
CMPSCI 377 Operating Systems Fall 2005

Lecture 16: November 15
Lecturer: Emery Berger Scribe: Dennis Gove, Rob Silva

Today: File Systems

• Who are they?

• What are they?

• Where do they come from?

16.1 File Systems and I/O

16.1.1 Overview

Files: another OS-provided abstraction over hardware resources

• applications operate on files in a file system

– device-independent interface

– open(), close(), link(), read(), write(), rename()

• device level interface

– manage disk in terms of sectors

– OS converts calls to hardware calls

USER EXPECTATIONS ON DATA

• Persistence - data lives over crashes, etc.

• Speed - quick data access

• Size - lots of data

• Sharing / Protection - share and restrict access

• Ease of use - find, examine, and modify data

16-1



16-2 Lecture 16: November 15

HARDWARE / OS support for data

Hardware

• Persistence - disks (non-volatile memory)

• Speed - random access devices

• Size - disk capacity grows fast

OS

• Persistence - redundancy, fault tolerance

• Share / Protect - UNIX privileges

• Ease of use - names associated with data (files), hierarchical directories, transparent mapping of devices

FILES

Files are a named collection of related information recorded on secondary storage. This can include source
code, binary code, relational databases, etc. They can be structured or unstructured.

structured example: IBM mainframe OS–series of records

unstructured example: UNIX file–stream of bytes

Files have attributes: name, type, location, size, protection, creation time, modified, accessed, etc...

16.1.2 User Interface to File System: Data Operations

• Open file table - shared by all

– open count, file attributes, location of file on disk, pointers to locations of files in memory

• Per process file table - one for each process

– pointers to entry in open file table, current position in file (offset), mode in which process accesses
file (r, w, r/w), pointers to file buffers

FILE OPERATIONS: creating a file

create(name)

• allocate disk space (check disk quotas, permission, etc.)

• create file descriptor for file (name, location on disk, attributes) (adds file descriptor to directory that
contains file)

may mark file with “type” attribute (especially Mac)

• advantages: error detection, launch appropriate application



Lecture 16: November 15 16-3

• disadvantages: not supported everywhere, complicated

FILE OPERATIONS: deleting a file

unlink(fileDescription)

• find directory containing file

• free disk blocks used by file

• remove file descriptor from directory

*fileDescriptor is a pointer to some object (file name, location, attribute)

FILE OPERATIONS: open files

open(name, mode)

• check if file open by another process

• if not: find file, copy file into system-wide open file table

FILE OPERATIONS: close files

close(fd)

• remove entry for file in process’s file table

• decrement open count in system-wide file table

FILE OPERATIONS: others

-reading files (random access vs. sequential access)

-writing to files (point to where you want to write, copy from buffers to file)

-seek

-memory mapping files



16-4 Lecture 16: November 15

16.1.3 File Access Methods

common file access patterns from programmer’s perspective

• sequential: data processed in order

– most programs use this method

– EX: compiler reading source file

• keyed:

– address block based on key table

16.1.4 Naming of Directories

need method of retrieving files from disk (OS uses numbers, but we like names)

• Flat File Systems

– one level directory

∗ one namespace for entire disk, every name unique
∗ directory contains (name, index) pairs

– two level directory

∗ separate directory for each user

• Hierarchical File Systems

– tree-structured name space

– d−−−︸ ︷︷ ︸
user

−−−︸ ︷︷ ︸
group

−−−︸ ︷︷ ︸
other

– used by all modern OS

– directory becomes special file on disk

Referential Naming

Hard Links (UNIX: ln command) – allow mult links to single file
example: “ln A B”
-init A → file]100
-after A,B → file]100

Soft Links (UNIX: ln -s command) – symbolic pointer from one file to another
example: “ln -s A B”
-init A → file]100
-after A → file]100, B → A



Lecture 16: November 15 16-5

Protection

• OS must allow users to control access to files

• grant / deny access to file operations depending on protection info

access lists / groups (Windows)

• for each file with a user name and access type

access control bits (UNIX)

• 3 categories of users (owner, group, world)


