coloring for
interference graph?

= NP-hard!

= For given # of registers,
coloring may not exist

= Solution

= Use heuristics (here, Briggs)

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science




Graph Coloring Heuristic

= Observation: “degree < k rule”
= Reduce graph:
= Pick node t with < k neighbors in RIG
= Eliminate t and its edges from RIG
= If the resulting graph has k-coloring,
so does the original graph

. Why?
= Letc,,...,c, be colors assigned to neighbors of t in
reduced graph

= Since n <k, we can pick some color for t different from
those of its neighbors

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Graph Coloring Example (1)

m Start with the RIG and with k = 4:

a

Stack: {3

d

= Remove 2 and then d

Graph Coloring Heuristic,
Continued

= Heuristic:
= Pick node t with fewer than k neighbors
= Put t on a stack and remove it from the RIG
= Repeat until the graph has one node

= Start assigning colors to nodes on the stack
(starting with the last node added)

= At each step, pick color different from those
assigned to already-colored neighbors

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Graph Coloring Example (2)

= Now all nodes have fewer than 4 neighbors and
can be removed: ¢, b, e, f

b
f

Stack: {d, a}

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Graph Coloring Example (2)

= Start assigning colors to: f, e, b, ¢, d, a
rz

rs

Py

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

What if the Heuristic Fails?

= What if during simplification we get to a
state where all nodes have k or more
neighbors ?

= Example: try to find a 3-coloring of the RIG:

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science




What if the Heuristic Fails?

= Remove a and get stuck (as shown below)
= Pick a node as a candidate for spilling

= Assume that f is picked

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

What if the Heuristic Fails?

= Remove f and continue the simplification

= Simplification now succeeds: b, d, e, ¢

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

What if the Heuristic Fails?

= During assignment phase, we get to the point when
we have to assign a color to f
= Hope: among the 4 neighbors of f,
we use less than 3 colors = optimistic coloring
2 s
1

r2

rs

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Spilling

= Optimistic coloring failed = must spill temporary £
= Allocate memory location as home of f

= Typically in current stack frame
= Call this address fa

= Before each operation that uses f, insert
f:=load fa

= After each operation that defines f, insert
store f, fa

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Spilling Example

= New code after spilling f

o
+
o

® o o
'
o

a
+

WO
)
=3

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Recomputing Liveness Information

= New liveness information after spilling:

{G,Ck}_’ i=b+c /{b,C/h
{cdf}— ;.

{c.d.f} _Acdeh




Recomputing Liveness Information

= New liveness info almost as before, but:
tis live only
= Between f:= load fa and the next instruction

= Between store f, fa and the preceding
instruction

= Spilling reduces the live range of f
= Reduces its interferences
= Results in fewer neighbors in RIG for f

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Spilling, Continued

= Additional spills might be required before
coloring is found

= Tricky part: deciding what to spill
= Possible heuristics:
= Spill temporaries with most conflicts
= Spill temporaries with few definitions and uses
= Avoid spilling in inner loops

= All are “correct”

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Recompute RIG After Spilling

= Remove some edges of spilled node
= Here, f still interferes only with ¢ and d
= Resulting RIG is 3-colorable

a

UNIVERSITY OF MASSACHUSETTS, AMHERST « Department of Computer Science

Next Time

= Scheduling
= Read ACDI Chapter 17

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science

Conclusion

= Register allocation: “must have”
optimization in most compilers:
= Intermediate code uses too many temporaries

= Makes a big difference in performance

= Graph coloring:

= Powerful register allocation scheme

UNIVERSITY OF MASSACHUSETTS, AMHERST » Department of Computer Science




