CMPSCI 377 Operating Systems Fall 2005

Lecture 14: November 10
Lecturer: Emery Berger Scribe: Eric Hodge, Eric Patrick

Today:

e Memory Management

14.1 Memory Management

14.1.1 Introduction

- Not memory management in kernel, but memory management between app and
OS - the "run time system.”

- Java runs in virtual machine (in run time system.)

- C/CH+ runs in libraries (libc.so, libc++.s0)

- Explicit memory management (¢ / c++)

- Garbage collection (Java, Python, Perl)

14.1.2 Explicit Memory Management

- One of the oldest fields in computer science
- Must say explicitly what you want to do with memory (ask for it.)
- Malloc (size) - returns a pointer to space big enough for size bytes.
- Calloc (size, times) - multiplies size * times, also fills memory with zeros.
- Realloc (old obj, size) - reallocates old object to a chunk of memory of size.
- realloc (null, sz) = malloc(sz)
- Realloc ( p, 0) = free(p)
- Min size returned by malloc = 8 bytes, sizeof (double) ==8 bytes
- Free(ptr) - dispose of object.
- Takes object at ptr and gives it back to runtime system.
- If you don’t free your objects, you get a memory leak.
- Things slow down due to paging.
realloc(NULL, size) == malloc(size)
realloc(p,0) == free(p)

14.1.3 Errors Involved in Memory Management
Dangling Pointer Error:
P = malloc()
X=p

14-1



14-2 Lecture 14: November 10

Free(p)

Z = malloc()
Z...

X...

z may have overwritten x
-you had a pointer to some space
-but now you've freed it
-and now it can be overwritten
-you can still try to reference it without no guarantees

Buffer overflow
- allocating too small a space and overwriting the end of memory block.
- Used by h4X0Rz.
- Professor Berger is 133t.

Some other errors...
- free objects that you didn’t allocate
-free objects twice

14.1.4 Memory Allocation

What malloc() actually does:

- Process is instantiated.
- Loader (ld.so in linux) loads program to memory, and points program counter to right place
and begins running.

Memory Structure:

- Stack grows down.

- Heap grows up.

- Code text segment beneath heap.

- In between stack and heap is a protected page to prevent collision between stack and pointer,
is fixed.

- One way of managing heap size is to use a breakpoint (sbrk(int) to set pointer.)

mmap():
- mmap() often maps a file to memory.
- Most UNIXs have a file called /dev/zero.
- Anonymous file.
- When calling mmap(), allocates memory in swap file for mmap() call.
- Munmap(ptr, sz) deallocates.



Lecture 14: November 10 14-3

14.1.5 Issues in Memory Management

- Should not use an sbrk() and mmap() approach, only use mmap().
- Sbrk() only allows you to move breakpoint for heap. Mmap() allows you to remap all the heap
to decrease heap size.

14.1.6 How memory manager actually manages memory

- Mmap() a big chunk of memory. Start and end pointers are at beginning.
- Call malloc(8), move end pointer to 8 bytes.
- Moving pointer is referred to as pointer bumping.

14.1.7 Freeing Objects

- Find a way to deallocate x in x,y,z.
- Cannot move objects around.
- Deallocate x, marked as being free.
- Header / Boundary Tag small amount of space at each section of memory to store object size
and status (free or allocated.)
- First-Fit algorithm - On new malloc(), look for FIRST block that has not been allocated that
object fits in.
- Runs in worst case O(n).
- Expected case O(n/2)
- Best fit algorithm - go through all of memory using linear search to find smallest chunk
available with greater than required size.
- Runs in O(n).
- Splitting - breaks free area of memory into smaller chunks to allow other smaller chunks of
free memory to maximize utilization.
- Coalescing - joining adjacent chunks of memory together to fit larger objects.
- Linux allocator has a pointer to prevoius memory chunk and pointer to next.
- Steals a bit for O=free, 1=allocated.
- Since O(n) is bad, must manage memory differently.

14.1.8 Free Lists

- Organize array into sizes of chunks.

- Since there are many sizes, use size classes, which generalize some sizes into one array spot.

- When freeing an object, put object into free list under its size class and mark it as free.

- If requesting an object allocation, go to its size class and check for available chunk.

- If not available, take next largest (if available) OR advance to next object.

- Internal fragmentation - extra space allocated that will not be used because your object is
smaller than allocated section.

- External fragmentation - space lost in between objects that is unusable as it is broken between
objects.

- When calling malloc(), put lock around malloc()



14-4 Lecture 14: November 10

- This prevents race condition from accessing same place in memory
- To avoid having threads slow down program, have multiple free lists.

14.1.9 Garbage Collection

- No such thing as free() method.

- Find all unused objects and deallocate them.

- Garbage collection tests for reachability.

- Roots Globals, stack, and registers.

- Use roots to find pointers, then find more pointersetc.

- Build reachability tree. If there is no pointer to an object, it is unreachable and is garbage.
Use mark-sweep. Everything is initially garbage.

- For every object in tree, set mark bit to 1 when it is reachable.

- When done searching tree, sweep through heap, and deallocate all garbage.

- Garbage collector is called complete if it is guaranteed to reclaim all memory.
- Stop-the-world garbage collector stops program during garbage collection.

14.1.10 Semi-space collector

- Known as copying garbage collector.

- Divide heap in two.

- Once 1st heap is filled, run garbage collection.

- Look at roots and see what gets pointing to from roots.
- If it IS pointed to, copy to 2nd heap.

- Deallocate first heap.

- Then 2nd heap becomes from space.

- Generations - allocate to nursury.

- If object survives, copy out. If not, reset nursery.



