
1

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science

Emery Berger
University of Massachusetts, Amherst

Advanced Compilers
CMPSCI 710
Spring 2003

Common Subexpression Elimination

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 2

Topics

Last time
Dynamic storage allocation, garbage collection

This time
Common subexpression elimination

Value numbering
Global CSE

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 3

Determining Equivalence

Goal: eliminate redundant computations
Sparse conditional constant propagation:

Eliminates multiple computations
Eliminates unnecessary branches

Can we eliminate equivalent expressions
without constants?

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 4

Common Subexpression Elimination

Recognizes textually identical (or
commutative) redundant computations

Replaces second computation
by result of the first

How do we do this efficiently?

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 5

Value Numbering

Each variable, expression, and constant:
unique value number

Same number ⇒ computes same value
Based on information from within block

Use hash functions to compute these

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 6

Computing Value Numbers

Assign values to variables
a = 3 ⇒ value(a) = 3

Map expressions to values
a = b + 2 ⇒ value(a) = hash(+,value(b),2)

Use appropriate hash function
Plus: commutative

hashc(+,value(b),2) = hashc(+,2,value(b))
Minus: not commutative

hash(-,value(b),2) ≠ hash(-,2,value(b))

2

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 7

Value Numbering Summary

Forward symbolic execution of basic block
Each new value assigned to temporary

Preserves value for later use even if original variable
rewritten

a = x+y; a = a+z; b = x+y
⇒ a = x+y; t = a; a = a+z; b = t;

Maps
Var to Val

specifies symbolic value for each variable
Exp to Val

specifies value of each evaluated expression
Exp to Tmp

specifies tmp that holds value of each evaluated
expression

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 8

Map Usage

Var to Val
Used to compute symbolic value of y and z when processing
statement of form x = y + z

Exp to Tmp
Used to determine which temp to use if value(y) + value(z)
previously computed when processing statement of form x = y
+ z

Exp to Val
Used to update Var to Val when

processing statement of the form x = y + z, and
value(y) + value(z) previously computed

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 9

b → v5b → v6

a = x+y
b = a+z
b = b+y
c = a+z

a = x+y
t1 = a
b = a+z
t2 = b
b = b+y
t3 = b

x → v1
y → v2
a → v3
z → v4

c → v5

Original Basic Block New Basic Block

Var→Val
v1+v2 → v3
v3+v4 → v5

Exp→Val
v1+v2 → t1
v3+v4 → t2

Exp→Tmp
c = t2

v5+v2 → v6 v5+v2 → t3

Computing Value Numbers,
Example

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 10

Interesting Properties

Finds common subexpressions even if they use
different variables in expressions

y = a+b; x = b; z = a+x
⇒ y = a+b; t = y; x = b; z = t

Finds common subexpressions even if variable that
originally held the value was overwritten

y = a+b; x = b; y = 1; z = a+x
⇒ y = a+b; t = y; x = b; y = 1; z = t

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 11

Problems

Algorithm has a temporary for each new value
a = x+y; t1 = a;

Introduces
lots of temporaries
lots of copy statements to temporaries

In many cases, temporaries and copy statements are
unnecessary

Eliminate with copy propagation and dead code
elimination

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 12

Global CSE

Value numbering eliminates some subexpressions
but not all

l’s value is not always equal to j’s or k’s value

3

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 13

Available Expressions

Global CSE requires
computation of
available expressions
for blocks b:

Expressions on every
path in cfg from entry
to b
No operand in
expression redefined

Then use appropriate
temp variable for used
available expressions

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 14

Available Expressions:
Dataflow Equations

For a block b:
AEin(b) = expressions available on entry to b
KILL(b) = expressions killed in b
EVAL(b) = expressions defined in b and not
subsequently killed in b

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 15

Available Expressions,
Example

Build control-flow graph
Solve dataflow problem

Initialize AEin(i) = universal
set of expressions
AEin(b) = ∩j ∈ Pred(i)AEout(j)
AEout(b) = EVAL(i) ∪
(AEin(i) – KILL(i))

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 16

Next Time

Partial Redundancy Elimination
Read ACDI:

Ch. 13

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 17

Value Numbering Example

Step 1: insert temps for conditionals

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTSASSACHUSETTS, A, AMHERST • MHERST • Department of Computer ScienceDepartment of Computer Science 18

Value Numbering Example

Step 2:
Add entries for each rhs
Remove entries when dependent variable changes

