CMPSCI 377 Operating Systems Fall 2005

Lecture 5: September 29
Lecturer: Emery Berger Scribe: Pavel Sapozhnikov, Ryan Flaherty

5.1 THREADS

What are threads?
To answer this question we’ll take a look at the term granularity.

e Coarse-grained = gravel

e Fine-grained = sand

Thus, threads are sand while processes are gravel. Which means threads are always less than processes and
one process may contain many threads

We can also look at the differences between Processes and Threads.

PROCESSES consist of Control, address space, resources, while THREADS consists of Control only.

C++ APIL:

e Process =
fork()

e Thread =
pthread_create()

So threads are easier to maintain than processes because there is less book keeping to do.

We also want to look at how OS implement threads.
OS implements threads at:

e User level
User level threads require no context switching and they use thread library to manage threads. They are
also more flexible than Kernel threads. User level threads can also use multiple scheduling algorithms.
So why would we not want to use User level threads:

— Cooperative threads(Things just ran)
No Quanta

— OS knows about processes not threads
User threads calling I/O halts the process. Multiple threads on one process, dont get more time.

5-1



5-2 Lecture 5: September 29

e Kernel
Kernel threads are being scheduled by OS and are lightweight threads. Kernel threads require context
switch which is very expensive. By context switch we mean, that we need to save PC, registers and
stack pointers. However, there is no work that needs to be done with TLB (Virtual Memory). Kernel
threads can be extended to multiple processors, which earlier systems didn’t support (Sun).

So at some point Sun came up with this really fast Hybrid model which mapped User level threads onto
lightweight processes. However, this model was too hard for the developers to understand so they didn’t
develop it.

Disadvantage of Hybrid model:

e 1 big disadvantage 99 percent of programmers are stupid

e Load Balancing - Spread out threads
So there are two classic ways of implementing Load Balancing

— Work Sharing
Waste of time. Giving excess work away. This is a waste of time because you have to go around
asking people if they can receive the work.

— Work Stealing
Work Stealing means get work from someone else only if I am out of work. This is the Optimal
approach. This is the real deal you can’t get any better than that.

5.2 SCHEDULING

There are two types of scheduling:

e long-term
— how many jobs do you run at once?
e short-term

— how does OS select program from ready queue to execute?
— Kernel runs scheduler on:

* interupt

* when process is created
In the short-term there is Non-preemptive and Preemptive systems.

e Non-preemptive

— Don’t use anymore

— Scheduler can’t do anything while a process is running
¢ Preemptive

— May interrupt a running process

Important Metrics:



Lecture 5: September 29 5-3

Utilization - percent of time that the CPU is busy

— might be jobs that do not use CPU and you will ’starve’ them

Throughput - processes completing divided by time

— not many jobs that complete on their own
— serializing will maximize throughput

— time slicing hurts throughput
¢ Response Time - time between ready and next I/0

— serializing makes for a horrible response time

— time slicing makes for good response time but has alot of context switching

Waiting Time - time processes spend in ready state
— time slicing drops waiting time
Schedulers these days must be able to handle multiple cores and multiple CPUs

Each CPU gets its own queue. If there is only one queue there will be contention.
There is also CPU Affinity, where a process can ask for a specific CPU each time it runs.

OS principle:

e use past behavior as a predicter of future behavior
— works well for spinning down/saving power
e recent past = recent future

e long-term past = long-term future
Scheduling issues:

e Conflicting goals - cannot optimize all criteria simultaneously
e Want to:

— Max - CPU utilization and throughput

— Min - waiting time and response time

You must choose according to the system type. Interactive or Services.
Scheduling Interactive Systems:
e Want to minimize response time
— 500 ms is the threshold

e Want to minimize rariance of response time

— if a process takes unusually long the use gets upset



5-4 Lecture 5: September 29

Scheduling Servers:

e Want to maximize throughput.

e Want to minimize OS overhead and context switching.

Scheduling Algorithm

FCFS (first come first serve) aka. FIFO
In the early versions the jobs did not give up the CPU even for I/O. Now we can assume the jobs will give
up the CPU.
1st example:
e B wait time = 0

e C wait time = 1

e A wait time = 3
2nd example:

e A wait time = 0
e B wait time = 4

e C wait time = 5
3rd example:

e A wait time = 0
e B wait time =1
e C wait time = 5
The advantage of FCFS is that it is simple.

The disadvatages of FCF'S is that the average wait time is highly variable. It may also lead to poor overlap
of I/O and CPU.



