
CMPSCI 377 Operating Systems Fall 2005

Lecture 6: October 4
Lecturer: Emery Berger Scribe: Dennis Gove, Ivan Ordonez

Today:

• Scheduling

6.1 Scheduling

6.1.1 Last Time

• There is no perfect scheduling algorithm

• We would like to minimize response time, maximize throughput, and optimize fairness

• FIFO (FCFS) is a basic first-in first-out scheduler that works just like a queue, first job in runs till
completion, then next job, etc...

6.1.2 Round Robin (RR)

• RR works by picking the first item on the ready queue, running for a quantum,
moving item to back of queue, then repeating

– A varient of this is used in most systems

• This algorithm is totally dependent on the quantum length

– Large quantum leads to a larger response time

∗ As quantum goes toward infinity, RR looks more like FCFS

– Small quantum leads to a decresed throughput

∗ As quantum goes toward 0, context switch overhead dominates

6.1.3 Shortest Job First (SJF)

• Great algorithm if the amount of time a job requires is known

• The job with the shortest completion time is run first

• Wait times are as small as possible minimizing the starvation of other jobs

• Advantages

– Minimizes completion time

– Optimal with respect to wait time (minimal average)

6-1



6-2 Lecture 6: October 4

– Works for both pre-emptive and non-pre-emptive schedulers
∗ Pre-emptive SJF = SRTF (Shortest Remaining Time Left)

– I/O bound jobs get priority over CPU bound jobs
∗ IO bound jobs theoretically have a lower completion time if you think about before

and after I/O as seperate jobs

• Disadvantages

– Impossible to predict CPU usage time a job has left (in general)
– Long running CPU bound jobs can starve

6.1.4 Multi Level Feedback Queues

• Uses past job behavior as predictor for future behavior

– If the job stopped on IO once then it will most likely stop on IO again
– If the job ran until quantum completion then it will most likely run until quantum completion

again

• The scheduler will favor jobs which use less CPU time

– Jobs using IO will get higher priority than jobs using CPU
– Scheduler is adaptive because a change in job behavior leads to a change in scheduling decisions

• Structure

1. Multiple priority queues where IO has highest priority
– IO jobs (priority 1)
– mixture (heavily IO) (priority 2)
– mixture (heavily CPU) (priority 3)
– CPU jobs(priority 4)

2. Run highest priority queue first (priority 1)
– While in queue, use round robin

3. Change the quantum length for each priority level (priority 1 gets quantum 1 unit, priority 4 gets
quantum 4 units)

4. Move jobs from queue to queue based on their behavior
– If quantum time expires then CPU bound so move job to lower priority queue
– If quantum time does not expire then IO bound so move job to higher priority queue

6.1.5 Lottery Scheduling

• Non-hack, ellegant way of solving some of the issues associated with schedulers

• Structure

1. Every job gets a lottery ticket (high priority jobs could get multiple tickets, but each job gets at
least one)

– The algorithm degrades gracefully as load gets higher
2. At each quantum, pick a random winner and run its job for one quantum - repeat

• Example on slides 38 - 44 (http://www.cs.umass.edu/ emery/cmpsci377/cmpsci377-06.ppt)


