
CS161(handout #5) Using GDB
Debugging With GDB

1. What GDB is and why you need to use it
GDB is a debugger. Its purpose is to help you analyze the behavior of your program, and
thus help you diagnose bugs or mistakes. With GDB you can do the following things:

• Control aspects of the environment that your program will run in.

• Start your program, or connect up to an already-started copy.

• Make your program stop for inspection or under specified conditions.

• Step through your program one line at a time, or one machine instruction at a
time.

• Inspect the state of your program once it has stopped.

• Change the state of your program and then allow it to resume execution.

In your previous programming experience, you may have managed without using a
debugger. You might have been able to find the mistakes in your programs by printing
things on the screen or simply reading through your code. Beware, however, that OS/161
is a large and complex body of code, much more so than you may have worked on in the
past. To make matters worse, much of it was written by someone other than you. A
debugger is an essential tool in this environment.

We would not lie if we said that there has never been a student in CS161 who has
survived this class without using GDB. You should, therefore, take the time to learn GDB
and make it your best friend (or rather your second best friend; your best friend should be
your partner).

This guide will explain to you how to get started debugging OS/161, describe the most
common GDB commands, and suggest some helpful debugging techniques.

2. How to start debugging OS/161
To debug OS/161, you should use the CS161 version of GDB, which is accessible as
cs161-gdb. This copy of GDB has been configured for the MIPS architecture and has
been patched to be able to talk to System/161.

The difference between debugging a regular program and debugging an OS/161 kernel
is that the kernel is running in a machine simulator. You want to debug the kernel;
running the debugger on the machine simulator is not very illuminating and we hope it
will not be necessary. If you were to type:

% cs161-gdb system161
January 28, 2003 page 1 of 11

CS161(handout #5) Using GDB
you would be attempting to debug the simulator. This will not work, because the
simulator is not compiled for MIPS. (If you do need to debug the simulator at some point,
you would use the regular system copy of GDB.) So you must type this:

% cs161-gdb kernel

You will find, however, that having done this, telling GDB to run the kernel does not work,
because the kernel has to be run on System/161.

Instead, what you need to do is start your kernel running in System/161; then run
cs161-gdb on the same kernel and tell it to attach to the copy you started running. To do
this you have to tell GDB to talk to System/161’s debugger port.

This requires two windows, one to run the kernel in and one to run GDB in. These two
windows must be logged into the same machine. It will not work if they are not.

Be aware that “ice” is a cluster; that is, there are actually several computers, and when
you log in to “ice” you may end up logged in to any one of them. After you log your first
window in, check which actual machine you got, like this:

% echo $HOSTNAME
is04

The response tells you which actual computer you are logged into. When logging in your
second window (and any others that may need to talk to your System/161 processes)
you should log into this machine directly:

% ssh is04

If you want to always know the name of the machine on which you are logged in, you can
set your prompt to display it. You can do this by adding the line:

set prompt = "%m:%~ %# "

to your .cshrc file. (The tcsh man page includes a list of things you can put in your prompt
this way.)

Now you are ready to debug. In one window (the run window), boot OS/161 on
System/161. Use the -w option to tell System/161 to wait for a debugger connection:

% cd ~/cs161/root
% sys161 -w kernel

Next, in the other window (your debug window), run cs161-gdb on the same kernel (if you
run it on a different kernel by accident, you’ll get bizarre results) and tell GDB to connect
to System/161:

% cd ~/cs161/root
% cs161-gdb kernel
(gdb) target remote unix:.sockets/gdb
January 28, 2003 page 2 of 11

CS161(handout #5) Using GDB
GDB will connect up and it will tell you that the program is stopped somewhere in start.S.
It is waiting at the very first instruction of your kernel, as if you’d run it from GDB and put
a breakpoint there.

Once you've connected, you can use GDB to debug as you would debug any other
program. We'll give you some practice later. When you are done debugging, you can
disconnect the debugger from System/161 (and thus the running kernel) using the
detach command:

(gdb) detach
You can also, instead, tell GDB to kill the process it’s debugging. This will cause Sys-
tem/161 to exit unceremoniously, much as if you’d gone to its window and typed ^C:

(gdb) kill

Note that you do not necessarily need to attach GDB to System/161 at startup. You can
attach it at any time. However, for reasons we do not presently understand, connecting
does not always work properly unless System/161 is stopped waiting for a debugger
connection. You can put it into this state at any time by typing ^G into its window. This
can be useful if your kernel is looping or deadlocked.
January 28, 2003 page 3 of 11

CS161(handout #5) Using GDB
Most common GDB commands

Command Annotation

l, list – List lines
from source files

Use this command to display parts of your source file.
For example, typing

(gdb) l 101

will display line 101 in your source file. If you have more
than one source file, precede the line number by the file
name and a colon:

(gdb) l os.c:101

Instead of specifying a line number, you can give a
function name, in which case the listing will begin at the
top of that function.

b, break – set a
breakpoint

Use this command to specify that your program should
stop execution at a certain line or function. Typing

(gdb) b 18

means that your program will stop every time it exe-
cutes a statement on line 18. As with the “list” com-
mand, you can specify to break at a function, e.g.:
(gdb) b main

d, delete – Delete
breakpoint (or
other things)

Use this command to delete a breakpoint. By typing

(gdb) d 1

you will delete the breakpoint number “1”. GDB displays
the number of a breakpoint when you set that
breakpoint. Typing “d” without arguments will cause the
deletion of all breakpoints.
January 28, 2003 page 4 of 11

CS161(handout #5) Using GDB
clear – Clear a
breakpoint

If you don’t remember the number of the breakpoint
you want to delete, use the “clear” command. Just like
the “breakpoint” command, it takes a line number or a
function name as an argument.

c, continue –
continue
execution

After your program has stopped at a breakpoint, type

(gdb) c

if you want your program to continue the execution until
the next breakpoint.

s, step – Step
through the
program

If you want to go through your program step by step
after it has hit a breakpoint, use the “step” command.
Typing

(gdb) s

will execute the next line of code. If the next line is a
function call, the debugger will step into this function.

n, next: Execute
the next line

This command is similar to the “step” command, except
for it does not step into a function, but executes it, as if
it were a simple statement.

disable, enable -
Disable/enable
the breakpoint

Use these commands with a breakpoint number as an
argument to disable or enable a breakpoint.

display – Display
an expression

Display a value of an expression every time the program
stops. Typing

(gdb) display x

Will print the value of a variable “x” every time the pro-
gram hits a breakpoint. If you want to print the value in
hex, type:

(gdb) display /x x
January 28, 2003 page 5 of 11

CS161(handout #5) Using GDB
undisp - Cancel
display

Cancel the display of some expressions. Arguments are
the code numbers of the expressions. If no arguments
are given, GDB will cancel all expression displays.

print, printf - Print
an expression

To print a value of an expression only once, use the
“print” command. It takes the same arguments as the
“display” command.
The “printf” command allows you to specify the format-
ting of the output, just like you do with a C library
printf() function. For example, you can type:

(gdb) printf "X = %d, Y = %d\n",X,Y

command -
Execute a
command on a
breakpoint

You can specify that a certain command, or a number of
commands be executed at a breakpoint. For example, to
specify that a certain string and a certain value are
printed every time you stop at breakpoint 2, you could
type:

(gdb) command 2
 > printf “theString = %s\n”, theString
 > print /x x
 > end

bt, where -
Display backtrace

To find out where you are in the execution of your pro-
gram and how you got there, type

(gdb) bt or (gdb) where

This will show the backtrace of the execution, including
the function names and arguments.

set - Assign a
value to a variable

Sometimes it is useful to change the value of a variable
while the program is running. For example if you have a
variable “x”, typing

(gdb) set variable x = 15

will change the value of “x” to 15.
January 28, 2003 page 6 of 11

CS161(handout #5) Using GDB
define - Define a
new command

Use this if you want to define a new command. This is
similar to assigning a macro and can save you typing.
Just as with a macro, you can put together several com-
mands. For example, if you were tired of typing
(gdb) target remote unix :.sockets/gdb

all the time, you could do:

(gdb) define db
Type commands for definition of "db".
End with a line saying just "end".
> target remote unix :.sockets/gdb
> end

Then you could invoke it just by typing “db”. (If you put
this or other commands in a file called .gdbinit, GDB
will execute them automatically at startup time.)

info - Display
information

With this command you can get information about vari-
ous things in your debugging session. For example, to
list all breakpoints, type:

(gdb) info breakpoints

To see the current state of the hardware machine regis-
ters, type:

(gdb) info registers

help – Get help Finally, if you want to find more about a particular com-
mand just type:

(gdb) help <command name>
January 28, 2003 page 7 of 11

CS161(handout #5) Using GDB
3. Debugging tips

Tip #1: Check your beliefs about the program
So how do you actually approach debugging? When you have a bug in a program, it
means that you have a particular belief about how your program should behave, and
somewhere in the program this belief is violated. For example, you may believe that a
certain variable should always be 0 when you start a “for” loop, or a particular pointer can
never be NULL in a certain “if statement”. To check such beliefs, set a breakpoint in the
debugger at a line where you can check the validity of your belief. And when your
program hits the breakpoint, ask the debugger to display the value of the variable in
question.

Tip #2: Narrow down your search
If you have a situation where a variable does not have the value you expect, and you
want to find a place where it is modified, instead of walking through the entire program
line by line, you can check the value of the variable at several points in the program and
narrow down the location of the misbehaving code.

Tip #3: Walk through your code
Steve Maguire (the author of Writing Solid Code) recommends using the debugger to
step through every new line of code you write, at least once, in order to understand
exactly what your code is doing. It helps you visually verify that your program is
behaving more or less as intended. With judicious use, the step, next and finish
commands can help you trace through complex code quickly and make it possible to
examine key data structures as they are built.

Tip #4: Use good tools
Using GDB with a visual front-end can be very helpful. For example, using GDB inside
the emacs editor puts you in a split-window mode, where in one of the windows you run
your GDB session, and in the other window the GDB moves an arrow through the lines of
your source file as they are executed. To use GDB through emacs do the following:

1. Start emacs.

2. Type the “meta” key followed by an “x”.

3. At the prompt type:

gdb

The emacs will display the message:

Run gdb (like this): gdb
January 28, 2003 page 8 of 11

CS161(handout #5) Using GDB
4. Remove the word “gdb”, and type:

cs161-gdb kernel

So in the end you should have:

Run gdb (like this): cs161-gdb kernel

displayed in the control window.

At this point you can continue using GDB as explained in section 2.

Tip #5: Beware of printfs!
A lot of programmers like to find mistakes in their programs by inserting “printf”
statements that display the values of the variables. If you decide to resort to this
technique, you have to keep in mind two things: First, because adding printfs requires a
recompile, printf debugging may take longer overall than using a debugger.

More subtly, if you are debugging a multi-threaded program, such as a kernel, the order
in which the instructions are executed depends on how your threads are scheduled, and
some bugs may or may not manifest themselves under a particular execution scenario.
Because printf outputs to the console, and the console in System/161 is a serial device
that isn’t extraordinarily fast, an extra call to printf may alter the timing and scheduling
considerably. This can make bugs hide or appear to come and go, which makes your
debugging job much more difficult.

To help address this problem, System/161 provides a simple debug output facility as part
of its trace control device. One of the trace control device’s registers, when written to,
prints a notice in the System/161 output including the value that was written. In OS/161,
provided your System/161 has been configured to include the trace control device, you
can access this feature by calling trace_debug(), which is defined in dev/lamebus/ltrace.h.
While this is less disruptive than calling printf, it is still not instant and can still alter the
timing of execution. By contrast, the System/161 debugger interface is completely
invisible; as far as your kernel is concerned, time is stopped while you are working in the
debugger.

Tip #6: Debugging assembly
When GDB stops in an assembly source file (a .S file) various special considerations
apply. GDB is meant to be a source-level debugger for high level languages and isn’t
very good at debugging assembly. So various tricks are required to get adequate results.

The OS/161 toolchain now tells the assembler to emit line number information for
assembly files, so in theory you should at least be able to see the file you’re working on.
(If GDB can’t find the file, you can use the path command to tell it where to look.)
January 28, 2003 page 9 of 11

CS161(handout #5) Using GDB
It is also sometimes helpful to disassemble the kernel; type

% objdump --disassemble kernel | less
in another window and page or search through it as needed.

To single step through assembler, use the nexti and stepi commands, which are like next
and step but move by one instruction at a time.

The command x /i (examine as instructions) is useful for disassembling regions from
inside GDB.

Use the command info registers to see the values that are being handled. Unfortunately,
you can’t print only one register.

Tip #7: trace161
The trace161 program is the same as sys161 but includes additional support for various
kinds of tracing and debugging operations. You can have System/161 report disk I/O,
interrupts, exceptions, or whatever. See the System/161 documentation for more
information.

One of the perhaps more interesting trace options is to have System/161 report every
machine instruction that is executed, either at user level, at kernel level, or both.
Because this setting generates vast volumes of output, it’s generally not a good idea to
turn it on from the command line. (It is sometimes useful, however, in the early stages of
debugging assignment 2 or 3, to log all user-mode instructions.) However, the trace
options can be turned on and off under software control using the System/161 trace
control device. It can be extremely useful to turn instruction logging on for short intervals
in places you suspect something strange is happening. See dev/lamebus/ltrace.h for
further information.

Tip #8: Other tricks and caveats
If you have a void * in GDB and you know what type it actually is, you can cast it when
printing, using the usual C expression syntax. This can be surprisingly useful; for
instance, if you want to know what a thread is sleeping on, you can cast its sleepaddr
pointer to struct lock *. This will tell you the name of the lock. (If the object is not a lock but
a semaphore or CV, it still works, as long as the name field of those structures is in the
same place as the name field of the lock.)

Another trick with a stopped thread is to cast thread->pcb.pcb_savestack to struct
switchframe *; this will let you inspect its saved register values.

When you get a stack backtrace and it reaches an exception frame, GDB can sometimes
now trace through the exception frame, but it doesn’t always work very well. Sometimes
it only gets one function past the exception, and sometimes it skips one function. (This is
a result of properties of the MIPS architecture and the way GDB is implemented and
doesn’t appear readily fixable.) Always check the tf_epc field of the trap frame to see
exactly where the exception happened, and if in doubt, cross-check it against a
disassembly or have GDB disassemble the address.
January 28, 2003 page 10 of 11

CS161(handout #5) Using GDB
4. Where to go for more help
For help on GDB commands, type “help” from inside GDB. You can find the
documentation on GDB at http://www.gnu.org/software/gdb/gdb.html. And of course your
friendly TF’s are always there to help!
January 28, 2003 page 11 of 11

	Debugging With GDB
	1. What GDB is and why you need to use it
	2. How to start debugging OS/161
	Most common GDB commands
	b, break - set a breakpoint
	d, delete - Delete breakpoint (or other things)
	c, continue - continue execution

	3. Debugging tips
	Tip #1: Check your beliefs about the program
	Tip #2: Narrow down your search
	Tip #3: Walk through your code
	Tip #4: Use good tools
	1. Start emacs.

	2. Type the “meta” key followed by an “x”.
	3. At the prompt type:
	4. Remove the word “gdb”, and type:
	Tip #5: Beware of printfs!
	Tip #6: Debugging assembly
	Tip #7: trace161
	Tip #8: Other tricks and caveats
	4. Where to go for more help

