
1

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE

Emery Berger
University of Massachusetts, Amherst

Advanced Compilers
CMPSCI 710
Spring 2003

Using SSA form

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 2

Topics

n Last time
n Computing SSA form

n This time
n Optimizations using SSA form

n Constant propagation & dead code elimination
n Loop invariant code motion

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 3

Constant Propagation

n Lattice for integer addition, multiplication, 
mod, etc.

>

false … -1 0 1 … true

?

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 4

Boolean Lattices, AND

n meet functions
example: true AND ?, false AND >

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 5

Boolean Lattices, OR

n meet functions
example: true OR ?, false OR >

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 6

Lattice for Φ-Nodes

n To propagate constants:
if constant appears in conditional
Ø Insert assignment on true branch



2

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 7

Constant Propagation
Using SSA Form

n Initialize all expressions to >
n Two work lists:

n CFG edges = (entry, x)
n x = first reachable node

n SSA edges = ∅
n Pick edge from either list until empty

n Propagate constants when visiting either edge
n When we visit a node:

n φ -node: meet lattice values
n others: add SSA successors, CFG successors

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 8

Sparse Conditional
Constant Propagation Example

entry

a1 Ã 2

b1 Ã 3

if a1 < b1

c2 Ã 5

c3 Ã φ 6(c1,c2)

c1 Ã 4

exit

B1

B2

B3

B4

B6

B5

n Initialize all expressions to >
n Two work lists:

n CFG edges = (entry, x)
n SSA edges = ∅

n Pick edge from either list until empty
n Propagate constants when visiting either 

edge
n When we visit a node:

n φ-node: meet lattice values
n others: add SSA successors, CFG 

successors

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 9

Loop Optimizations

n Why optimize loops?
Ø Loops = frequently-accessed code

n regular patterns – can simplify optimizations
n rule of thumb: loop bodies execute 10depth times
Ø optimizations pay off

n But why do we care if we aren’t using FORTRAN?
n Loops aren’t just over arrays!

n Pointer -based data structures
n Text processing…

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 10

Loop Invariant Code Motion

n Classical loop optimization
n avoids unnecessary computation

while (z < 1000)
t = a + b
z += t

t = a + b
while (z < 1000)

z += t

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 11

Removing Loop Invariant Code

n Build SSA graph
n Simple test:

n no operands in statement are defined by φ node 
or have definition inside loop

n if match:
n assign computation new temporary name and move 

to loop pre-header, and add assignment to temp
n e.g., l = r1 op r2 becomes t 1 = r1 op r2; l = t 1

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 12

Loop Invariant Code Motion 
Example

a1 Ã 2

b1 Ã 3

x = a1 + b1

y = x + y

n Build SSA graph
n Simple test:

n no operands in statement are 
defined by φ node or have 
definition inside loop

n if match:
n assign computation new 

temporary name and move to 
loop pre-header, and add 
assignment to temp

n e.g., l = r1 op r2 becomes t1 = r1 
op r2; l = t1



3

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 13

Finding More Invariants

n Build SSA graph
n If operands point to definition inside loop

and definition is function of invariants
(recursively)
Ø replace as before

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 14

Loop Invariant Code Motion 
Example II

a1 Ã 2

b1 Ã 3

x = a1 + b1

y = x + y

x Ã q

y Ã r

z = x + a1

n Build SSA graph
n If operands point to 

definition inside loop
and definition is 
function of invariants
(recursively)
n replace as before

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 15

Loop Induction Variables

n Loop induction variable:
increases or decreases by constant amount 
inside loop
n e.g., for (i = 0; i < 100; i++)

n Opportunity for:
n strength reduction

n e.g., j = 2 * i becomes j = j + 2
n identifying stride of accesses for prefetching

n e.g.: array accesses

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 16

Easy Detection
of Loop Induction Variables

n Pattern match & check:
n Search for “i = i + b” in loop
n i is induction variable if no other assignment to i in loop

n Pros & Cons:
+ Easy!
- Does not catch all loop induction variables

e.g., “i = a * c + 2”

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 17

Next Time

n Finding loop induction variables
n Strength reduction
n Read ACDI ch. 12, pp 333-342

n Project Design documents due
n March 13: project presentations

n 5-10 minutes
n 3 slides

UUNIVERSITYNIVERSITY OFOF MMASSACHUSETTS, ASSACHUSETTS, AAMHERSTMHERST • • DDEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCECIENCE 18

Taxonomy of Induction Variables

n basic induction variable:
n only definition in loop is assignment

j := j § c, where c is loop invariant
n mutual induction variable:

n definition is linear function of other induction variable i‘:
n i = c1 * i‘ § c2
n i = i‘ / c1 § c2

n family of basic induction variable j =
set of induction variables i such that i always 
assigned linear function of j


