
Customization: Optimizing Compiler Technology for SELF, a 
Dynamically-Typed Object-Oriented Programming Language* 

Craig Chambers 
David Ungar 

Stanford University 

Abstract 
Dynamically-typed object-oriented languages please 
programmers, but their lack of static type information 
penalizes performance. Our new implementation tech- 
niques extract static type information from declaration- 
free programs. Our system compiles several copies of a 
given procedure, each customized for one receiver type, 
so that the type of the receiver is bound at compile 
time. The compiler predicts types that are statically 
unknown but likely, and inserts run-time type tests to 
verify its predictions. It splits calls, compiling a copy 
on each control path, optimized to the specific types on 
that path. Coupling these new techniques with compile- 
time message lookup, aggressive procedure inlining, and 
traditional optimizations has doubled the performance 
of dynamically-typed object-oriented languages. 

1. Introduction 
Object-oriented languages contain a number of features 
that make programs easier to write but slower to run. 
Chief among these is message passing, in which proce- 
dures (called methods) are invoked indirectly, based on 
the type (or class) of the first argument (the 
receiver); * * message passing can be significantly more 
expensive to implement than normal procedure calls. To 
take full advantage of the extra level of indirection for 
procedure calls, object-oriented programs tend to be 
composed of many small procedures, increasing the rela- 
tive overhead of procedure calls and further aggravating 
the implementation problem. In addition, pure object- 
oriented languages use message passing for all computa- 
tion, avoiding built-m operators and control structures. 
The resulting call density of pure object-oriented 
programs is staggering, and brings naive implementa- 
tions to their knees. 
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Some languages minimize message passing by including 
static procedure calls and built-in operators for non- 
object-oriented code. For example, C++ [Str86] includes 
C’s repertoire of built-in operators and control struc- 
tures, and some object-oriented Lisps woo86, Bob881 
include normal Lisp functions, such as car and cdr 
which only work on cons-cells, While these impure 
object-oriented languages can avoid the cost of message 
passing with non-object-oriented constlucts, the 
resulting programs are significantly restricted in flexi- 
bility and reusability. 

To reduce the cost of message passing, some object- 
oriented languages, such as C++, Trellis/Owl [Sch86], 
and Eiffel wey86], include explicit type declarations. 
This allows the implementation to reduce the cost of a 
message send (or virtual function call) to no more than 
an indirect procedure call, but forces the programmer to 
enter and maintain the type declarations, and constrains 
him to write programs that will statically type-check 
in the language’s type system. 

Pure dynamically-typed object oriented languages, such 
as the Smalltalk- language*** [GR83], defer type- 
checking until run-time, freeing the programmer from 
the burden of explicit type declarations and allowing 
the programmer more flexibility in the kinds of 
programs that can be written easily. Unfortunately, the 
dearth of static information dramatically increases the 
cost of message passing. Dynamically-typed object- 
oriented systems historically have suffered from poor 
performance; even the fastest Smalltalk- implementa- 
tion, chock full of clever compiler techniques and run- 
time support, is still more than 10 times slower than 
optimized C, according to our measurements of some 
small C benchmarks translated into Smalltalk. 

We are working on SELF yUS87], a pure dynamically- 
typed object-oriented language that contains even less 
static information than Smalhalk. Like Smalltalk, 
SELF eschews explicit type declarations and built-in 
control structures. However, unlike SmalMk and 
most other object-oriented languages, SELF has no class- 
es. Instead it is based on the prototype object model, in 
which each object defines its own object-specific 

*** Smalltalk-80 is a trademark of Par&lace Systems, Inc. Here- 
after when we write “Smalltalk” we will be referring to the Small- 
talk-80 system or language. 
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behavior, and inherits shared behavior from its parent 
objects.* Also unlike Smalltalk, SELF accesses state 
solely through messages; SELF has no syntax for ac&ss- 
ing a variable or changing its value. These two features, 
combined with SELF’s multiple inheritance rules, help 
keep programs concise, malleable, and reusable. Unfor- 
tunately, these features make the implementation’s job 
harder, even variables would have to be accessed using 
full message sends. 

We have invented new implementation techniques that 
enable our initial SELF compiler to generate machine 
code that is twice as fast as the fastest Smalltalk- 
implementation, and only 4 to 5 times slower than opti- 
mized C. Our compiler creates and preserves compile- 
time type information wherever possible by performing 
customized dynamic compilation, static type prediction, 
and message splitting. This static type information 
makes it possible to look up methods at compile-time 
and to compile those methods in line. In addition, the 
SELF system supports garbage collection, incremental 
recompilation for short programming turnaround times, 
and complete source-level debugging; these features are 
beyond the scope of this paper. 

This paper describes our new techniques in detail. The 
next section presents a simple overview of the SELF 
object and execution model. In section 3 we describe 
relevant parts of our memory system; in section 4 we 
describe our compiler. Section 5 compares actual perfor- 
mance measurements for our initial SELF system to 
measurements of a fast SmalItalk-80 implementation 
and an optimizing C compiler. The last sections discuss 
current, future, and related work. 

2. Overview of SELF 

SELF objects consist of named slots, each of which con- 
tains a reference to some other object. Some slots may 
be designated as parent slots (by appending an asterisk 
to their name). Objects may also have SELF source code 
associated with them, in which case the object is called 
a method (similar to a procedure). To make a new object 
in SELF, au existing object (called the prototype) is 
simply cloned (shallow-copied). 

When a message is sent to an object (called the receiver 
of the message), the object is searched for a slot with 
the same name as the message. If a matching slot is not 
found, then the contents of the object’s parent slots are 
searched recursively,’ using SELF’S multiple inheritance 
rules to disambiguate any duplicate matching slots. If a 
matching slot is found, its contents is evaluated and the 
result is returned as the result of the message send. 

* To get an idea of how unusual this is, note that some respected 
authorities have gone so far as to define object-oriented languag 
es as those with classes weg87]. Other prototype models are 
discussed in [Bor86, Lie86, LTP86, Ste87]. 
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Five SELF objects. ‘Ike bottom objects are two-dixnen- 
sional point objects, the left one using rectangular COOI- 
dinates and the right one using polar coordinates. The 
middle left object is the immediate parent object shared 
by all rectangular point objects, and &fines four meth- 
ods for interpreting rectangular points in terms of polar 
coordinates; the middle right object does the same for 
polar point objects. The second-to-top object is a 
shared ancestor of all point objects, and de&es general 
methods for printing and adding points, regardless of 
coordinate system. This object inherits from the top 
object, defining even more general behavior, such as 
how to copy objects. 

An object without code evaluates to itself (and so the 
slot holding it acts like a variable). An object with 
code (a method) is a prototype activation record. When 
evaluated, the object clones itself, fills in its self slot 
with the receiver of the message, fills in its argument 
slots (if any) with the arguments of the message, and 
executes the code associated with the object. The self 
slot is a parent slot so that the cloned activation record 
inherits Tom the receiver of the message send. 

For example, in the point example pictured here, send- 
ing the x message to the rectangular point object finds 
the x slot immediately. The contents of the slot is the 
integer 3, which evaluates to itself (it has no associated 
code), producing 3 as the result of the x message. If X 
were sent to the polar point object, however, x 
wouldn’t be found immediately. The object’s parents 
would be searched, which would find the x slot defined 
in the polar point traits object. That x slot contains a 
method that computes the x coordinate from the the 
and theta coordinates: 

rho l theta ax. 

The method gets cloned and executed, producing the 
floating point result 1.25. 
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If the print message is sent to a point object, the print 
slot defined in the point traits object is found. The 
method contained in the slot prints out the point object 
in rectangular coordinates: 

y, print. 
print. 

$ print. 

If the point is represented using rectangular coordinates, 
the x and y messages will access the corxesponding data 
slots of the point object. But this method works fine 
even for points represented using polar coordinates: the 
x and y messages will find the conversion methods 
defined in the middle right object, and compute the 
correct x and y values. 

SELF suppOrts assignments to data slots by associating 
an assignment slot with each assignable data slot. The 
assignment slot contains the assignment primitive object 
(represented in the picture using t). When the assign- 
ment primitive is evaluated as the result of a message 
send, it stores its argument into the associated data 
slot. A data slot with an associated assignment slot is 
called an assignable slot, a slot with no corresponding 
assignment slot is called a constant or read-only slot. A 
parent slot may be either a constant slot, yielding 
conventional inheritance semantics, or it may be an 
assignable slot, permitting an object’s inheritance to 
change on-the-fly. This dynamic inheritance is one of 
SELF’s linguistic innovations, and may prove to be a 
useful addition to the set of object-oriented program- 
ming techniques. 

SELF allows programmers to define their own control 
structures using blocks. A block contains a method in a 
slot named value; this method is “magical” in that 
when it is invoked (by sending value to the block), the 
method runs as a child of its lexically enclosing activa- 
tion record (either a “normal” method activation or 
another block method activation). The self slot is not 
rebound when invoking a block method, but instead is 
inherited from the lexically enclosing method. Block 
methods may be terminated with a non-local return 
expression, which returns a value not to the caller of 
the block method, but to the caller of the lexically- 
enclosing non-block method, much like a return &ate- 
ment in C. 

2.1. An Example 
Let’s look at a small piece of SELF code; we will come 
back later to this example to illustrate the compiler’s 
optimizations and transformations. This example sums 
up the numbers from the receiver to some upper bound, 
and is defined in a parent object inherited by all num- 
beIS:* 

sumTo: upperBound = ( 
Isurn.01 
to: upperBound Do: [ 

1 :index 1 
sum: sum + index 1. 

sum ) 

In ANSI C the example would be written as: 
int sumTo(int self, int upperBound) ( 

int sum = 0; 
int index; 
for (index = self; index <= upperBound; index ++) 

sum = sum + index; 
return sum; 

1 
The SELF method begins by specifying the method name 
sumTo: followed by the name of the local argument 
slot upperBound. The body of the method first 
declares a local data slot named sum, initialized to 0, 
and implicitly its assignment slot, sum:, containing the 
assignment primitive. The method performs three mes- 
sage sends: 

1. 

2. 

3. 

The upperBound message is sent to self, with the 
lookup beginning with the current activation record. 
This message will fetch the contents of the upper- 
Bound argument slot at run-time. 

The to:Do: message is sent to self with the result 
of the upperBound message as the first argument 
and a block literal object (enclosed in brackets) as 
the second argument. to:Do: invokes a standard for- 
loop-style iteration method, that calls the block 
argument on each of the numbers between the receiv- 
er and the first argument. The result of the to:Do: 
message is ignored. 

On the last line, the sum message is sent to self, ac- 
cessing the contents of the method’s sum slot. The 
value of this last expression is returned as the result 
of the sumTo: method, 

The block literal object contains a slot named ValW: 
holding a lexically-scoped method. The block method 
declares an argument slot named index and sends four 
messages: 

1. The sum message is sent to self. Since block meth- 
ods are lexically scoped, the sum message must 
fetch the contents of the sumTo: method’s sum lo- 
cal slot. This works because the cloned block activa- 
tion record will inherit from the cloned method acti- 
vation record. 

2. The index message is sent to self. This fetches the 
contents of the block method’s index argument slot. 

3. The + message is sent to the result of the sum mes- 
sage with the result of the index message as its ar- 
gument. The + message will invoke the appropriate 
addition operation defined for the object stored in 
the sum slot (such as the integer addition method or 
the floating point addition method). 

* SELF syntax is similar to Smalltalk syntax, especially for mes- 
sage sends. The main differences are that messages sent to & 
do not explicitly include self in the source text, keyword mes- 
sages use capitalized names for sll but the first keyword part 
and associate right-to-left, and slot declarations may include ex- 
plicit initializers. 
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4. FinalIy the sum: message is sent to self with the 
result of the + message as its argument. This 
invokes the assignment primitive stored in the 
enclosing method’s sum: slot, which stores the new 
sum in the method’s sum slot. 

The SELF sumTo: method works for different numeric 
types, and handles overflow from integer representation 
to floating point’ representation, all by using the poly- 
morphic + message and dynamic typing. The C vemion 
only works for integers, and produces erroneous results 
in the case of overflow. 

2.2. Byte-Coded Internal Representation 
To avoid reparsing textual representations of programs, 
SELF source code is represented internally using a SELF- 
level byte code object. The SELF parser is invoked once 
when the textual source code is initialIy entered into 
the system, producing SELF prototypical activation 
records, each composed of a method object holding the 
arguments and local slots and a byte code object repre- 
senting the source code; the SELF compiler generates 
machine code directly from the prototype activation 
records. The byte code object contains an array of byte- 
sized opcodes representing the original source code’s 
abstract syntax tree. The following an2 the significant 
byte co&s defined by our SELF system, specified as if 
for execution by a simple stack-oriented interpreter: 

SELF push self onto the execution stack 
LlTERAL cvalue> 

push a literal value onto the execution stack 

SEND <message name> 
send a message, popping the receiver and arguments 
cff the execution stack, and pushing the resutt 

NON-LOCAL RETURN 
execute a non-local return from the lexically-enclosing 
method activation 

In SELF source code, primitive operations are invoked 
using normal message sending syntax, but with the mes- 
sage name beginning with an underbar (“_“). This 
allows the normal SEND byte codes to represent all 
primitive operations, and facilitates extensions to the 
set of available primitive operations. 

3. Memory System Implementation 
SELF’s prototype model greatly impacts the design of 
the object storage system and, in turn, the compiler. 
Class-based languages can represent instances very con- 
cisely because each instance only needs space for its vari- 
ables and class pointer, the class holds the format 
(names and locations of the instance variables), 
behavior (names and definitions of the class’ methods), 
and inheritance (the class’ superclass( for all of its 
instances. On the other hand, a prototype-based language 
such as SELF has no classes; instead each object defines 
its own format, behavior, and inheritance. In principle 
each SELF object could be completely unique, requiring 
enough space to hold both the instance-like information 
and the class-like information. 

However, in practice most SELF objects will form 
groups “struck from the same mold,” cloned from the 
same “prototypical” object. For example, the SELF 
user could create a new kind of object, say a point ob- 
ject, and add a reference to the new point object in a 
standard object dictionary inherited by all objects. Then 
whenever the user’s program needs a new point object, 
the program simply clones the original prototype point 
and sets the copy’s x and y coordinates. All point 
objects have the same format, behavior, and inheritance. 
We call the groups of objects cloned from an original 
member of the group a clone furnib; all members of the 
family are identical except possibly for the contents of 
their assignable data slots (corresponding to instance 
variables in Smalltalk). 

In our SELF implementation, we take advantage of 
clone families by factoring out the common information 
into a shared immutable object ca.lIed a map. The repre- 
sentation for a SELF object consists only of the con- 
tents of the object’s assignable slots (the “instance vti- 
ables”) plus a pointer to the shared map object. For 
each slot in the object, the map contains the name of the 
slot, whether the slot is a parent slot, and either the 
offset within the object of the slot’s contents (if it’s an 
assignable slot) or the slot’s contents itself (if it’s a 
constant slot, such as a non-assignable parent slot or a 
method). If the object has code (i.e., is a method), the 
map also stores a pointer to the byte code object repre- 
senting the source code of the method. 

rect. point obiects map of rect. point objects 

An example of the map for two rectangular point objects 
(polar point objects are in a different clone family and 
have a different map). Each point object holds only as- 
signable slot contents; all constant slots and format in- 
formation are factored out into the map. 

Maps are immutable so that they may be freely shared 
by objects in the same clone family. However, when the 
user changes the format of an object or the value of one 
of an object’s constant slots, the map no longer applies 
to the object. In this case, a new map is created for the 
changed object, and the object now starts its own clone 
family; the old map stilI applies to any other members 
of the original clone family. 

From the implementation point of view, maps look 
much like classes, and achieve the same sorts of space 
savings for shared data. But maps are totally aanspar- 
ent at the SELF language level, simplifying the lan- 
guage and increasing expressive power by allowing 
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objects to change their formats at will. Maps also play 
a crucial role in the compiler. An object’s map rcpre- 
sents its data type, and type information about objects 
(i.e., to what clone families the object might belong) is 
used throughout the compiler to drive the optimiza- 
tions. For example, in the absence of dynamic inherit- 
ance, ail objects that are members of a clone family 
(i.e., objects with the same data type) wiIl have identi- 
cal inheritance hiemrchies, and so a method that applies 
to one member of a clone family will apply equally to 
all members of the clone family. 

Our object storage system is responsible for more tradi- 
tional functions as well. We use Generation Scavenging 
[vng86, Lee881 for automatic storage reclamation; this 
algorithm requires little run-time overhead (around 3% 
of the CPU time) and can have split-second pause times. 
Like most systems supporting garbage collection, our 
SELF implementation tags data words to distinguish 
among pointers, integers, and floating point numbers. 
Unlike many SmaUtaIk systems, we do not use an 
object table, since the extra level of indirection would 
degrade performance unnecessarily. 

4. THYSELF Compiler 

4.1. Previous Compilation Techniques 

Unlike traditional batch compilers, our compiler is 
invoked on a per-method basis when a method is first 
invoked, this technique of dynamic translation was 
pioneered by Deutsch and Schiffman in their high-perfor- 
mance Smalltalk system pS84]. Our compiler generates 
machine code from the byte code object, and caches the 
compiled code for use the next time this method is 
invoked. If the compiled code cache fills up, some previ- 
ously-compiled methods are flushed from the cache, and 
recompiled when next needed. 

In order to reduce the cost of message sends without the 
benefit of static type information, our SELF system, 
like the SmaIltalk system developed by Deutsch and 
Schifhan, uses an inline caching technique. To implc- 
ment a message send, the compiler generates a caU to a 
run-time message lookup routine. The first time the 
lookup routine is invoked from a particular call site, it 
bac@azches the cdl instruction to invoke the target 
method instead of the general lookup routine. The next 
time the message is sent from that call site, the target 
method will be invoked directly instead of going 
through a long message lookup. InIine caching has the 
effect of replacing the costly message send with a 
simple procedure call. 

However, the receiver of a message may be in a different 
clone family than it was the previous time, and there- 
fore may use a different method to implement the 
message. To handle this case, the first few instructions 
of the compiled method check to make sure that the 
receiver has the correct map for that method. If the 

receiver’s map is correct, the method executes normally. 
If the map is incorrect, the full message lookup routine 
is invoked to find and backpatch the right method. If 
the type of the receiver of a particular send doesn’t 
change very often, then this optimization gains a lot of 
performance; inline caching is successful around 95% of 
the time [DS84, Ung86, Lee88]. 

To speed method call and retum, our SELF system, like 
many other high-performance SmalltaIk and Lisp 
systems [DS84, Kra86], ahocates cloned activation 
records on a stack rather than in the heap; local slots in 
the activation record may be allocated to machine regis- 
ters rather than in memory. To speed certain common 
primitive operations, such as integer arithmetic and ar- 
ray indexing, our SELF compiler inhnes the definition 
of the invoked primitive, rather than generating an ex- 
ternal procedure call. This technique is common in tradi- 
tional optimizing compilers and even in some Smalltalk 
systems pS84, Joh88]. 

Our system supports a number of compiler techniques 
typicahy omitted in dynamically-typed object-oriented 
language implementations. First, our compiler propa- 
gates type information within an expression. Obvious 
sources of type information are literals such as integers, 
strings, and blocks. Another source in our implementa- 
tion is the result of a primitive operation. The compiler 
includes information about each primitive, including 
whether the primitive may fail and the type of the re- 
sult if the primitive succeeds. Possible result types in- 
clude: the same object as the receiver (for assignments, 
for example), the same type as the receiver (for the 
clone primitive, for example), a specific type (such as 
the integer type for the result of integer arithmetic 
primitives), or a boolean result, which is either the true 
object or the faIse object (the result of comparison 
primitives). 

Second, our system performs compile-time message 
lookup. If the map of the receiver is known at compile- 
time, the compiler searches the map for a slot that 
matches the message name. If found, the compiler has 
successfdly resolved the message send at compile-time, 
reducing an expensive message send to a statically- 
bound procedure call. If the compiler doesn’t find a 
matching slot, it recursively searches the receiver’s par- 
ents for a matching slot, as long as the parents are con- 
stant (not assignable) and thus stored in the receiver’s 
map. A special case of compile-time lookup handles 
local variable accesses: message sends that search the 
local slots of executing activation records. 

Third, our system includes a general message send 
inliner, similar to a conventional procedure inliner, 
which can replace message sends which have been success- 
fully looked-up at compile-time with faster code. If 
the slot found by the lookup routine is a local assign- 
able data slot, the compiler simply uses the register or 
stack location allocated to the slot If the slot is an as- 
signable data slot in an object in the heap, the compiler 
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generates code to load the contents of the slot Corn the 
appropriate ,offset in the object. If the slot is a constant 
data slot, the compiler replaces the message send with 
the constant value of the slot. If the slot is an assign- 
ment slot, the compiler generates code to do the store 
into the corresponding data slot, whether it’s in a regis- 
ter, a stack location, or an object in the heap. 

If the slot contains a method, the inliner can elect to 
compile the body of the method inline, if it isn’t recur- 
sive or too long. Since object-oriented programs tend to 
be composed of many small procedures, method inlining 
is important to reduce the call density of the resulting 
compiled code. If a block method is inlined and the orig- 
inal block object is no longer needed as a value, the com- 
piler eliminates the expensive block creation operation; 
this optimization is especially impo%int, since all 
control structures involve block objects [Kra86]. 

Our system also performs consranl foIding (executing a 
side-effect-free primitive with constant arguments at 
compile-time) and some dead code elimination. Our 
second-generation SELF compiler, currently under con- 
struction, supports additional optimizations such as 
type and data jlow analysis, common subexpression 
elimination, global register allocation, and instruction 
scheduling. However, our compiler abstains Corn any 
optimizations that would destroy the illusion of inter- 
preting byte codes or that would prevent complete 
source-level debugging. For example, tail recursion 
elimination is disallowed since it would destroy stack 
frames needed at debug-time. Fortunately, these restric- 
tions have not severely hampered our compiler’s ability 
to generate efficient code. 

Let’s consider applying these optimizations to the 
simple sumTo: example, to investigate the state-of-the- 
art in implementing dynamically-typed object-oriented 
languages. Recall that the example is: 

sumTo: upperBound = ( 
] sum <- 0 1 
to: upperBound Do: [ 1 :index 1 sum: sum + index 1. 
sum ) 

As described so far, the SELF compiler would generate 
code for the sumTo: source method from the pre-parsed 
byte code object when this method is first called. It 
would allocate the receiver, the argument upperBound, 
and the local slot sum to registers; the argument index 
of the block would be allocated to a register in the 
block method’s stack frame. The sends of upperBound 
and sum could be successfully looked-up at compile- 
time (since they access local slots) and replaced by 
simple register accesses. However, given only the tech- 
niques discussed above, the to:Do: message cannot be 
successfully looked-up at compile-time, since the com- 
piler doesn’t know the specific type of self (it could be 
any object that happens to inherit the sumTo: method 
being compiled). Instead, the to:Do: message must be 
implemented as a full message send, and the block 

literal object must be cloned at run-time and initialized 
with the cloned method activation record as its lexical 
scope. 
To do better, the compiler needs more type information. 
In general, since the call density of methods compiled 
using only the above techniques would be so high, other 
optimizations like common subexpression elimination 
and global register allocation wouldn’t have much 
impact; they typically don’t work well across procedure 
calls, and any performance improvement they make 
would be swamped by the cost of tlie procedure calls. 

The next three subsections describe the new techniques 
we use in our SELF compiler to create more static type 
information for the compiler. The extra type infonna- 
tion allows the compiler to statically bind and inline 
many message sends, greatly reducing the call density of 
the resulting compiled methods. Not only does this 
directly improve performance, it opens the door for 
more traditional optimizations like common subexpres- 
sion elimination and global register allocation, allow- 
ing compiled SELF programs to close in on the perfor- 
mance of traditional compiled languages. 

4.2. Customized Compilation 
An important contribution of our work is customized 
compilation. We use this term to mean that the dynamic 
compilation of a given source method is customized by 
important characteristics of the calJing site; thereafter 
the customized compiled method is only used for calls 
with the same characteristics as the original calling site. 
Since not all call sites have the same characteristics, 
multiple compiled vegions of the same source method 
may coexist in the compiled code cache. Although 
customized code occupies, more space and takes longer to 
compile, it has the potential to run much faster. 

In our current implementation, we customize the com- 
piled method by the map of the message’s receiver, only 
members of the receiver’s clone family may use the 
customized method.* The compiler knows the type of 
self, and, in the absence of dynamic inheritance, can suc- 
cessfully look-up all sends to self at compile-time. This 
in turn leads to many more message sends being candi- 
dates for inlining. 

Using customized compilation in the sumTo: example 
leads to some remarkable results. The compiler 
generates a compiled version of sumTo: customized for 
the type of the receiver, for example au integer 
(different versions of the sumTo: method ‘would be 
compiled and customized for floating point numbers 
and arbitrary-precision “bignums”). Since the compiler 
knows the map of the receiver, it can f!ind and iriline the 
to:Do: method which is defined iu the parent object for 
integers: 

to: end Do: block = ( to: end By: 1 Do: block ) 

* Special precautions have to be taken to handle dynamic inherit- 
ance properly; these are briefly described in section 6. 
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This method merely supplies a default increment of 1 
and calls to:By:Do:, a slightly more general iteration 
method. After inlining this method, the original 
sumTo: becomes (the changed text appears in boldface): 

sumTo: upperBound = ( 
) sum 82 0 1 
to: upperBound By: 1 Do: [ (:indexl sum: sum + index]. 
sum ) 

Again, because the code is customized according to the 
receiver, the compiler can find the appropriate imple- 
mentation of to:By:Do:: 

to: end By: step Do: block = ( 
step=0 

ifTrue: [ error: ‘step is zero’ ] 
False: [ 

step < 0 
#True: [ “stepping down” . . . ] 
False: [ “stepping up” 

Ii1 
i: self. 
[ i <= end ] whileTrue: [ 

block value: i. 
i: i + step. ] ] ] ) 

This general iteration method tests the step value to 
select the code for either counting up or counting down. 
We show only the relevant portion that counts up. This 
portion defines an assignable slot i which is used to 
hold the index, initializes it to self, then invokes the 
whileTrue: method. Its receiver is the block [ 1 <= end ] 
(the looping condition), and its argument is the block 
[ block value: i. i: i + step. ] (the body of the loop). 
This latter block first evaluates the argument block 
(which when called by sumTo: will be [ 1 :index 1 sum: 
sum + index 1 ), passing in the iteraton counter, i, as 
the argument to the block, and then increments the 
counter by the value of step (in this example the con- 
stant 1). 

The compiler inlines this to:By:Do: method into 
sumTo:. After replacing formals with actuals, the com- 
piler is faced with this intermediate form: 

sumTo: upperBound = ( 
(sum+0 1 
l=O 

IfTrue: [ error: ‘etsp is zero’ ] 
Falrn: [ 

1 co 
Mruo: [ “atopping down” . . . ] 
Falss: [ “atapping up” 

III 
f: *elf. 

sum ) 

[ i c= upprBound ] whllsTrm: [ 
[ 1 :index I sum: sum + index ] 

value: I. 
i:i+l.]]]. 

The next step in customization is to resolve the = in 1 = 
0. Since 1 is a constant, the compiler can look up = in 1 
to find the following method in the parent object for 
integers: 

= x = ( -Integer-EQ-Primitive: x IfFail: [ “fail block” . . . ] ) 

This method simply calls the integer equality primitive 
(known to the compiler) and executes the fail block if 
the primitive fails (e.g., if x is not an integer). 

So as it inlines this method the compiler derives 
1 -Integer-EQ-Primitive: 0 IfFail: [ . . . ] 

Since all the primitive’s arguments are constants, and 
the primitive has no side-effects, the cdmpiler evaluates 
the primitive at compile time, replacing the call with 
the false object: 

sumTo: upperBound = ( 
1 sum <- 0 I 

false 
ifTrue: [ error: ‘step is zero’ ] 
False: [ 

l<O 

sum ) 

iff rue: [ “stepping down” . . . ] 
False: [ “stepping up” 

Ii1 
i* seff . . 
[ i <= upperBound ] whileTrue: [ 

( 1 :index 1 sum: sum + index ] 
value: i. 

i:i+l.]]]. 

The next message that the compiler attacks is the first 
occurrence of ifTrue:False:. Since the false object is a 
constant object computed at compile-time, the compiler 
can look up iff rue:False: in false to find: 

ifrrue: trueBlock False: falseBlock = ( falseBlock value ) 

After inlining this occurrence of ifTrue:False: the code 
becomes: 

sumTo: upperBound = ( 
Isumc-01 
[l<O 

ifTrue: [ “stepping down” . . . ] 
False: [ “stepping up” 

1. yelf . . 
[ i <= upperBound ] whileTrue: [ 

[ 1 :index I sum: sum + index ] value: i. 
i:i+l.]]]valm. 

sum ) 

At tbis point the next message to be compiled is the 
outermost send of value, which is sent to a block 
literal. Once more the receiver is known at compile- 
time, so the compiler can find the value method (just 
the body of the block literal) and inline it: 

sumTo: upperBound = ( 
1 sum C- 0 1 

I<0 
ifTrue; [ “stspping down” . . . ] 
False: [ “stepping up” 

Lidelf 
[ i <=.upperBound ] whileTrue: [ 

[ I :index ( sum: sum + index ] value: i. 
i:i+l.]]. 

sum ) 

The compiler proceeds by inlining 1 < 0, ifTrue:False:, 
and value (within the itTrue:False: method) to reduce 
the code to: 
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sumTo: upperBound = ( 
)sum<-O.i.I 
i. self . . 
[ i <= upperBound ] whileTrue: [ 

[ ( :index 1 sum: sum + index ] value: i. 
i: i + 1. 3. 

sum ) 

The compiler allocates the i slot to a register, and gener- 
ates the code to store the receiver (self) into that regis- 
ter. The compiler looks up whileTrue: relative to the 
block literal [ i <= upperBound ] and finds it in the 
parent object of all blocks: 

whileTrue: block = ( 

1 
value iffrue: block False: [ h nil ] 

I loop 1 

This method sends the loop message to the outer block, 
which evaluates the block over and over again. Each 
time the block is invoked, it first evaluates the loop 
condition (by sending value to self) and then either eval- 
uates the loop body (the argument block) or exits out 
of the whileTrue: method (the circumflex (“) is the 
SELF non-local return operator). 

Mining whileTrue: produces (using goto statements and 
labels, in italics, to represent low-level control flow): 

sumTo: uppereound = ( 
Isum<-O.i.) 
i: self. 

[ 
[ i C= upperBound ] value 

IfTrue: [ 
[ 1 :index 1 sum: sum + index ] value: i. 
i:i+l.] 

False: [ 
got0 exit 1. 

] loop. 
exit: 

sum ) 

Next, the compiler looks up loop, a simple method 
that evaluates its receiver and then invokes the special 
looping primitive to transfer control to the beginning 
of the method: 

Loop = ( value. -Restart. ). 

After inlining this method, the value message, and the 
-Restart primitive, sumTo: becomes: 

sumTo: upperBound = ( 
1 sum c- 0. i. I 
i: self 

loop: . 
[ i <= upperBound ] value 

iflrue: [ 
1) :index 1 sum: sum + index ] value: i. 
i:i+l.] 

False: [ 
got0 exit 1. 

got0 loop 
&Wt 

sum ) 

The compiler inlines the value and value: messages sent 
to block liter& to get to this simplified form: 

sumTo: upperBound = ( 
1 sum <- 0. i. 1 
i: self. 

hop: 
i <= upperBound iffrue: [ 

sum: sum + i. 
i:i+l. 

] False: [ 
got0 exit 

I. 
got0 loop 

exit: 
sum ) 

Next the compiler tries to inline the i c= upperBound 
expression. Since the initial SELF compiler doesn’t 
know the types of the contents of any assignable slots, 
it doesn’t know the type of the i slot and so cannot 
inline the e= message. Similarly, the compiler doesn’t 
know the type of the result of the unknown c= method, 
so it can’t inline the following ifTrue:False: message. 
The compiler (if using only customized compilation) is 
stuck here, and is forced to generate code to send the <= 
message followed by the ifTrue:False: message with 
two cloned block objects as arguments. 

The compiler has used type information about the receiv- 
er and constants to inline to:Do:, to:By:Do:, whi- 
IeTrue:, iffrue:False:, loop, value, value:, =, and e, as 
well as alI local slot accesses. All but two of the 
block liter& in the methods have been inlined and so 
aren’t cloned at run-time. Customized compilation, 
when coupled with compile-time lookup and general 
message inlining, can yield a significant gain in run-time 
performance. But even more can be done to inline mes- 
sages in the common cases, such as the =z= and 
ifTrue:False: messages above. The next two sections de 
scribe two general techniques, message splitting and type 
prediction, that together allow the compiler to elimi- 
nate these remaining message sends in the common case. 

4.3. Message Splitting 

As with most languages, a SELF program’s flow of con- 
trol may pass along one of a number of paths. For 
example, primitive operations may either succeed or fail 
at run time. After such a primitive, the control flow 
graph splits into two branches, one for the, success case 
and one for the failure case. Additionally, comparison 
primitives (such as integer equality) have two success 
branches: one for success resulting in the true object, 
and one for success resulting in the false object. 

Normally, the flow of control rejoins after the result 
of the primitive operation is computed, in anticipation 
of a message being sent to the result of the primitive. 
However, the type of the result of the primitive may be 
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different along the different branches, and this precious 
information will be lost if control rejoins immediately. 
For example, in our SELF system the type of the result 
of a primitive is known’ at compile-time in the success 
case(s), but is typically unknown in the failure case; 
after rejoining the flow of control, the least specific 
type must be used, which is typically the unknown type. 

In situations where multiple control branches merge 
with different result types along the different branches, 
our compiler can split the following message, compiling 
a copy of the message send for each branch; control 
flow then merges after the split message. This opera- 
tion can be visualized as pushing the message send 
through the merge point, producing a copy of the 
message on each incoming branch. The advantage of do- 
ing this message splitting is that now the compiler can 
take advantage of the more specific type information 
along each lkanch, customizing the 
each specific case. 
For example, consider the fragment 

o=i 

message send for 

flrue: [ “true block” . . ] 
After inlining the = message down to the integer equali- 
ty primitive operation, the compiler produces (using 
italicized Algol-like statements and operators to repre- 
sent low-level operations): 

if haslntegerTag(i) then 
If O==i then 

tamp 2 true 
else 

temp := false 
elss 

temp:=. . . “failure block; unknown result type” 
tamp iffrue: [ “true block” . . . ] 

By splitting the inrue: message for both the true, the 
false, and the unknown cases, the compiler can produce: 

if has/MegerTag(i) then 
if 0 -= i then 

true Mrue: [“true block” . . . ] 
else 

f&e Mrue: [ “true bloclC’ . . . ] 
else 

temp := . “failure bled<; unknown result type” 
temp iffrus: [ “true block” . . . ] 

By inlining the two sends of ifTrue: to compile-time 
constants, and then the resulting value messages, the 
compiler reaches the simple, low-level code: 

if haslntegerTag(il then 
if O==i then 

‘true block” . . . 
else 

“nothing” 
else 

temp I=. . . “failure block; unknown result type” 
temp Mrue: [“true block” . . ] 

In the final code, three separate copies of the ifTrue: 
message get compiled: one for the true case, one for the 
false case, and one for the failure case. In the two 
success cases, the ifTrue: message gets inked, since the 
type of the receiver is known at compile-time; the 

failure case typically remains a full message send, since 
the receiver type is usually unknown along the failure 
branch. The compiler optimized out the generation of an 
explicit true or false object (since the ifTrue: methods 
didn’t require the value of their receivers), instead using 
the flow of control to represent the boolean result val- 
ue, just like a good C compiler would. Message split- 
ting can be thought of as an extension to customized 
compilation, by customizing individual messages along 
particular control flow paths, with similar improve- 
ments in run-time performance. 

4.4. Type Prediction 

Customized compilation provides type information for 
any sends to self. Message splitting provides type infor- 
mation for the successful results of primitive opera- 
tions. Unfortunately, the compiler still doesn’t know 
the types of the receivers of many other messages. To 
compile some of these messages more efficiently, our 
compiler uses a static type prediction scheme, reminis- 
cent of static branch prediction schemes, to generate ex- 
tra compile-time type information. 

In normal SELF environments, certain messages axe 
more likely to be sent to some types of receivers than 
others. Measurements of Smalltalk- benchmarks 
show that operators like +, -, and < had integer argu- 
ments 90% of the time; messages like iffrue: had bool- 
ean receivers 100% of the time [Un86]. Our compiler 
takes advantage of these usage patterns (which can be 
thought of as static profile data) by inserting fast nm- 
time tests for the expected values or types of the receiv- 
er, and conditional branches to split the flow of control 
based on the result of the test; along the “success” 
branch the value or type of the receiver is known. 

The compiler can split the original arithmetic or bool- 
ean message, compiling a copy on dach branch. The 
message will get inlined along the succe.ss branch, but 
will remain a full message send along the failure 
branch. If the run-time type test is fast enough, and the 
test successful often enough, the optimization will pay 
big dividends in performance. 

Let’s return to the sumTo: example, and apply type pre- 
diction and message splitting. Using just customized 
compilation, the compiler had inlined the sumTo: invo- 
cation down to the following: 

sumTo: upperBound = ( 
1 sum .z- 0. i. 1 
i: self. 

loop: 
i <= upperBound iffrue: [ 

sum: sum + i. 
i:i+l. 

] False: [ 
got0 exit 

I. 
got0 loop 

aXit: 
sum ) 
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Using type prediction the compiler guesses that the type 
of the receiver of the c= message (the local slot i) is 
likely to be an integer. The compiler inserts a run-time 
integer tag check of the value of i, and splits the <= 
message, with one copy for the integer case and one copy 
for the “otherwise” case (if i is a floating point num- 
ber, for instance): 

sumTo: upperBound = ( 
1 sum <- 0. i. 1 
i: self. 

loop: 
Q haslntegerTag(i) then 

if haslntegerTag(upperBound) then 
if i<= upperBound then 

s&i: sum + i. 
i:i+l. 

else 
sumTo: upperBound = ( 

1 sum <- 0. i. 1 
i: self. 

loop: 

else 
got0 exit 

else 
“failure block” IfTrue: [ . . . ] False: 1 *** 1 

ff heslntegerTag(i) then 
*‘i is known to be an integer” 
tetnp := i c= upperBound 

else 

“i remains of unknown type” 

“I remains of unknown type” 
temp := i S= upperBound 

temp iff rue: [ 
sum: sum + i. 
i:i+l. 

] False: [ 
got0 exit 

1. 
got0 loty 

aXIt 
sum ) 

i e= upperBound IfTrue: [ . . . ] Fah: [ . . . ] 
got0 loop 

L3Xlt 
sum ) 

Along the integer case, the compiler inlines the c= mes- 
sage for integers, which calls the integer less-than-or- 
equal-to primitive operation. This operation is, in turn, 
inlined. The primitive Grst checks that upperBound is 
also an integer, if this check fails, the failure branch is 
taken. Otherwise, the primitive does a simple compare 
and branch to either the true success branch or the false 
success branch. At this point, sumTo: has been compiled 
to: 

The only expressions left to compile now are sum + i 
and i + 1. Again using type prediction, the compiler 
guesses that sum and i are integers, and conditionally 
compiles the + messages for the integer and non-integer 
branches, inlining the + message to the integer add prim- 
itive along the integer branches. These transformations 
lead the compiler to the following final form: 

sumTo: upperBound E: ( 
1 sum <- 0. i. I 
i: self. 

loop: 

sumfo: upperBound = ( 
1 sum c- 0. i. 1 
i. self 

loop:’ * 

17 haslntegerTag(i) then 
I hasintegerTag(upperBound) then 

f i <= upperBound then 
if hasfntegerTag(wm) then 

if ha.slntegerTag(l) then 
bum := rum + 1. 
If overflow than 

i :=... “failure block” 
l lee 

I := . . . “failure block” 
else 

“mum of unknown type” 
*urn: *urn + i. 

I haslntagerTag(i) then if hwlntegerTag(i) then 

If hneintegerTag(upperSouno’) then I:= i+ 1. 

if i c upperBound then H ovetf/ow then 

temp := true I :=... *‘failure block” 

else eke 

temp := false 
else 

temp:=... “failure block” 
else 

“i remains of unknown type” 
temp := i cr upperBound 

temp Mrue: [ 
sum: sum + i. 
is i + 1 . . 

] False: [ 
got0 exit 

1. 
got0 loop 

axit 
sum ) 

“i of unknown type” 
i:l+l. 

else 
got0 exit 

else 
“failure block” ifTrue: [ . . . ] False: [ . . . ] 

else 
“i of unknown type” 
i c= upperBound ifTrue: [ . . . ] False: [ . . . ] 

got0 loop 
aXit: 

sum ) 

The compiler now splits the itTrue:False: message 
along the four previous branches, and inlines 
ifTrue:False: and then value for the true and false 
branches (omitting details in the two unknown cases): 

This is how our first-generation SELF compiler gener- 
ates code for this simple example. It eliminates every 
message send inside the- sumTo: method for the common 
case that our type prediction guesses are correct and no 
0verfIow occurs; these conditions are the only condi- 
tions under which the C version works. Our compiler 
avoids generating explicit true or false objects as the 
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results of primitive comparison operations, instead 
encoding the result in the subsequent flow of control. 
The inner loop still contains five run-time type tests 
(three as part of type prediction, two as part of the 
inlined primitive operations); a more sophisticated com- 
piler could fold these tests into the two overflow tests 
on an architecture with hardware tag checking (such as 
the SPARC [Gar88]), completely eliminating the type- 
checking overhead in the common case. Our second-gener- 
ation compiler, described in section 6, will eliminate 
the run-time type tests entirely. 

Smalltalk- implementations use a technique ,similar 
to type prediction [GR83]. However, they hard-wire the 
definitions of certain common Smalltalk methods into 
the parser and compiler, The source code for the hard- 
wired methods is relegated to documentation, and any 
changes to that source code are ignored In addition, for 
boolean messages like ifTrue:ifFalse:, the receiver must 
be true or false at run-time and the arguments must be 
block literals at parse-time; looping messages like 
wthehileTrue: have similar restrictions. 

By building on the compile-time message lookup system 
and general message inliner, our SELF implementation 
achieves the same level of performance improvement 
without sacrificing any source-level compatibility; the 
SELF programmer may change the definition of the 
ifTrue: method or the integer + method at any time, and 
the system’s behavior will immediately be updated. The 
type prediction optimization simply lets the compiler 
produce more efficient code for the common cases of cer- 
tain messages, completely transparently to the SELF 
user. 

5. Performance Comparison 

SELF is implemented in 33,000 lines of C+-+ code and 
1,000 lines of assembler, and runs on both the Sun-3 (a 
68020-based machine) and the Sun-4 (a SPARC-based 
machine); we are working on an Apple Macintosh-II 
version. We have written almost 9,000 lines of SELF 
code, including a hierarchy of collection objects, a recur- 
sive descent parser, and the beginnings of a graphical 
user interface. 

We compare the performance of our first-generation 
SELF implementation with a fast Smalltalk implemen- 
tation and the standard Sun optimizing C compiler on a 
Sun-41260 workstation. The fastest Smalltalk system 
currently available (excluding graphics performance) is 
the ParcPlace V2.4 p2 Smalltalk- virtual machine, 
rated at about 4 Dorados* EpP88]; this system includes 
the Deutsch-Schiffinan techniques described earlier. We 

* A ‘Dorado” is a measure of the performance of Smalltalk imple- 
mentations. One Dorado is &fined as the performance of an early 
Smalltalk implementation in microcode on the 7011s Xerox Dora- 
do [Deu83]; until recently it was the fastest available Smalltalk 
implementation. 

compare transliterations of the Stanford integer bench- 
marks [Hen881 from C into Small&& and SELF, the 1 
sumTo: 10000 example, the Smalltalk- testActiva- 
tionReturn micro-benchmark [McC83] (which tests the 
speed of procedure call and return and integer compari- 
son and subtraction), and the Richards operating system 
simulation benchmark peu88]. We also rewrote some 
of the Stanford integer benchmarks in a more SELFish 
programming style; measurements for the rewritten 
benchmarks are presented in columns labeled SELF’, 
with the times in parentheses for the benchmarks that 
were not rewritten. The most representative rows of 
the table am probably the row for the median of the 
Stanford integer benchmarks and the row for the larger 
Richards benchmark. 

The entries in the following table are the ratios of the 
running times of the benchmarks for the given pair of 
systems; we include the original raw nmning times in 
Appendix A. From our point of view, bigger numbers 
am better in the first two columns, while smaller num- 
bers are better in the last two columns. 

iowera 
queens 
intmm 
puzzle 
quick 
bubble 
tree 
min 
median 
max 

SmalltaiW Smalltalk/ Smalltalk/ SELFI SELF*/ 
SELF SELF’ C C c 

2.4 3.7 13.0 
2.4 3.8 11.2 
1.7 8.6 
1.5 (: :t, 
3.1 2::: 
1.8 11.3 
1.8 17.5 

sumTo: 1.4 (1.4) 6.2 

activationRtrn 2.7 3.2 5.3 

richards 2.8 c-3) 10.6 3.8 

5.5 
4.7 
5.2 
6.1 
6.9 
6.3 
9.8 
2.1 
2.1 
5.8 
9.8 

4.5 

1 .Q 

3.5 
2.9 

{I::; 

5:5 
7.2 
1.8 
1.8 

f :: 

(4.5) 

1.6 

(3.8) 

Our SELF implementation outperforms the Smalltalk 
implementation on every benchmark, in many cases 
SELF runs more than twice as fast as Smalltalk. Not 
surprisingly, an optimizing C compiler does better than 
the SELF compiler. Some of the difference in perfor- 
mance may be attributed to the robust semantics of 
primitive operations in SELF: arithmetic operations 
always check for overflow, array accesses always check 
for indices out of bounds, method calls always check 
for stack overflow. Some of the difference is due to 
significantly poorer implementation in the SELF compil- 
er of standard compiler techniques such as register allo- 
cation and peephole optimization. The rest of the differ- 
ence is probably due to the lack of type information, 
especially for arguments, local slots, and the receiver’s 
local slots. We are remedying these deficiencies to a 
large extent in the second-generation SELF system cur- 
rently being implemented. 
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6. Future Work 
6.1. The Second-Generation SELF System 
We are in the process of reimplementing our entire 
SELF system to clean up our code, simplify our design, 
and include better algorithms for data fIow analysis, 
common subexpression elimination, global register allo- 
cation, and instruction scheduling. As of this writing 
(March 1989), we have completely rewritten the object 
storage system and the run-time/compile-time message 
lookup system. We have implemented the core of the 
second-generation compiler, and it is now working for 
very simple examples. 
The new compiler performs type flow analysis to deter- 
mine the types of many local slots at compile-time. It 
also includes a significantly more powerful message 
splitting system. The initial message splitter described 
in this paper only splits a message based on the type of 
the result of the previous message; the second-genera- 
tion message splitting system can use any of the type 
information constructed during type flow analysis, espe- 
cially the types of local slots. The type splitter may 
elect to split messages even when the message is not 
immediately after a merge point, splitting all messages 
that intervene between the merge that lost the type 
information and the message that wants to take advan- 
tage of the type information. 
Our goal for the combined type analyzer and extended 
message splitter is to allow the compiler to split off 
entire sections of the control flow graph that corre- 
spond to the most common data types. Along these com- 
mon-case sections, the types of all used variables will 
be known at compile-time, leading to maximally-in- 
lined code with no run-time type checks; in the other 
sections, less type information is available to the com- 
piler, and more full message sends will be generated. 
For most executions everything will run fast, possibly 
just as fast as for a C program; however, in exceptional 
cases, for example when an overflow actually occurs, 
the flow of control wiIl transfer to a more general 
section. 
This splitting design preserves the meaning of the 
program and the robust semantics of the primitives 
without penalizing the common cases. For example, in 
the sumTo: example, the type of the argument upper- 
Bound will be tested once at the head of the loop, and 
from then on, barring overflows, the types of sum, i, 
and upperBound will be known to be integers without 
run-time type checks. If an overflow occuri;, control 
will transfer out of the highly optimized inner loop 
into a more general version that sends messages to 
perform its work, 
Our second-generation compiler also performs data 
flow analysis, common subexpression elimination, code 
motion, global register allocation, and instruction 
scheduling. We hope that the addition of these optimiza- 
tions will allow our new SELF compiler to compete 
with high-quality production optimizing compilers. 

6.2. Open Issues 
Method arguments are one of the largest sources of 
“unknown” type information in the current compiler. 
We want to extend our second-generation system to cus- 
tomize methods by the types of their arguments in addi- 
tion to the receiver type. This extension provides the 
compiler with static type information about arguments, 
leading to better generated code. These benefits have to 
be balanced against the cost of verifying the types of 
arguments in the prologue of the method at run-time. 

The compile-time lookup strategy works nicely as long 
as alI the parents that get searched are constant parents; 
if any are assignable, then the compile-time lookup 
fails, and the message isn’t inlined. Our second genera- 
tion system provides limited support for dynamically- 
inherited methods by adding the types of any assignable 
parents traversed in the run-time lookup to the customi- 
zation information about the method, the method 
prologue tests the values of the assignable parents in 
addition to the type of the receiver. We an3 investigat- 
ing techniques that might lead us to an even faster 
implementation of dynamically-inherited methods. 

The message inliner needs to make better decisions about 
when to inline a method, and when not to. The inliner 
should use information about the call site, such as 
whether it’s in a loop or in a failure block, to help 
decide whether to inline the send, without wasting too 
much extra compile time and compiled-code space. It 
should also do a better job of deciding if a method is 
short enough to inline reasonably; counting the byte 
codes with a &ed cut-off value as it does now is not a 
very good algorithm. Also, our implementation of type 
prediction hard-wires both the message names and the 
predicted type; a more dynamic implementation that 
used dynamic profile information or analysis of the 
SELF inheritance hierarchy might produce better, more 
adapting results. 

The cunent implementation of the compiler, though 
speedy by traditional batch optimizing compiler stan- 
dards, is not yet fast enough for our interactive pro- 
gramming environment. The compiler takes over seven 
seconds to compile and optimize the Stanford integer 
benchmarks (almost 900 lines of SELF code), and 
almost three seconds to compile and optimize the Rich- 
ards benchma& (over 400 lines of SE&F code). We plan 
to experiment with strategies in which the compiler ex- 
ecutes quickly with little optimization whenever the 
user is waiting for the compiler, queuing up background 
jobs to recompile unoptimized methods with fulI opti- 
mization later. 
Work remains in making sure that our techniques are 
practical for larger systems than we have tested. To 
fully understand the contributions of our work, we 
need to analyze the relative performance gains and the 
associated space and time costs of our techniques. This 
analysis will be performed as paa of the tit author’s 
forthcoming dissertation. 
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7. Related Work 

Many techniques exist for efficiently compiling statical- 
ly-typed procedure-oriented programming languages. 
These techniques include type flow analysis (both for 
type-checking purposes and to resolve overloaded built- 
in operators), data flow analysis, interprocedural analy- 
ses, procedure call inlining, common subexpression 
elimination, code motion, induction variable elimina- 
tion, strength reduction, constant folding, dead code 
elimination, register allocation, peephole optimization, 
and instruction scheduling [ASU863. 

Message passing can be implemented in statically-typed 
object-oriented languages by embedding a pointer to an 
array of function pointers in each object. Whenever a 
message is sent that requires a run-time dispatch 
(known as a virtual function call iu C++), the compiler 
generates code to load the address of the function to 
call horn the function pointer array associated with the 
receiver object; the static class hierarchy is used to 
assign a particular array index to each message name. 
This technique entails an overhead of 2 indirections over 
a direct procedure call; faster message dispatch code can 
be generated in some circumstances [RosWJ. However, 
this technique incurs a large hidden cost because none of 
these virtual function calls may be inlined; our tech- 
niques would help here to statically bind many virtual 
function calls at compile-time, speeding their calling 
sequences and making them candidates for inhning. 

Some work has been done on compiling efficient code 
for dynamically-typed object-oriented languages, culmi- 
nating with the Deutsch-Schiffman Smalltalk system 
[DSM]. As described before, their system pioneered 
dynamic translation* and inline caching, as well as 
stack allocation of activation records and inlining caIls 
to primitive operations. 

Some researchers have required the SmaIhalk program- 
mer to add explicit type declarations to his programs to 
achieve better performance. Atkinson’s Hurricane com- 
piler [Atk86] used this explicit type information to 
statically bind and inline message sends and block evalu- 
ations. Running a small benchmark on a 68020-based 
Sun-3, Hurricane achieved a factor of two speedup over 
the Deutsch-Schiffman system. Unforhmately, as far as 
we know, Hurricane was never finished. Type declara- 
tions could not be statically verified, forcing the com- 

piler to add run-time type tests to check the declara- 
tions. Incorrect type declarations could lead to errone- 
ous results for non-idempotent methods. Our SELF com- 
piler suffers from none of these problems and achieves 
the same speedup. 

Johnson’s TS Typed Smalltalk system also requires the 
addition of type declarations [Joh88]. Unlike Hurricane, 
TS type declarations are statically checkable, but all 
Smalltalk source code used by a program must be anno- 
tated with type declarations before the compiler will 
accept it; this has prevented Johnson from testing more 
than trivial examples. However, Johnson did add type 
declarations to the sumTo: benchmark and compile it in 
his system; on a roughly 2-MIP 68020-based machine, 
the example ran in 62ms [Joh88]. On a 7- to 8-MIP 
SPARC-based machine, our first-generation SELF 
system runs the same example without type declarations 
in only 18ms. Our SELF system appears to achieve per- 
formance comparable to these systems without requir- 
ing the programmer to add explicit type declarations to 
his source co&. 

The drawbacks of explicit type declarations could be 
avoided by inferring them from the program’s source- 
code. Those who have attempted to perform type infer- 
encing on Smalltalk programs [Suz81, BI82, Cur891 
have had only limited success. Language features like us- 
er-defined control structures, initializing variables with 
nil, and special primitive operations (such as perform: 
and become:) interfere with inferring types. Some arc 
confident that a new language could be designed from 
scratch to support effective type inferencing [Cur89]; 
however, the main benefit would be improved compile- 
time error detection since messages would remain 
dynamically bound. Type inferencing holds little prom- 
ise for improving the performance of object-oriented 
dynamically-typed languages. 

Other researchers have built systems for interpreted im- 
plementations that allow Smalltalk programmers to 
replace commonly-used Smalltalk methods with primi- 
tive methods written in a lower-level, non-object- 
oriented language [BMW86]. While speeding up the re- 
written methods significantly over the original inter- 
preted Smalltalk methods, this approach has the obvious 
disadvantage that the programmer has to explicitly re- 
write those methods that need to execute faster. In addi- 
tion, the low-level language is often overly restricted, 
preventing some methods from being rewritten at ail. 

* Deutsch and SchXfman use a different terminology than we do. 
What we call the parser they call the compiler (in the Smalltalk tra- 
dition), and what we call the compiler they call the translator. 
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8. Conclusions 

We have doubled the performance of dynamically-typed 
object-oriented languages. Our system trades space for 
time by dynamically compiling and optimizing multiple 
copies of a single SELF method. Witbin each copy, 
customization, type prediction, and message splitting 
create and preserve static type information to drive com- 
pile-time lookup and aggressive message inlining, with- 
out sacrificing source-level compatibility. Our current 
system runs four to five times slower than optimized 
C. With better traditional optimization technology, 
global type analysis, and extensions to message split- 
ting, our second-generation compiler may approach the 
performance of traditional optimizing compilers. 

Once an implementation reaches the level of sophistica- 
tion needed to achieve good performance, the informa- 
tion provided by variables and classes becomes redun- 
dant and unnecessary. Maps enable prototype-based lan- 
guages to be as space-efficient as class-based ones, and 
provide a useful granularity of type information for the 
compiler. Customized method compilation combined 
with the compile-time lookup routine and the inlining 
facility serve to replace most message sends that access 
data slots with simple variable fetches and stores. The 
only novel feature of SELF that we have not yet imple- 
mented efficiently is dynamic inheritance, but class- 
based languages do not provide this capability at all. 

The techniques presented in this paper directly apply to 
other dynamically-typed object-oriented languages, such 
as Smalltalk-80. These ideas could be applied to even 
statically-typed object-oriented languages such as C++ 
and Trellis/Owl as an extension of “copy-down”-style 
compilers. Whether an object-oriented language has type 
declarations or not, its programs suffer from many 
dispatched calls; our techniques provide opportunities to 
compile them out. 

Since the first interpreter, programmers have been 
forced to choose between languages that cut program- 
ming time and languages that cut execution time. The 
benefits of an optimizing compiler have been denied 
those who opted for ease of programming. Now, the 
advent of larger main memories has opened up many 
new possibilities. This work shows that the right 
combination of compilation techniques can mm that ex- 
tra memory into valuable type information, and so nar- 
row the gap between productivity and performance. 
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Appendix A: Raw Running Times 

The following table presents the actual running times 
of the benchmarks measured in the Performance section. 
All times are in milliseconds of CPU time, except for 
the Smalltalk times, which are in milliseconds of real 
time; the real time measurements for the SELF system 
and the compiled C program are practically identical to 
the CPU time numbers, so comparisons in measured per- 
formance between the ParcPlace Smalltalk system and 
the other two systems are valid. 

Smalltalk SELF SELF’ 
(realms) (cpu ms) (cpu ms) (cpum; 

perm t 559 660 420 t20 
towers 2130 900 560 190 
queens 659 520 470 100 
intmm 1490 970 --- 160 
puzzle 16510 5290 --- 770 
quick 1239 690 610 110 
bubble 2970 1660 t 230 170 
tree 1760 1750 1460 620 

sumTo: 25 16 --- 4 

activationReturn 169 62 52 32 

richards 7740 2760 --- 730 
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